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Abstract: This paper considers the problem of enabling robots to navigate dy-
namic environments while following instructions. The challenge lies in the com-
binatorial nature of instruction specifications: each instruction can include multi-
ple specifications, and the number of possible specification combinations grows
exponentially as the robot’s skill set expands. For example, “overtake the pedes-
trian while staying on the right side of the road” consists of two specifications:
“overtake the pedestrian” and “walk on the right side of the road.” To tackle this
challenge, we propose ComposableNav, based on the intuition that following an
instruction involves independently satisfying its constituent specifications, each
corresponding to a distinct motion primitive. Using diffusion models, Compos-
ableNav learns each primitive separately, then composes them in parallel at de-
ployment time to satisfy novel combinations of specifications unseen in training.
Additionally, to avoid the onerous need for demonstrations of individual motion
primitives, we propose a two-stage training procedure: (1) supervised pre-training
to learn a base diffusion model for dynamic navigation, and (2) reinforcement
learning fine-tuning that molds the base model into different motion primitives.
Through simulation and real-world experiments, we show that ComposableNav
enables robots to follow instructions by generating trajectories that satisfy diverse
and unseen combinations of specifications, significantly outperforming both non-
compositional VLM-based policies and costmap composing baselines. 2
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Figure 1: Instruction-Following Navigation in Dynamic Environments. Given an instruction
that specifies how a robot should interact with entities in the scene (a), ComposableNav leverages
the composability of diffusion models (b) to compose motion primitives to generate instruction-
following trajectories (c).

1 Introduction

Developing robots that can effectively navigate by following instructions is an active research area
aimed at enabling robots to operate within human-inhabited environments. Existing work has pre-
dominantly tackled the instruction-following navigation problem in static environments [1, 2, 3],
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where instructions specify the navigation goals. In contrast, we focus on instruction-following nav-
igation in dynamic environments. Specifically, we consider the under-explored settings where the
instructions describe specific robot interaction behaviors (e.g., “yield to a pedestrian”) with respect
to the other dynamic obstacles or agents. Addressing this problem requires developing methods
capable of grounding high-level instructions into fine-grained, low-level actions that account for
the dynamic behaviors of other agents. Solving this problem would allow end users (human or Al
agents) to customize robotic behaviors beyond their default settings, in ways that align with user
preferences and nuanced social interactions.

A crucial challenge present in instruction-following navigation is that a single instruction may con-
tain multiple specifications for the robot to follow, e.g., “overtake the pedestrian while staying on
the right side of the road” consists of two specifications: “overtake the pedestrian” and “walk on
the right side of the road.”. Following an instruction amounts to simultaneously satisfying each
of its constituent specifications. As the robot’s capabilities and environment complexity increase,
the space of possible combinations of such specifications grows exponentially. This combinatorial
expansion makes popular learning-based methods, such as imitation learning [4] or reinforcement
learning [5, 6], impractical as they demand substantial data and computational resources.

To address this challenge, we build our solution upon the idea of composition. Rather than training a
single model to handle an exponential number of possible combinations, we propose to train separate
motion primitives for each individual category of specifications. At deployment time, we assume
that an upstream module, such as a large language model, can decompose a natural-language instruc-
tion into a set of specifications online. The corresponding motion primitives can then be composed
to generate a trajectory that follows the instruction. This approach significantly reduces complexity
from exponential to linear: a relatively small set of motion primitives can support a combinatorially
large space of instructions, enabling users to specify diverse robot behaviors required in real-world
social navigation. Notably, in our setting, the relevant primitives are blended while composed, rather
than stitched together sequentially [7, 8], since the robot’s trajectory needs to satisfy all the specifi-
cations simultaneously.

To this end, we present ComposableNav, a composable, diffusion-based motion planner that com-
poses motion primitives based on the instruction specifications to generate instruction-following
motion trajectories. The core intuition motivating our approach is that diffusion models [9, 10] are
highly effective at representing complex probability distributions, and that these models can be com-
posed to form joint distributions [11]. Leveraging this property, we can separately train diffusion
models to learn motion primitives, each represented as a distribution over trajectories that satisfy
a specific instruction specification. At deployment time, ComposableNav composes the relevant
motion primitives based on the provided instruction specifications, constructs the corresponding
joint distribution, and samples a trajectory that simultaneously satisfies all specified instructions.
Additionally, to avoid the onerous need for demonstrations of individual motion primitives, we in-
troduce a two-stage training procedure consisting of supervised pre-training followed by reinforce-
ment learning (RL) fine-tuning. Finally, to ensure real-time performance, we incorporate a model
predictive controller (MPC) [12] and an online replanning strategy for low-latency action execution.

We demonstrate the effectiveness of ComposableNav through simulated and real-world experiments.
With just six motion primitives (See Tab. 1 in Appendix for the instruction list), we build a testbed
with 24 instructions featuring various unseen specification combinations. Our results show that
ComposableNav excels at following unseen instructions compared to baseline approaches. Our
main contributions are summarized as follows. (1) We introduce the use of composition as a strategy
for instruction-following navigation in dynamic environments, making the problem tractable under
limited data and computational resources for training. (2) We propose a diffusion-based learning
method to model motion primitives as probability distributions, enabling their composition at de-
ployment time. (3) We develop a two-stage training procedure—combining supervised pre-training
and reinforcement learning fine-tuning—that effectively learns motion primitives without the need
for specialized demonstration datasets for each primitive.



2 Related Work

Instruction Following Navigation. A key area in instruction-following navigation is vision-
language navigation (VLN)[1, 2, 3], which combines natural language understanding with visual
perception to guide agents through 3D environments[13, 14, 15, 16, 17, 18]. However, these methods
assume static settings and overlook scenarios involving dynamic agents, where instructions specify
interactions with moving agents. In contrast, social robot navigation focuses on enabling robots to
operate in dynamic environments [19, 20, 21, 22, 23, 24, 25, 26, 27], but lacks instruction condi-
tioning. Recent work has shown promise in using vision-language models (VLMs) to address this
gap. CoNVOI [28] and Social-VLM-Nav [29] leverage VLMs’ reasoning to interpret environment
observations and suggest actions, but they face high inference latency and planning inconsistency.
BehAV [30] addresses some of these issues by generating cost maps from VLM outputs, yet strug-
gles with sample inefficiency in geometric planning. Our work proposes a novel alternative using
diffusion models [9] to compose motion primitives, without relying on costly VLM inference.

Diffusion For Robotics. Diffusion models have emerged as powerful tools for solving a variety
of robotics tasks [31, 32, 33, 34, 35, 36], with training typically performed using either supervised
learning [32, 33, 35, 31] or RL [34, 37]. A distinctive advantage of diffusion models is their ability
to guide the sampling process after training [38]. Janner et al. [39] first relate this guided sampling
mechanism to the control-as-inference framework [40], demonstrating that classifier guidance en-
ables the generation of motion plans for previously unseen goal configurations. However, designing
such classifiers can be challenging. To address this, Luo et al. [36] interpret diffusion models as
energy-based models, training separate models and composing them at inference time to generalize
to novel environments. Building on this idea of composition, our work differs in that we do not as-
sume access to diverse motion primitive datasets for supervised training. Instead, we propose using
reinforcement learning-based [34] to fine-tune diffusion models, and composing them to generate
trajectories that satisfy unseen combinations of specifications from an instruction.

3 Problem Formulation

We consider the problem of instruction-following robot navigation in dynamic environments, where
the objective is to generate a motion trajectory 7 that follows a given instruction I, based on the
robot’s observation O of the environment. We represent the motion trajectory 7 as a sequence of
2D waypoints at fixed-time intervals, which are then tracked by a model predictive controller to
produce fine-grained actions in real time. The observation O encodes the state of entities relevant
to the instruction, such as the current and predicted positions of dynamic agents. Note that other
representations are also possible, such as full SE(3) poses for 7 or RGB images for O.

In this work, we assume an instruction / can be decomposed into a set of independent specifications
I — (oM, 2 .. ¢®). Each specification ¢(?) : 7 x O — {0,1} evaluates whether the tra-
jectory meets the corresponding requirement, returning 1 if it does and O otherwise. To determine
whether a trajectory 7 follows an instruction /, 7 must satisfy all relevant specifications. Formally,

7 follows I iff Vi € [1,--- , k], ¢V (r,0) = 1. 1)

Solving this problem is challenging because the trajectory must simultaneously satisfy all specifica-
tions ¢(), whose combinations can grow exponentially. In the following sections, we explain how
leveraging diffusion models enables us to compose motion primitives and generate trajectories that
can follow instructions during robot deployment.

4 Preliminaries

We provide a brief overview of the two key techniques used in ComposableNav, conditional diffu-
sion models [10, 9, 41, 42] and denoising diffusion policy optimization (DDPO) [34].

4.1 Conditional Diffusion Models
In this work, we consider conditional diffusion probabilistic models [9, 10, 42], which belong to a
family of generative models trained to represent a conditional distribution p(z | ¢), where c is the



corresponding context. These models are trained to reverse a forward diffusion process q(x; | z1—1)
that gradually adds Gaussian noise to the data xo ~ p(x|c). To learn this reverse process, the model
is trained to predict the noise ¢ at each step ¢ using a denoising network, fo(zy,t, ¢) ~ €, where x; is
the noisy data at step ¢. The network is optimized using a training objective that penalizes the mean
squared error between the predicted and actual noise value at step ¢:

Luise(0) = Eage,t.c [lle = folze,t,0)|1%] - 2)
This objective is derived from maximizing a variational lower bound on the data log-likelihood [9].

At inference time, the model generates a data sample by starting from Gaussian noise z7 ~ N (0, )
and progressively denoising it using the learned denoising network for 7" steps. The reverse process
at each timestep t follows a Gaussian distribution with a time-dependent covariance matrix o1,
where o7 is treated as a hyperparameter:

po(wi—1 | 4, ¢) = N(zp — fe(xtvtvc)vatQI)v 3)

This iterative process continues until a final sample z( is obtained, which approximates the true
conditional distribution p(z | c).

4.2 Denoising Diffusion Policy Optimization (DDPO)

ComposableNav follows the denoising diffusion policy optimization technique (DDPO) proposed
by Black et al. [34] to use reinforcement learning (RL) to fine-tune diffusion models to generate
the motion primitives corresponding to the instruction specifications. DDPO models the multi-step
denoising process as a multi-step Markovian Decision Process (MDP), defined as a tuple M =
(S, A, po, P, R), where S is the state space, A is the action space, pg is the distribution of initial
states, P is the transition kernel, and R is the reward function. We denote the timestep of this
multi-step MDP as 7. The denoising process is mapped into this MDP as follows:

Sq £ <$t,t70> €S W(ai | 51) éPa(fl?t—l | $t70) P(5i+1 \ Si,ai) £ <5mt_1a§t—136c>
4)
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where d,, denotes the Dirac distribution with nonzero density only at y.

The key insight behind this technique is that the reverse process in a diffusion model is a Markovian
process, where each denoising step pg(x:—1 | ,c¢) is modeled as a Gaussian distribution (see
Eq. 3). By interpreting each denoising step as the policy 7(a; | s;) in an MDP, the policy itself
becomes Gaussian, which allows for the exact evaluation of log-likelihoods and their gradients with
respect to the diffusion model parameters. As a result, this formulation enables the use of policy
gradient methods, such as PPO [43], to optimize the diffusion model’s denoising network.

The DDPO algorithm alternates between (1) collecting denoising trajectories (X7, z7_1,...,Zo)
via sampling and (2) updating the model parameters using gradient descent. Finally, the policy
gradient objective used in DDPO can be expressed as:

T
pe(l’t—l \ Tt, C)

L=E Vo lo Ti_1 | 2y, c)r(x0,0) |, )
t:1p90m($t71|xt,c) o log pp(wi—1 | ¢, €)r(wo, c)

where the expectation is taken over trajectories generated using the previous model parameters 6,4.

5 ComposableNav

In this section, we present ComposableNav, a diffusion-based planner for instruction-following nav-
igation. As shown in Fig. 2, ComposableNav first learns motion primitives via a two-stage training
procedure (see Sec. 5.1). At deployment, given instruction specifications, it selects relevant prim-
itives and composes them by summing the predicted noise from each diffusion model during the
denoising process (Sec. 5.2). Finally, for real-time control, ComposableNav is paired with an MPC
(see Appendix F.2). Please refer to our codebase for detailed implementation. 3

3Code is released at https://github.com/ut-amrl/ComposableNayv.
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Figure 2: ComposableNav Overview. ComposableNav learns each motion primitive through a
two-stage procedure: supervised pre-training (step 1) followed by RL fine-tuning (step 2). At de-
ployment, it maps instruction specifications to the corresponding learned primitives and composes
them by summing the predicted noise from each primitive’s denoising network. The final trajectory
is generated through the diffusion denoising process.

5.1 Learning Motion Primitives without Primitive-Specific Demonstration Data

Diffusion models for robotics are often trained in a supervised manner using large-scale demon-
stration datasets [36, 44, 32]. However, collecting such datasets for different robot motion prim-
itives can be labor-intensive. To address this challenge, we make two key design choices. First,
dedicated datasets for each primitive behavior are costly to build, whereas general-purpose navi-
gation datasets are far easier to obtain. These general-purpose datasets only need to provide di-
verse, collision-free, goal-reaching trajectories in dynamic environments, which can be obtained
from existing real-world datasets [45, 46] or generated in simulation [33]. Such data allows the
pre-training of a base diffusion planner to generate diverse and feasible trajectories across various
environments. Second, verifying a solution is often easier than generating one. In our setting, evalu-
ating whether a trajectory satisfies an instruction (e.g., with rule-based heuristics or vision-language
models (VLMs)) is typically more straightforward than directly generating such a trajectory. Hence,
for each primitive, we design a primitive-specific reward function that asserts instruction compliance
and use RL to fine-tune the pre-trained base model [34]. Building on the two design choices above,
we propose a two-stage framework: supervised pretraining followed by RL fine-tuning.

Supervised Pre-training. To pre-train a base diffusion model, we generate diverse trajectory data
in simulation for simplicity and scalability. Following prior works [36, 33], we randomly synthesize
environments with varying entities (e.g., dynamic agents or terrain regions) and goal locations. We
then use a geometric planner to generate a diverse set of collision-free, goal-reaching, and smooth
trajectories. To account for dynamic environments, these trajectories must be time-dependent, so we
employ a spatio-temporal Hybrid A* planner. In addition, we also want to capture the distribution
of diverse feasible trajectories within the same environment (e.g., both detouring left or right around
an obstacle in front are feasible trajectories). Hence, we use a Rapidly-Exploring Random Tree
planner to randomly generate candidate trajectories and then select waypoints along the trajectories
as subgoals for Hybrid A* to track. Additionally, we also vary the hyperparameters for the planners
(e.g., velocity cost) to further enhance trajectory diversity.

Once a diverse set of time-dependent trajectories is generated, we pre-train a base diffusion model
via supervised learning, using the objective in Eq. 2. The model learns a conditional denoising
network fé,base)(n7 t, O), which predicts the noise € to denoise the trajectory 7; at step ¢, conditioned
on environment observations O. We adopt an object-centric representation for the observations,
encoding each observation separately and then using a transformer encoder to attend over these
embeddings to produce a global context feature. To handle varying trajectory lengths, we pad shorter

trajectories with the final goal position to ensure uniform length during training.

RL Fine-tuning. We then fine-tune the base model separately for each motion primitive using RL,
following the DDPO approach described in Sec. 4.2. For each primitive, we randomly generate
simulation environments containing only the entities relevant to the corresponding instruction speci-



fication. The diffusion model then generates trajectories for these environments, which are evaluated
using a reward function based on how well they align with the instruction. While the reward function
can take various forms, we adopt a simple rule-based heuristic approach, as the primitives considered
in our experiments are straightforward to evaluate (example shown in Appendix C). The resulting
trajectories and rewards are stored in a replay buffer, and the model is updated using PPO [43].

. . . . . . ) .
Finally, after fine-tuning, we obtain multiple diffusion models fg (7¢,t,O), each representing a
motion primitive associated with a specification ¢(*).

5.2 Generating Instruction-Following Trajectories via Composing Motion Primitives
ComposableNav models the instruction-following motion trajectories 7 as a conditional distribution
p(t]¢pM), oM .. ¢) (k) where each ¢¥) is a specification extracted from the instruction I,
ie, I — (M) ... ¢ and each o(?) is the environment observation corresponding to ¢(*). We
assume both the specifications and the environment observations can be extracted using off-the-shelf
large language models and vision foundation models. Given the conditional independence assump-
tion for each specification ¢(*) discussed in Sec. 3, the conditional distribution can be factorized as
follows (derivation shown in Eq. 8):

p(r]p™, oM o ") oF)) o p(7) H IM_

=5 o) ©

Here, each conditional trajectory distribution p(7 | ¢(*), 0(*)) corresponds to a motion primitive

oo . .. @) . )
represented by a diffusion model with denoising network fg’ (74, 1, o(l)). In contrast, the marginal
trajectory distribution p(7) is an unconditioned motion primitive, obtained by replacing the observa-

. i)
tion o) with a null input @, i.e., fg’ ( (74, t, &), following the classifier-free guidance approach [42].

Following prior work [11, 36], we compose motion primitives by summing the predicted noise
from denoising networks, with user-defined weights w; controlling the guidance strength for the ith
primitive (w; is set to be 1 for all primitives in this work). The composed noise is:

©
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Here, with separate diffusion models for each primitive, p(7) is defined as the average of the uncon-

.. (©) . L
ditioned outputs fg (1¢,t, @) across all considered primitives.

Finally, ComposableNav generates trajectories by iteratively applying the reverse diffusion pro-
cess, starting from a noisy trajectory 70 ~ AN(0,I) and denoising via peompose(Te—1 |
7,01 oM L o) oR)) = N (7, — € 07T). After T steps, the process yields a trajectory 7o,
drawn from a distribution concentrated on trajectories that satisfy all specifications of the given
instruction (See Appendix B for an intuitive explanation of diffusion composition, based on the
score-based interpretation [47]).

6 Experiments and Results

We evaluate ComposableNav in simulation and the real world to address the following questions:
(1) Can ComposableNav learn individual motion primitives that satisfy each instruction specifi-
cation without relying on demonstration data? (2) To what extent can ComposableNav compose
motion primitives to generate trajectories that satisfy unseen combinations of specifications, in com-
parison to baseline approaches? (3) Can ComposableNav operate in real-time when deployed on
a real-world robot and enable the robot to follow instructions in dynamic environments involving
pedestrian interactions? In our experiments, we consider six navigation motion primitives, as shown
in Fig. 3a and Appendix C, with training details provided in Appendix D.

6.1 Simulation Experiments
Environment Setup. Using six motion primitives, we built a testbed with 24 instructions featur-
ing various unseen specification combinations (see Appendix E.3.2). Instructions are grouped by
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(b) Composed Robot Navigation Trajectories. These examples show trajectories generated by combining
learned motion primitives to follow complex instructions across diverse scenarios.

Figure 3: Qualitative Simulation Results.

complexity, based on the number of specifications—ranging from two to four—with each category
comprising eight instructions. For each instruction, we randomly generate 20 test environments.
Fig. 3b illustrates sample environments and corresponding robot behaviors, where dynamic humans
are modeled as spheres and regions as rectangles.

Baselines. We compare ComposableNav with three VLM-based baselines (see Appendix E.2 for
more details): (1) VLM-Social-Nav [29], which uses a VLM to select actions from predefined be-
haviors and translate them into a social cost function; (2) CoNVOI [28], which leverages a VLM to
choose the robot’s next waypoint from an annotated image; and (3) BehAV [30], which uses a VLM
to generate instruction-grounded segmentation maps converted into cost maps for motion planning.
Like ComposableNav, these methods pair their approach with a local motion planner [48].

Metrics. Success is defined using three cri-
teria—Instruction Alignment (IA), Collision-
Free (CF), and Goal Reaching (GR)—with a
trajectory considered successful (SR=1) only if
all are satisfied. IA is assessed via a rule-based
function to check if the trajectory follows the
given instructions (See Appendix C).
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sion models to learn individual motion primi-
tives without direct demonstration data. As il-
lustrated in Fig. 3a, the robot can generate navi-
gation behaviors tailored to different primitives
and environments. Also, the fine-tuned models
execute motion primitives with near-perfect ac-
curacy, whereas pre-trained models perform significantly worse (see Tab. 2 in Appendix).

Success Rate (%)

Figure 4: Simulation Evaluation Results. Bar
plots show mean success rates with standard error
bars. As instruction complexity increases, Com-
posableNav consistently outperforms baselines.

Fig. 4 presents the quantitative results, with further analysis in Appendix E.3.2. ComposableNav
consistently outperforms all baselines across all levels of instruction complexity. While the base-
line methods exhibit moderate performance with a single specification, their success rates degrade
rapidly as the number of specifications increases. In contrast, ComposableNav maintains fairly high
success rates even under complex multi-specification instructions, achieving 58.6% with three and
34.9% with four specifications, where all baselines fall below 11%. This demonstrates the robust-
ness of ComposableNayv in following complex unseen combinations of instruction specifications.



Finally, Fig. 3b further illustrates how ComposableNav composes motion primitives to generate
diverse trajectories in response to previously unseen combinations of instruction specifications. For
instance, to follow instruction A, the trajectory must first slow down to yield to Person 2, then
accelerate to overtake Person 1. B differs from A by introducing an additional specification to walk
over the green region, prompting the robot to take a detour to the right. Similarly, C and D elicit
complex navigation behaviors, such as following a human or avoiding a region in front.

6.2 Deployment on a Real Robot

@ Human trajectory € Human trajectory Robot Default trajectory <> Instruction-following trajectory

I'm not comfortable with the robot's
default behavior. | want it to enter
the doorway after the person.

| would prefer the robot to walk on the
right side of the road and follow the
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Figure 5: Real world Experiments. ComposableNav allows for customizing the robot’s behavior.

We deployed ComposableNav on a Clearpath Jackal robot us-
ing only its onboard compute in real-world environments (see
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Appendix F.1). We tested six instructions in two common sce- ::i 2
narios: (1) navigating a narrow doorway and (2) walking in  |nst. 4
an open outdoor space. To ensure safety, all instructions were  Inst. 3
first validated in simulation. Each instruction was tested in  Inst.2
10 repeated trials to evaluate real-world performance. Success st
rates, shown in Fig. 6, were consistently high, indicating that 0% 50% 100%

ComposableNav can be effectively deployed in real-world set-
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Success Rate

Fig. 9 also illustrates how ComposableNav enables users to

customize robot behavior beyond the default navigation be-

havior. For example, the default geometric stack (yellow trajectory) prioritizes fast, collision-free
navigation but may pass uncomfortably close to humans. In contrast, ComposableNav allows users
to specify preferences, such as following a person through a doorway instead of overtaking them
(green trajectory), supporting more human preference-aligned behavior. Finally, we measured sys-
tem latency, which depends on the number of composed motion primitives. In the most complex case
involving four primitives, initial trajectory generation averaged 0.4s, whereas trajectory replanning
required only 0.06s (see additional results in Appendix F.1).

7 Conclusion

This paper presents ComposableNav, a composable diffusion-based motion planner that composes
navigation motion primitives to generate trajectories satisfying diverse, previously unseen combina-
tions of instruction specifications. To address the lack of primitive-specific demonstrations, Com-
posableNav employs a two-stage training pipeline: (1) supervised pre-training to learn a base diffu-
sion model for dynamic navigation, and (2) reinforcement-learning fine-tuning that specializes this
base model for each motion primitive. Our simulation and real-world experiments show that the
design of ComposableNav enables it to learn and compose motion primitives effectively, and it can
be deployed on real-world robots to operate in real time.



8 Limitations and Future Work

This work has several limitations that future research could address.

First, we only considered six commonly used navigation primitives when composing novel behav-
iors. These primitives are relatively simple and can be described with straightforward rule-based re-
ward functions (see Sec. C). However, manually designing such reward functions does not scale well
as the number of primitives grows. Importantly, our method is not tied to a particular way of crafting
rewards. A promising and direct direction for improving scalability is to leverage vision-language
models (VLMs) as verifiers—shown effective in DDPO [34]—to automatically learn diverse and
complex behaviors without relying on handcrafted rewards.

Second, we assume that tasks such as parsing instructions into specifications and detecting relevant
observations can be handled by existing methods, such as off-the-shelf LLMs and VLMs. Since our
focus is on composable planning, we abstract these components away in our experiments. Future
work may stack high-level VLM-based modules, as in prior studies [30, 49], on top of Composable-
Nav to close the loop. Furthermore, a high-level task planner [50, 51] could be introduced to further
support long-horizon instruction-following navigation.

Third, although ComposableNav significantly outperforms baseline methods, it still shows a notable
decline in success rate as the number of instruction specifications increases. This limitation may
stem from the underlying composition strategy: following Liu et al. [11], our method composes
diffusion models by summing the predicted noise from individual denoising networks. As Du et
al. [38] highlight, however, this approach can lead to suboptimal results. Future work may explore
more advanced sampling techniques for diffusion models—such as Hamiltonian Monte Carlo [52,
53]—to improve composition performance under higher instruction complexity.
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A Derivation for Eq. 6
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< Bayes’ Rule

= p(T)p(¢(1)7 O(l)a Tt 7¢(k)7 oM | 7) < Bayes’ Rule

=p(7) HP(QS@, o | 1) < Conditional Independence
i=1

o< p(7) ﬁ M < Bayes’ Rule
=1 ()

B Composing Diffusion Models via Score Function Interpretation

Diffusion models belong to the family of score-based generative models. These models learn to
estimate the score function [47, 11], which is defined as the gradient of the log-probability density
with respect to the input, i.e., V. log p(z). Intuitively, the score function indicates the direction in
which a data point should be moved to increase its likelihood under the data distribution.

In the case of diffusion models, the denoising network fy(x, ) can be interpreted as being propor-
tional to the score function. The denoising process can thus be viewed as iteratively moving the noisy
sample z; in the direction predicted by the model, gradually transforming it into a high-probability
sample from the data distribution.

Given this interpretation, composmg multiple dlffusmn models corresponds to computing the sum of

their score functions, El 1 fel (x¢,t), where each fe represents the score from the i-th diffusion
model being composed and € is the composed score. The generative process for composing these
models becomes [11]:

pe(mt 1 |93t »Ut Zf(z) l't» ) )

This process can be understood as guiding the sample toward regions that are simultaneously high-
probability under all the models being composed. Hence, the data can be seen as sampling from the
joint distribution defined by all the composed diffusion models.

C Motion Primitives

In this work, we consider six commonly used navigation motion primitives, as listed in Tab. 1. In
the following subsections, we present the pseudocode that outlines how we define the specification
#%) for each motion primitive using heuristic rule-based functions.
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Table 1: Instruction Specifications for Navigation Motion Primitives

Motion Primitive (MP) \ Instruction Specification

Pass a person from the left (L) ‘ The robot should pass the person from the left side.

Pass a person from the right (R) \ The robot should pass the person from the right side.

Follow behind a person (F) The robot should stay in a specific region behind the person relative to

the person’s position.

Yield to a person (Y)
Walk through a region (W)

The robot should not cross the region in front of the person.

The robot’s trajectory should overlap with the specified region.

Avoid walking through a spec-
ified region (A)

The robot’s trajectory should not overlap with the specified region, which
may be defined either by a terrain feature or by a person’s location.

C.1 Pass a person from the left

Pseudocode 1 Motion Primitive ¢

1 def criteria left (r, O):

2 time at each waypoint = extract_time at each waypoint(r)
3 for t in time at each waypoint:

4 region = extract_region_left of obs(O, t)

5 robot position = extract position(r, t)

6 if region.contains(robot position):

7 return 1

8 return 0

C.2 Pass a person from the right

Pseudocode 2 Motion Primitive ¢(®)

def criteria right (7, O):

time at each waypoint = extract time at each waypoint(7)
for t in time _at each waypoint:

region = extract region right of obs(O, t)

robot position = extract position(r, t)

if region.contains(robot position):

return 1

return 0

0NN B W~

C.3 Follow behind a person

For this primitive, we consider a period of time to evaluate whether the robot has successfully fol-
lowed the human, which is defined as the final few seconds before the robot reaches the goal.

Pseudocode 3 Motion Primitive ¢(F)

def criteria follow (7, O):

time at each waypoint = extract time at each waypoint(7)
time period = get.relevant_time period(time at each waypoint)
for t in time period:

region = extract_region_behind obs(O, t)

robot position = extract position(r, t)

if not region.contains(robot position):

return 0

return 1

O 001N KW —
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C.4 Yield to a person

Pseudocode 4 Motion Primitive ¢(¥)

def criteria yield (7, O):

time at each waypoint = extract_time_at each waypoint(r)
for t in time at each waypoint:

region = extract_region_in_front.of obs(O, t)

robot position = extract position(r, t)

if region.contains(robot position):

return 0

return 1

C.5 Walk through a region

Pseudocode 5 Motion Primitive ¢(")

def criteria prefer (7, O):

time at each waypoint = extract_time_at each waypoint(r)
for t in time at each waypoint:

region = extract.region(O, t)

robot position = extract position(r, t)

if region.contains(robot position):

return 1

return 0

C.6 Avoid walking through a region

Pseudocode 6 Motion Primitive ¢(*)

def criteria avoid (7, O):

time at each waypoint = extract time at each waypoint(r)
for t in time at each waypoint:

region = extract.region(O, t)

robot position = extract position(r, t)

if region.contains(robot position):

return 0

return 1

D Training Diffusion Model

D.1 Model Design

We build upon a publicly available diffusion model implementation*. Our denoising network, fg,
consists of a 1D UNet architecture augmented with a context encoder. Each observation—whether
a dynamic human or a specific region—along with the goal, is first encoded using a multilayer
perceptron (MLP). The dynamic human is represented as a predicted future trajectory, estimated
under a constant velocity assumption. In contrast, a region is represented as a rectangle defined by
the positions of its four corners. These embeddings are then passed through a vision transformer to
generate context features, following the approach introduced in prior work [36].

*https://github.com/lucidrains/denoising-diffusion-pytorch
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D.2 Training

To train the base model, we collected trajectories across three types of environments: (1) collision-
free trajectories in dynamic settings, (2) trajectories that avoid specified regions, and (3) trajectories
that intentionally traverse specific regions. The first two types were generated in simulation by
randomly placing obstacles and planning trajectories to avoid them. For the third type, we sampled
trajectories from the first two types, randomly selected a region that each trajectory passes through,
and re-labeled this region as the observation to form training pairs.

We collected approximately 2 million collision-free trajectories and trained the denoising network
for 2000 epochs, using a learning rate of 2 x 10~ and a dropout rate of 0.1. Training followed
the classifier-free guidance approach [42], where the model was conditioned on a null context (rep-
resented by zero vectors) with a probability of 20%, instead of using features extracted from the
context encoder. We also applied an exponential moving average (EMA) to the model parameters
during training, which stabilizes optimization and improves generalization by smoothing out noisy
updates. Following prior work [33], the diffusion model performs a total of 25 denoising steps us-
ing an exponential noise schedule, generating a trajectory composed of a sequence of fixed-length,
time-dependent waypoints.

To fine-tune the base denoising network for each motion primitive, we adapted the DDPO imple-
mentation’. For simplicity, we replaced the original vision-language model (VLM)-based reward
function with a heuristic-based one, designed according to the specific definitions of each motion
primitive in this work. During each training epoch, we generated 32 different environments and
trained the model for a total of 1000 epochs. A noteworthy observation from our experiments is that
a significantly lower learning rate greatly enhances training performance. Based on this finding, we
adopted a learning rate of 1 x 1075, which is also consistent with results reported in the literature [6].

E Additional Simulation Experiment Details

E.1 Simulation ComposableNav Setup

We evaluate ComposableNav in a 20 x 20 m? 2D simulation arena. Dynamic humans are modeled as
spheres, whose future positions are predicted under a constant-velocity assumption, while the static
environment is represented as a rectangular region specified by the coordinates of its four corner
points. For each instruction, 20 environments are randomly initialized, assigning initial positions and
speeds to the entities based on the specific requirements of the instruction. The simulation operates
at a control frequency of At = 0.1s, and each episode lasts for a maximum of 300 timesteps,
equivalent to 30.0 seconds.

E.2 Baseline Setup

In this work, we consider three baseline methods: VLM-Social-Nav [29], CoNVOI [28], and Be-
hAV [30]. These baselines fall into two categories: the first two treat the VLM as a black-box policy
that proposes a target action (e.g., next waypoint or velocity) for a geometric planner to track, while
the third computes composable cost maps for planning.

None of these baseline methods is explicitly designed to solve the problem considered in this work.
Therefore, we adapt them for our experimental setup. For VLM-Social-Nav and CoNVOI, we use
the latest GPT-4.1 model and disregard the high inference latency associated with invoking a remote
VLM and focus on evaluating their prediction accuracy. Additionally, we modify these approaches
by providing annotated screenshots of the simulates scenes and prompting the VLMs for reasoning.

For BehAV, whose core idea is to create composable costmaps and plan trajectories over them (sim-
ilar to Voxposer [49]), we simplify the setup by abstracting away the segmentation vision model.

Shttps://github.com/kvablack/ddpo- pytorch
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Instead, we provide BehAV with ground-truth annotations obtained directly from the simulation
environment and evaluate solely how well costmap-based planning enables instruction following.

For each baseline method, we conducted a grid search over various combinations of motion planner
hyperparameters—specifically, different weights of the constituent cost functions—using a small
tuning set. We then selected the hyperparameters that achieved the highest overall success rates.

E.3 Supplementary Quantitative Results
E.3.1 Learning Motion Primitives

Beyond demonstrating that the RL

fine-tuning procedure enables the Table 2: Comparison of Fine-tuned and Pre-trained Diffu-
learning of effective motion prim- sion Models for Representing Motion Primitives.

itives, we further analyze results
obtained from comparing the pre-
trained and fine-tuned models. As SR(%)T TA)T CE(%)T GR(%)T SR(%)T TA(%)T CF(%)T GR(%)T
shown in Tab. 2, the pre-trained 440 440 1000 1000 1000 100.0 1000  100.0
model, which is trained to generate
collision-free, goal-reaching trajecto-
ries, consistently achieves these ob-
jectives across all evaluated motion
primitives. In particular, the pre-
trained model achieves a 100% success rate for the “Avoid walking through a region” motion primi-
tive. This outcome is anticipated, as avoiding designated regions is closely aligned with the collision
avoidance objective emphasized during the pre-training phase.
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Figure 7: Qualitative Simulation Results

We present the quantitative results of 24 motion primitive combinations in our simulation testbed,
as detailed in Tab. 3. Each combination (e.g., “L+R”) corresponds to a specific natural language
instruction (e.g., “Pass person 1 from the left and person 2 from the right”’), which maps to a distinct
robot motion trajectory illustrated in Fig. 1. Given the similarity between the primitives “pass a
person from the left” and “pass a person from the right”—which differ only in direction—we unify
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Table 3: Detailed Simulation Evaluation Results

VLM-based Policy

Compose Costmaps

Compose Primitives

# Combination

VLM-Social-Nav (%) Convoi (%) Behav (%) ComposableNav (ours) (%)

SRT IAT CFt GRtT SRt IAT CFft GRT SRt IAtT CFT GRtT SRt IAT CFt GRtT

° L 55.0 550 100.0 100.0 70.0 750 95.0 100.0 650 650 100.0 100.0 100.0 100.0 100.0 100.0
= R 55.0 550 100.0 100.0 70.0 750 95.0 100.0 650 650 100.0 100.0 100.0 100.0 100.0 100.0
'é F 50 5.0 100.0 100.0 0.0 00 950 1000 70.0 750 1000 950 99.0 100.0 100.0 99.0
E Y 250 250 950 100.0 40.0 400 950 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
- w 0.0 0.0 1000 100.0 550 550 100.0 100.0 550 55.0 100.0 100.0 100.0 100.0 100.0 100.0
A 0.0 0.0 1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Overall 233 233 992 1000 558 575 96.7 100.0 75.8 767 100.0 99.2 998 100.0 100.0 99.8

3 L+R 50 5.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0 33.0 340 86.0 100.0
:E P+F 10.0 10.0 100.0 100.0 5.0 50 90.0 100.0 0.0 00 900 100.0 850 850 99.0 100.0
£ Y+P 20.0 20.0 100.0 100.0 550 550 950 100.0 90.0 90.0 100.0 100.0 90.0 93.0 97.0 100.0
& Y+F 50 50 950 1000 0.0 00 800 950 850 850 100.0 100.0 85.0 850 100.0 100.0
5 W+P 00 0.0 1000 100.0 200 20.0 950 1000 5.0 5.0 100.0 100.0 60.0 61.0 97.0 100.0
g W+Y 00 0.0 1000 100.0 350 350 950 1000 400 40.0 100.0 100.0 99.0 99.0 100.0 100.0
= A+P 00 00 90.0 100.0 650 650 100.0 100.0 50.0 50.0 100.0 950 67.0 68.0 99.0 100.0
« A+F 0.0 0.0 1000 100.0 0.0 0.0 100.0 100.0 350 40.0 1000 350 85.0 850 100.0 100.0
Overall 50 50 981 100.0 225 225 944 994 381 388 988 912 755 762 972 100.0

%  P+F+Y 00 0.0 1000 1000 5.0 50 850 100.0 0.0 0.0 100.0 100.0 30.0 340 91.0 100.0
:.E P+F+W 00 0.0 1000 1000 5.0 50 80.0 100.0 0.0 00 100.0 950 580 61.0 92.0 100.0
£ P+Y+W 00 00 1000 100.0 20.0 20.0 90.0 100.0 5.0 50 100.0 90.0 38.0 420 92.0 100.0
& W+W+Y 0.0 0.0 1000 100.0 10.0 10.0 90.0 100.0 5.0 50 100.0 50.0 87.0 87.0 100.0 100.0
S A+A+Y 0.0 0.0 90.0 100.0 5.0 50 100.0 950 150 750 1000 150 86.0 86.0 99.0 100.0
g A+W+Y 00 00 1000 100.0 20.0 20.0 100.0 100.0 10.0 10.0 100.0 60.0 0.0 0.0 99.0 100.0
=  A+P+F 00 00 1000 100.0 150 150 950 100.0 0.0 0.0 100.0 90.0 93.0 950 94.0 100.0
o A+W+F 00 00 1000 400 5.0 50 950 400 450 500 900 850 77.0 77.0 98.0 100.0
Overall 00 06 988 925 106 106 919 919 100 181 988 80.6 586 602 956 100.0

g A+W+F+Y 0.0 0.0 90.0 60.0 0.0. 0.0 90.0 600 300 300 950 600 33.0 350 940 98.0
:,E A+W+F+P 00 50 90.0 500 0.0 00 850 500 00 00 950 100 59.0 610 72.0 100.0
£ A+W+A+Y 00. 0.0 1000 500 350. 350 1000 700 2.0. 200 1000 250 46.0 460 76.0 100.0
& W+W+Y+A 0.0. 0.0 90.0 1000 5.0. 50 650 100.0 0.0. 00 8.0 1000 710 780 86.0 100.0
g W+P+Y+A 00. 00 700 100.0 250. 250 750 100.0 5.0. 50 700 100.0 28.0 340 78.0 100.0
£ W+P+F+A  0.0. 0.0 800 80.0 0.0. 0.0 750 100.0 0.0. 0.0 80.0 1000 24.0 31.0 81.0 100.0
= P+F+Y+A 00. 0.0 80.0 100.0 0.0. 0.0 850 100.0 0.0. 0.0 100.0 100.0 18.0 230 82.0 950
<+ A+W+Y+A 00. 0.0 60.0 100.0 0.0. 0.0 750 100.0 0.0. 00 900 550 0.0. 00 920 99.0
Overall 00 06 8.5 800 81 8.1 812 844 69 69 894 688 349 385 826 99.0

them under a general instruction category: ‘“Pass a person” (denoted as P) for motion composition
purposes. Accordingly, we evaluate our method, ComposableNav, on its ability to handle both left
and right variants using a single instruction specification.

The quantitative results are summarized in Tab. 3. Across all testbed scenarios, ComposableNav
consistently outperforms all baseline methods in terms of success rate, particularly as the number
of motion primitives in an instruction increases. While baseline methods perform reasonably with
simple instructions, their performance deteriorates notably with more complex instruction sets.

Methods relying on Vision-Language Models (VLMs) as black-box policies perform particularly
poorly. These models are not designed for such navigation tasks and often fail to maintain planning
consistency, especially as instruction complexity grows. Similarly, BehAV performs adequately with
one or two motion primitives but suffers as composition complexity increases. In addition, BehAV
has the lowest goal-reaching rate, which suggests that such a costmap-based method tends to get
trapped in local minima and is unable to complete tasks within the allotted time.

Furthermore, baseline methods exhibit high variance in performance across different instruction
combinations. In many cases, they fail to generate any viable, instruction-following trajectory. In
contrast, ComposableNav—despite not being explicitly trained for any possible instruction compo-
sition—demonstrates strong generalization capabilities and consistently higher success rates across
a wide range of scenarios.

To complement the quantitative analysis, we provide a qualitative illustration in Fig. 7. Here, we
observe that while VLM-based methods may initially steer the robot in the correct direction, they
lack the responsiveness and consistency needed for sustained instruction following. These methods
often begin to avoid regions or yield to pedestrians, but then fail to complete subsequent specifi-
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cations. The BehAV method often gets stuck in local minima and fails to reach the goal within
the allowed time. In contrast, ComposableNav effectively produces instruction-aligned behaviors,
simultaneously satisfying all given specifications—such as avoiding restricted regions and yielding
to oncoming pedestrians.

F Real-World Deployment

F.1 Robot Setup

We deploy ComposableNav on a Clearpath Jackal robot
equipped with a Zed 2i camera for human tracking and
an Ouster LiDAR for generating point cloud data to cre-
ate an obstacle map for collision avoidance, as shown in
Fig. 8. For localization, we apply ENML [54], which pro-
vides robust position estimation. The system is built using
ROS and consists of a navigation stack with three main
modules: a perception module, a diffusion planning mod-
ule, and an MPC motion planning module. The percep-
tion module leverages Zed’s internal human-tracking al-
gorithm to detect and track humans while using Ouster’s
point cloud data to detect obstacles for collision avoid-
ance. The diffusion planning module loads diffusion
models corresponding to various motion primitives and
composes the appropriate models based on instructions
and environmental observations. The MPC motion plan-
ning module tracks the time-dependent trajectory generated by the diffusion planner and computes
real-time motion control commands. All computations are executed entirely onboard, utilizing an
Intel i17-9700TE CPU and an NVIDIA RTX A2000 GPU.

Figure 8: Robot Setup.

F.2 Real-time Deployment

In our deployment, the motion controller and trajectory replanning run at fixed frequencies: the mo-
tion controller operates at 10 Hz (every 0.1 s), while trajectory replanning executes at 0.67 Hz (every
1.5s). We define real-time operation as producing outputs within the motion control cycle of 0.1,
ensuring both control and replanning complete within this bound. Below, we describe the imple-
mentation details that enable ComposableNav to meet this requirement with onboard hardware.

F.2.1 Real-time Motion Control

To produce motion commands in real-time, we employ a Model Predictive Path Integral (MPPI) [12],
a sampling-based MPC controller, to track the time-dependent trajectories generated by the com-
posed diffusion models. During navigation, MPPI uses a differential drive kinematic model to pre-
dict the robot’s future states and minimizes the deviation between these predictions and the target
trajectory over a short planning horizon. It also enforces constraints on acceleration and velocity to
guarantee feasible and safe control inputs.

F.2.2 Real-time Trajectory Replanning

To enable trajectory replanning on only the robot’s onboard compute, we adopt the adaptive online
replanning framework introduced in prior work [55], specifically the Replan from Previous Context
method. The core insight is that the current trajectory is typically close to optimal, so instead of
discarding it and replanning from scratch, ComposableNav perturbs the trajectory by applying a few
forward diffusion steps q(z; | :—1) and then partially denoises it to generate an updated trajectory
conditioned on the latest observations.
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In practice, we apply five forward diffusion steps to inject noise into the current trajectory, followed
by five reverse diffusion steps to denoise it. During this process, the states already visited by the
robot are fixed, and only the future segments are updated.

We introduce two key optimizations to ensure efficiency: (1) Since all fine-tuned diffusion models
share an identical architecture derived from a common base, we leverage PyTorch’s vectorized map-
ping operation (vmap) to batch their execution in parallel. (2) We further accelerate inference using
PyTorch’s compilation feature (torch.compile).

With these optimizations, ComposableNav achieves real-time replanning entirely on onboard com-
pute, with latency results summarized in Tab. 4.

Table 4: ComposableNav Inference Latency on Robot Hardware
# of Composed MPs
1 2 3 4

Initial Plan (s)] 0.144 £+ 0.014 0.243 +0.009 0.329 + 0.014 0.413 £ 0.010
Replan (s)] 0.027 £ 0.002 0.036 £ 0.004 0.049 £ 0.003 0.060 £ 0.005

Latency

G Additional Robot Deployment Details

G.1 Quantitative Experiment Details
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Figure 9: Quantitative Experiment Illustration

We evaluate ComposableNav in two common real-world scenarios: navigating through a narrow
doorway and walking outdoors in an open environment, using a total of six instructions—two for
the doorway scenario and four for the outdoor scenario, as illustrated in Fig. 9.

Doorway Instructions:
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* Instruction 1: “Go through the doorway after the person wearing a black shirt and before
the person wearing a white shirt” (Fig. 9A)

¢ Instruction 2: “Go through the doorway before the person wearing a black shirt” (Fig. 9B)

Outdoor Instructions:

¢ Instruction 3: “Pass both the person wearing a black shirt and a maroon shirt from the
right side of the road” (Fig. 9C)

* Instruction 4: “Pass both the person wearing a black shirt and a maroon shirt from the left
side of the road” (Fig. 9D)

¢ Instruction 5: “Pass the person wearing a maroon shirt and follow the person wearing a
black shirt” (Fig. 9E)

¢ Instruction 6: “Follow the person wearing a black shirt” (Fig. 9F)

Each instruction was tested over 10 trials, and we report the corresponding success rates in Fig. 9.
These experiments demonstrate how ComposableNav enables customizable robot behavior that
aligns with human preferences. For instance, in the doorway scenario, a human operator might
prefer the robot to be polite by following the person in a black shirt, or alternatively, instruct it to
hurry and enter after the person in a white shirt. In the outdoor scenario, preferences may include
keeping to a specific side of the road to follow the human flow, or adjusting the robot’s pace to follow
a specific individual, such as someone in a maroon or black shirt.

G.2 Additional Real-World Deployment Demo
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(a) Yield to the person in the white coat and follow (b) Avoid walking between the boxes, yield to the
the person wearing a dark hoodie. person, and stay on the right side of the road.
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G.3 Deployment Failure Case Analysis

We conducted a qualitative analysis of the failure cases observed when deploying ComposableNav
on the robot and identified two common issues. The first issue stems from human tracking errors.
Since both the robot and the human are in continuous motion, the person may temporarily exit
the camera’s field of view—particularly when the robot turns—causing the system to lose track of
them, even if they later reappear. While we applied a simple nearest-neighbor heuristic to reassign
the human based on previous tracking data, occasional failures still occur, where the robot is unable
to reliably re-identify the person. The second issue arises during replanning. We observed that the
newly generated plan can sometimes diverge significantly from the original one. This can lead the
MPPI controller to issue large acceleration or deceleration commands, resulting in jerky movements.
Consequently, the robot may overshoot its intended state and struggle to stay on the planned path.
We plan to address these issues in future work
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