Peter Stone's Selected Publications

Classified by TopicClassified by Publication TypeSorted by DateSorted by First Author Last NameClassified by Funding Source


A Scavenger Hunt for Service Robots

Harel Yedidsion, Jennifer Suriadinata, Zifan Xu, Stefan Debruyn, and Peter Stone. A Scavenger Hunt for Service Robots. In Proceedings of the 2021 International Conference on Robotics and Automation (ICRA 2021), May 2021.
Video presentation

Download

[PDF]1.5MB  

Abstract

Creating robots that can perform general-purpose service tasks in a human-populated environment has been a longstanding grand challenge for AI and Robotics research. One particularly valuable skill that is relevant to a wide variety of tasks is the ability to locate and retrieve objects upon request. This paper models this skill as a Scavenger Hunt (SH) game, which we formulate as a variation of the NP-hard stochastic traveling purchaser problem. In this problem, the goal is to find a set of objects as quickly as possible, given probability distributions of where they may be found. We investigate the performance of several solution algorithms for the SH problem, both in simulation and on a real mobile robot. We use Reinforcement Learning (RL) to train an agent to plan a minimal cost path, and show that the RL agent can outperform a range of heuristic algorithms, achieving near optimal performance. In order to stimulate research on this problem, we introduce a publicly available software stack and associated website that enable users to upload scavenger hunts which robots can download, perform, and learn from to continually improve their performance on future hunts.

BibTeX Entry

@inProceedings {ICRA21-Yedidsion,
	author = {Harel Yedidsion and Jennifer Suriadinata and Zifan Xu and Stefan Debruyn and Peter Stone}, 
	title = {A Scavenger Hunt for Service Robots},
	booktitle = {Proceedings of the 2021 International Conference on Robotics and Automation (ICRA 2021)},
	location = {Xi’an China},
	month = {May},
	year = {2021},
	abstract = {
	Creating robots that can perform general-purpose service tasks in a human-populated environment has been a longstanding grand challenge for AI and Robotics research. 
	One particularly valuable skill that is relevant to a wide variety of tasks is the ability to locate and retrieve objects upon request. 
	This paper models this skill as a Scavenger Hunt (SH) game, which we formulate as a variation of the NP-hard stochastic traveling purchaser problem.  In this problem, the goal is to find a set of objects as quickly as possible, given probability distributions of where they may be found.  
	We investigate the performance of several solution algorithms for the SH problem, both in simulation and on a real mobile robot. We use Reinforcement Learning (RL) to train an agent to plan a minimal cost path, and show that the RL agent can outperform a range of heuristic algorithms, achieving near optimal performance.
	In order to stimulate research on this problem, we introduce a publicly available software stack and associated website that enable users to upload scavenger hunts which robots can download, perform, and learn from to continually improve their performance on future hunts. 
	},
	wwwnote={<a href="http://scavenger-hunt.cs.utexas.edu">Video presentation</a>}
}

Generated by bib2html.pl (written by Patrick Riley ) on Wed Jul 21, 2021 08:39:16