
Collaborative Multiagent Learning for Classification Tasks

Pragnesh Jay Modi and Wei-Min Shen
Information Sciences Institute and Department of Computer Science

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

fmodi, sheng@isi.edu

ABSTRACT
Multiagent learning di�ers from standard machine learn-
ing in that most existing learning methods assume that all
knowledge is available locally in a single agent. In multia-
gent systems, this assumption does not hold because rele-
vant knowledge is distributed among the agents within the
system. We describe two decentralized learning algorithms
for distributed classi�cation tasks, i.e. classi�cation when
the attributes are distributed among a set of agents and
cannot be gathered into a central agent. Our main contri-
bution is to introduce and formalize the distributed clas-
si�cation task, show that existing classi�cation algorithms
are not satisfactory for distributed classi�cation tasks, and
�nally, to show that our collaborative learning algorithms
perform well at distributed classi�cation.

1. INTRODUCTION
Multiagent learning has been de�ned as \learning that

relies on or even requires the interaction among several in-
telligent agents"[5]. It is a new and exciting �eld that has
recently emerged as we attempt to build complex multiagent
systems that operate in dynamic environments. Multiagent
systems are extremely diÆcult to design robustly in advance
and thus, we are naturally led to building systems that adapt
and learn through experience. However, multiagent learning
di�ers from standard machine learning in that most exist-
ing learning methods assume that all relevant knowledge is
available locally in a single agent. In multiagent systems,
this assumption does not hold because relevant knowledge,
such as training experience and background information, is
distributed among the agents within the system. Further-
more, domain constraints (such as privacy and cost) may
prevent centralization of data.
We formalize our problem by introducing the distributed

classi�cation task. A distributed classi�cation task is a clas-
si�cation task where the attributes of each instance are dis-
tributed among a set of agents. If all information can be
gathered within a single agent, the problem can be trivially

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AGENTS’01,May 28-June 1, 2001, Montréal, Quebec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005 ...$5.00.

solved using existing classi�cation methods. However, in
many applications, centralization of data is not possible or
feasible. For example, local data may be quickly changing,
too complex to communicate, too massive to communicate
or agents may not be willing to reveal private data even
though they are collaborative. It is generally accepted that
centralization of all data is undesireable in most multiagent
systems. (See for instance [13] and [8]) In this paper, we will
assume that centralization of data is not possible. So given
a distributed situation, our goal is for the agents to learn in
a decentralized manner and as accurately as possible.
We address the distributed classi�cation task by focusing

on a special case of multiagent learning: collaborative mul-
tiagent learning, i.e. the agents work together as a group to
improve their accuracy at a given learning task. Since the
agents are collaborative, they are willing to communicate
with one another during the learning process. We will show
how agents are able to learn accurately while never reveal-
ing their local attributes to a central agent. We will present
two algorithms, DVS and DDT, for collaborative multiagent
learning. DVS is an algorithm that performs a distributed
speci�c-to-general search through a conjunctive hypothesis
space. DDT is inspired by decision tree algorithms and can
be applied to more general distributed classi�cation tasks.
We prove the correctness of DVS, while DDT is shown to
perform well through empirical evaluation.
It is important to realize that collaborative multiagent

learning is fundamentally di�erent from ensemble learning
methods such as bagging and boosting [2]. In ensemble
learning, the methodology is to combine the predictions of
N independent learners via voting so as to improve overall
accuracy by taking advantage of the variance across learn-
ers. This approach will fail when the target concept is
not expressible by an individual learner. In contrast, col-
laborative learning allows a group of agents to learn con-
cepts that no agent can express individually, let alone learn.
Collaborative learning for distributed classi�cation tasks is
also fundamentally di�erent from previous work on paral-
lel/distributed processing for classi�cation [9]. The primary
motivation there is to speed up learning when dealing with
massive datasets by dividing the training set onto a set of
processors and allowing them to learn concurrently. In con-
trast, collaborative learning assumes a distributed situation
is given and must be dealt with by any learning algorithm.
Although eÆciency is certainly important, this is not our
main goal.

2. PROBLEM DEFINITION
In an attempt to answer the general question of how agents

can learn when relevant knowledge is distributed among
them, �rst we must adopt some method of knowledge rep-
resentation. One common method of knowledge representa-
tion in machine learning is the attribute-value formalism for
classi�cation tasks. The input to a classi�cation task con-
sists of a set of pre-classi�ed training examples E, with each
example described by (the value of) a vector of attributes A.
The goal is to construct a mapping from attribute values to
classes. We adopt and modify this knowledge representation
scheme for our work because it has two distinct advantages;
First, it has been shown that the attribute-value formal-
ism is an extremely general way of representing knowledge
and can be applied to a variety of domains; Second, there
are wide varieties of existing ML techniques and algorithms
that apply to this type of representation. This allows us to
take advantage of these existing techniques when devising
algorithms for multiagent learning.
We formulate the distributed classi�cation task as follows:

Given a collection � of n agents, we assume the attribute
vector A is divided into (not necessarily disjoint) subsets,
Ai � A ([Ai = A); i 2 1:::n. Each agenti 2 � knows the
classi�cation of every training example, but has access only
to Ai from each training example. We will use the notation
Ei to denote the projection of training examples E onto Ai.
In this way, each agent has only a local, partial view of the
training experience. We can immediately see that if the
target concept involves attributes that are not allocated to
the same agent, no agent can individually learn the concept.
We will assume that each training example has a unique id
known to all. This is so agents can communicate about in-
dividual training examples by id only. This is a reasonable
assumption for many domains including those we will de-
scribe in the Motivating Domains section. Furthermore, we
assume that agents are not able to share the values of their
local attributes with other agents. This restriction can arise
for a variety of reasons: local data may be too massive to
communicate or agents may not be willing to reveal private
data even though they are collaborative. The goal of the
agents is the same as in the centralized task: to construct a
mapping from attribute values to classes.

3. MOTIVATING DOMAINS
Due to the exploratory nature of this work, it is important

to show that the problem we have introduced arises in real-
world domains. In this section, we describe two applications
in which the distributed classi�cation task arises. Further-
more, collaborative learning is useful in these applications
because agents are willing to work together to improve their
accuracy at the given learning task. However, decentraliza-
tion of the learning process is necessary because agents are
not willing or able to communicate all their local data to
others.

3.1 Agentized Organizations
Within a human organization such as a research insti-

tution, agent-based technology can facilitate collaborative
activities. Each person in the organization is represented by
an agent proxy; the agent proxies team together to manage
resources, monitor organizational goals and execute actions
when goals are threatened [10]. The agents are able to au-
tomate routine tasks for the organization, allowing humans

to devote their time to more important tasks. This type
of system clearly operates in a complex and dynamic en-
vironment, one in which learning is a key asset. However,
an agent proxy has access to highly personal information
about a particular individual. Although this agent is willing
to work with other agent proxies to further organizational
goals, it is not willing to reveal this personal information.
For example, one type of organizational goal that the

agents automate is meeting scheduling. The agent proxies
consult their respective humans' schedule to �nd locally ac-
ceptable meeting times and communicate with one another
to �nd globally acceptable meeting times. In distributed
classi�cation terms, we can see that each meeting to be
scheduled is a training example consisting of attributes rel-
evant to each attendee. All agents know about a particular
meeting and can communicate about it via a unique id. The
classi�cation to be made is whether the meeting is success-
fully held or not. A learning algorithm could help the agents
predict whether a particular meeting will be cancelled, al-
lowing them to better anticipate the organization's needs.
However, the relevant training data is distributed among the
proxies and it is private and so cannot be communicated to a
single agent. (Would you want your proxy to reveal you miss
meetings at 1 pm because you tend to take 2 hr lunches?)
A learning algorithm that improves the process of meeting
scheduling must be distributed and cannot assume that the
data about every human's preferences, work hours, etc. is
available in one agent.

3.2 Distributed Sensor Network
Another motivation for decentralized collaborative learn-

ing algorithms comes from a distributed sensor domain [1].
This domain consists of stationary 360 degree sensors and
targets moving through their sensing range. Each sensor
consists of three sectors, each sector is capable of covering
120 degrees. Only one sector of a sensor can be active at
a given time. Activation of a particular sector on a sensor
at a particular time is under control of an agent. A global
con�guration simply states the sector each agent should ac-
tivate. The goal for a set of agents, each controlling one
sensor, is to choose a con�guration so as to cooperatively
track all targets. An RF transceiver is used by an agent to
communicate with the other agents but bandwidth is very
low. Therefore, it is infeasible for agents to communicate
large amounts of training experience to a central agent who
can then use it to learn.
A tracking episode corresponds to the presence of some

set of targets. Each tracking episode is described by an
attribute vector, where each attribute corresponds to some
sensory data local to a sensor. Therefore, no agent knows
the entire attribute vector but the correct con�guration de-
pends on the values of the attributes at each agent. Given
the entire attribute vector, it is easy to see which global con-
�guration the sensors should adopt. In this way, we label
each tracking episode with the correct con�guration (or in
classi�cation terms, the correct class). Now we can apply
a collaborative learning algorithm for distributed classi�ca-
tion tasks so that agents can learn to select sector heads in a
more coordinated fashion. However since bandwith is low, it
is necessary to devise a decentralized algorithm that allows
agents to communicate small amounts of information while
never having to transfer huge data sets of local experience.

4. ALGORITHMS
We describe two decentralized learning algorithms for the

distributed classi�cation task. The �rst method, DVS, per-
forms a distributed speci�c-to-general search through a con-
junctive hypothesis space to learn boolean concepts. We will
prove it to be correct. The second, DDT, is inspired by de-
cision tree algorithms and can be applied to more general
classi�cation tasks. In the next section, we will show that it
performs well through empirical evaluation.

4.1 DVS
We �rst simplify the problem by assuming a limited hy-

pothesis space representation and a boolean classi�cation
(concept learning). In particular, we consider simple con-
junctions of constraints on attribute values. If all the data
is centralized, one can use the FIND-S algorithm [6]; start-
ing with the most speci�c hypothesis, generalize it as needed
to cover the positive examples but none of the negative ones.
This will determine the most speci�c hypothesis (MSH) that
is consistent with the training data. We will call this hy-
pothesis the global MSH. DVS is an algorithm that allows a
group of agents to learn boolean concepts from distributed
examples using a similar, but decentralized, approach.
The DVS algorithm proceeds in two stages: each agent

�rst learns a local MSH; then agents communicate to ensure
that the group prediction is consistent with the training ex-
amples. We de�ne group prediction as follows: If all the
agents' local MSH agree that a new example is a member of
the target concept, then the group predicts positive; Oth-
erwise, they predict negative. We will call this the joint
hypothesis. The reason for de�ning the joint hypothesis in
this way depends crucially on the global hypothesis space
representation, which is a simple conjunction of attributes.
This has the advantage that it is easily decomposable into
local hypotheses. In fact, we will see that each agents' local
MSH is the projection of the global MSH onto the set of
attributes available to that agent.
In the �rst learning stage of DVS, each agent performs a

local search through its own version space. It begins with
the most speci�c hypothesis (the null hypothesis) and gen-
eralizes as necessary to �nd the (local) MSH consistent with
the positive examples. Since an agent does not have access
to the entire dataset (remember, it only can see the values
for a subset of the attributes), it most likely will not be able
to perfectly distinguish between the positive and negative
examples. In such cases, the agent is allowed to general-
ize its local hypothesis to cover the negative example. In
this way, the agent searchs for an MSH that covers all the
positive examples and as few of the negative examples as
possible. During this process, the ids of the false positives
are kept in a list. Each agent is guaranteed to form some lo-
cal MSH since in the worst case, the most general hypothesis
(\always predict yes") will suÆce.
In the second stage, the agents must communicate to de-

termine that their local MSHs, when taken together, yield
a correct joint hypothesis. The joint hypothesis will be in-
correct only when all agents predict positive for a training
example that is actually negative. To avoid this, they must
collectively rule out the false positives. This can be done
in an asynchronous, decentralized manner as follows: Let
L = fl1 ; l2 :::lng be the set of sets containing the example
ids of the false positives of each agent's local MSH. It is the
task of the agents to determine that no example id exists

in every set (
Tn

i=1 li = �). In other words, they need to
determine that the following statement � holds

� : 8li 2 L; 8e 2 li ; 9lj 2 L s:t : e =2 lj

Each agenti broadcasts its li to others. A receiving agentj
compares li with lj and replies to agenti with the list of ex-
ample ids that are in li but not in lj . agenti removes those
example ids from li . All agents perform this procedure asyn-
chronously. Every agent terminates with empty li if and only
if � is true. If � is false, then the agents are able to say that
the target concept is not learnable given a conjunctive hy-
pothesis representation because some example is predicted
to be positive by all agents even though it is not a member
of the target concept. In such cases, the centralized learner
will also fail due to a version space \collapse".
More intuitively, we can see that the agents are perform-

ing a speci�c-to-general distributed search through a joint
hypothesis space. Figure 1 shows the local MSH of four
agents as hyperplanes through (a 2-d projection of) a m-
dimensional feature space. Even though no single agent is
able to individually learn the concept, the joint hypothesis,
denoted by the dark area in Figure 1, is able to perfectly
distinguish the positive and negative training examples. Al-
though a voting mechanism is used to de�ne the joint hy-
pothesis, it is important to realize that the collaboration
during learning was more sophisticated than just voting. In
particular, the agents have to collaborate to ensure that all
(and only) the positive examples are covered by the joint hy-
pothesis. This was done by determining the truth value of
statement �. We now show that this algorithm is equivalent
to a centralized algorithm that �nds the global MSH.
Theorem I: If the target concept is learnable, the joint

hypothesis learned by DVS is equivalent to the global MSH.
proof : Let E be a set of preclassi�ed examples with attribute

vector A, hcent be the global MSH learned by an agent with
access to the entire set E, hdvs be the joint hypothesis learned by
a group of agents using DVS, where E is distributed among them
in the manner described, and e is a unclassi�ed example that is
to be labeled.
Assume hdvs predicts negative for e. We show that hcent must

also predict negative. Since hdvs predicts negative, there is some
agenti whose local hypothesis predicts negative. Let Ai � A be
the set of attributes local to agenti. As agenti predicted negative,
the values in e for the attributes Ai cannot have appeared in
any positive example from E. Furthermore, since hcent was also
learned from E and is the MSH, it follows that it will also predict
negative for e.

Conversely, assume hcent predicts negative for e. Let a1 2 A be

a attribute constrained by hcent and responsible for the negative

classi�cation. (remember, we assumed a conjunctive hypothesis

space representation.) Let v1 be the value of a1 in e. Then, it

must be the case that a1 never has the value v1 in any positive

example from E. Assuming a1 2 Ai (which must be true for some

i), agenti must also predict negative for (its partial view of) e. It

follows that hdvs will also predict negative. 2

The DVS algorithm operates on a easily decomposable,
conjunctive hypothesis space and can be used for learning
boolean concepts. What happens when the hypothesis space
is in�nite and not so decomposable? Is decentralized, col-
laborative learning still possible? We now explore learning
for general classi�cation tasks in which the hypothesis space
can represent any function of the input attributes. The fol-
lowing algorithm is based on decision tree learners.

Figure 1: A m-dimensional feature space partitioned by
each agent's local MSH. No individual agent is able to clas-
sify the examples alone, but agent A and C together, are able
to perfectly classify the training examples.

4.2 DDT
Decision tree learning is one of the most practical meth-

ods for approximating discrete-valued functions. It is robust
to noisy data and is capable of learning disjunctive expres-
sions. We give a brief introduction to decision tree learning
and refer the reader to [11] for a more detailed explana-
tion. Decision tree learners perform a search through the
space of decision trees by recursively choosing an attribute
on which to partition the training examples. The \best" at-
tribute on which to partition the examples is judged by the
one that provides maximum information gain. One way to
de�ne information gain is the reduction in entropy of a set
of examples, E, when split on a given attribute a. Entropy
is given by

Entropy(E) =

cX

i=1

�pilog2pi

where pi is the proportion of E belonging to class i. Infor-
mation gain, the reduction in entropy, is then given by

Gain(E; a) =
Entropy(E)�

P
v2values(a)

(jEvj=jEj)Entropy(Ev)

By recursively choosing the attribute with maximum infor-
mation gain at each stage, the learner performs a greedy
search for the best decision tree. We desire a group of agents
to perform this search in a distributed, asynchronous man-
ner without having to share their entire local dataset with
one another.
The key idea behind the DDT algorithm is to realize that

information gain of a particular attribute can be computed
by the agent who has access to the values of that attribute;
the values of the rest of the attributes are not needed. Fur-
thermore, the information gain measure is a highly compact
summarization of each agent's local view of the training set.
Agents can use this measure to communicate about their
local data in an indirect way and thus perform a distributed
search for the best decision tree.
DDT is a lazy learning algorithm in that each agent stores

its training data for prediction. There is no training stage
and no explicit hypothesis is learned. At prediction time,
the agents collectively and asynchronously determine a path
through an implicit decision tree. The path is determined
using the training data and the attribute values of the test
example. The leaf of this path is used to classify the test

Given:
- Ei, training examples with attribute vector Ai

- e, unclassi�ed example to be labeled
- Q, an empty data structure for holding a sorted
list of TreePaths

initialize
a attribute with max info gain over Ei

gain info gain of a over Ei

v value of a in e
[ids] list of examples in Ei with value v for a
insert in order(Q, TreePath:([gain], [ids])

when received (TreePath T))
insert in order(Q, T))

procedure make prediction()
TreePath:([infogains], [ids]) pop(Q)
a attribute with max info gain over [ids]
gain info gain of a over [ids]
v value of a in e
if gain == 0
return the most common class in [ids]

else
[new ids] list of examples in

[ids] with value v for a
broadcast TreePath:([infogains,gain], [new ids])

to all agents
make prediction()

Figure 2: DDT algorithm

example. The bene�ts of lazy decision tree learning are de-
scribed in [4]. The DDT algorithm is depicted in Figure 2
and is described next.
Let a set of training examples E and an unclassi�ed test

example e, be given. Each agenti 2 � begins by choosing
the local attribute with maximum information gain over Ei.
From its local point of view, this is the best choice for the
root of the tree. It then partitions Ei on this attribute and
then creates a tuple we call a TreePath. A TreePath has
two �elds, a list of real numbers and a set of example ids.
Intuitively, it is called a TreePath because it holds the in-
formation corresponding to a particular path through some
decision tree. Each real number in the �rst �eld corresponds
to the information gain of the attribute that was used to par-
tition the examples at a particular node along the path. The
second �eld holds the set of example ids at the leaf of this
path. For example, suppose agenti chooses the attribute
a1 2 Ai because it has maximum information gain over Ei,
equal to say, 0.24 (see Figure 3). Suppose a1 takes on the
value v1 in e, and agenti �nds that the examples 1,2,8,9
and 11 in Ei are the ones that have value v1 for a1. It then
creates the following TreePath: ((0.24) (1,2,8,9,11)). This
is a path of depth one, since the examples were separated
on only one attribute. Figure 3 shows that as additional at-
tributes are used to further partition the examples, the list
of information gains becomes longer and the set of example
ids becomes smaller.
Every agent goes through the above process and broad-

casts their TreePath to the rest of the agents. As agents
receive TreePaths from others, they order them according
to a greedy \best info gain �rst" heuristic. This ordering
is shown in Figure 4. The best TreePath received by each
agent is then deepened by one level in the same manner as

Figure 3: A path through a decision tree.

above, except instead of computing information gain over all
the examples in Ei, it is computed over the list of example
ids in the TreePath. This new TreePath is then broadcast to
all agents and the process repeats. The process terminates
whenever the best TreePath available to an agent cannot
be extended because no attribute available to it provides
positive information gain. Since the set of example ids for
a TreePath is always getting smaller as the TreePath is ex-
tended and no TreePath is ever made shorter, it follows that
each agent will eventually terminate. Notice that the ter-
mination criterion is speci�c to an agent's local view. This
means that all the agents may not always terminate with
the same prediction. Therefore, the agents employ a sim-
ple voting procedure to decide the group's prediction. This
voting procedure requires some synchronization between the
agents. In situations where this synchronization is undesire-
able, our evaluation shows that simply choosing some agent
in advance as the designated predictor has comparable re-
sults.
Intuitively, DDT is performing a parallelized, breadth-

�rst search for the best path through some decision tree.
This is in contrast to the depth-�rst greedy strategy of most
centralized decision tree learners. However, the inductive
bias of DDT is similar in that it prefers shorter paths with
higher information gain attributes at the top. We now high-
light some of the important properties of this algorithm.

� Agents never share their local attribute values. In fact,
agents never even reveal the identities of their local
attributes. This satis�es our requirement of decentral-
ization. In addition, this property provides a great
deal of
exibility to an agent and the learning system
as a whole. For example, an agent can locally, au-
tonomously decide what attributes are relevant for a
given learning task.

� DDT is asynchronous. This means that if any agent
were to crash or become unavailable or any messages
are lost, the group prediction still continues. In other
words, the prediction accuracy of the group will de-
grade gracefully as agents or messages are lost. This
is important when agents are operating in complex,
dynamic environments where perfect communication
cannot be assured. However, agents do need to syn-
chronize at the start of a prediction episode and during
voting.

5. EMPIRICAL EVALUATION
We now aim to show that existing classi�cation algorithms

are not satisfactory for distributed classi�cation tasks, and

//This procedure compares two TreePaths.

//Returns true if T1 is better than T2.
procedure best info gain �rst(T1,T2)
gains1 list of information gains in T1
gains2 list of information gains in T2
for i in 1 to min(length of gains1, length of gains2)
if gains1[i] > gains2[i]
return TRUE

else if gains2[i] > gains1[i]
return FALSE

if length of gains1 < length of gains2
return TRUE

else if length of gains2 < length of gains1
return FALSE

else return EQUAL

Figure 4: Heuristic for ordering TreePaths.

that the DDT algorithm performs well at distributed classi-
�cation.
Table 1 shows the results of experiments on two UCI do-

mains, contact-lenses and soybean. We were limited in
our choice of domains because our DDT implementation
does not yet deal with real-valued attributes, although this
is a straightforward extension. contact-lenses has four
attributes, 24 instances and three classes and soybean has
35 attributes, 683 instances and 19 classes. To create a dis-
tributed classi�cation task, the attribute vector was evenly
divided into four disjoint groups and distributed among four
agents. Four �fths of the instances were used for training.
Test results on the remaining one �fth are reported. We
average the results of three runs.
We compare the accuracy of non-collaborative learning,

collaboration via simple voting, collaboration using DDT,
and collaboration using DDT plus voting. In non-collaborative
learning, the agents used ID3 [11] to learn a decision tree
using only their local attributes, Ai. This indicates each
agent's accuracy when learning individually. We can see
that they perform quite poorly. The column labelled \Vote"
shows the group accuracy when the agents learn individu-
ally, but are able to collaborate using voting only. Although
accuracy is somewhat improved, it is still poor. The sec-
tion labelled DDT shows the accuracy of the agents when
they collaborate. We see that they perform quite well and
the performance is quite improved over learning individu-
ally. Finally, the column labelled \Vote" shows the group
accuracy when the agents learn collaboratively and also col-
laborate via voting. As shown, the accuracy is 100% and
90% on the contact-lenses and soybean domain, respec-
tively. In summary, the results justify our theoretical ar-
gument that when the target hypothesis involves attributes
local to di�erent agents, individual learning will perform
poorly. Futhermore, DDT performs well even though agents
never communicate their local attributes.
Table 2 shows the average number of messages transmit-

ted during one prediction episode is shown. A message
\sent" refers to a particular point-to-point data transfer and
every message is broadcast. It is interesting to notice that
some agents tend to receive more messages than they send,
and in the soybean domain, it is correlated with poorer ac-
curacy. We conjecture that these agents tended to terminate

Table 1: Comparison of collaborative vs. non-

collaborative learning

Data set Ag1 Ag2 Ag3 Ag4 Vote

contact

ID3 %correct 25 75 75 100
ID3+Vote %correct { { { { 75

DDT %correct 100 100 100 100
DDT+Vote %correct { { { { 100

soybean

ID3 %correct 43 64 69 49
ID3+Vote %correct { { { { 76

DDT %correct 89 91 84 86
DDT+Vote %correct { { { { 90

Table 2: Amount of messages and data communi-

cated in DDT
Data set Ag1 Ag2 Ag3 Ag4

contact

num msgs
sent/rcvd 5.75/4.5 5.75/4.0 4.75/4.0 3.8/4.0
bytes
sent/rcvd 456/403 537/358 446/361 354/361

soybean

num msgs
sent/rcvd 18/18 18/18 14/18 16/18
Kbytes
sent/rcvd 5.5/10.5 12.6/10.5 11/10.5 13/10.5

their search earlier than the others, which would result in
their continuing to receive messages, but stop sending them.
This would indicate that they had access to the less im-
portant attributes of the domain, causing their termination
criterion to be satis�ed prematurely, and hence resulting in
poorer accuracy.
Lastly, we investigate the amount of raw data being com-

municated. How much data is communicated between agents
compared to the size of the entire data set? Table 2 also
shows the average amount of data communicated by each
agent per prediction over the test set. In the soybean do-
main the amount of data communicated during one predic-
tion is reduced by a factor of 5 compared to the size of the
entire data set, which is 200 Kb. In contrast, the size of
the entire contact-lenses data set is only 1132 bytes. This
is so small that the amount of data transmitted between
agents is not reduced. However, we also mention that no
e�ort was made to eÆciently represent the TreePath data
structure. Most of the data is accounted for by long lists of
example ids which can be easily compressed by representing
consecutive ids as ranges. In summary, we can see that if
the number of predictions to be made are few and the size of
the data set is large, DDT provides a savings in the amount
of raw data communicated by agents.

6. RELATED WORK
Much of the existing work on multiagent learning has fo-

cused on reinforcement learning schemes. Most relevant to
our work is the subset of these approaches that allow the
agents to collaborate during the learning process or view
other agents' actions. In these approaches, each agent has
a local view of the state. This local perspective problem is
solved by either communicating local information (via bid-
ding as in [12]) or learning models of other agents's behav-
ior (as in [3]). However, the work presented here di�ers in
that we assume a supervised learning task whereas these

reinforcement learning approaches expect some measure of
reward from the environment.
We mention one notable cooperative multiagent learning

work that does not use reinforcement learning. [8] discuss
the problem of cooperative learning in a multiagent system
for parametric design. A set of agents must cooperatively
search through a composite search space, where each agent
has local access to constraining information. The goal is
to �nd globally acceptable solutions. Unlike the work pre-
sented here, they address the local perspective problem by
allowing agents to simply reveal their local data to others as
necessary when con
icts arise. This non-local information
is stored in a case-base by each agent for use during future
search episodes. This approach has drawbacks if local infor-
mation is changing over time or is diÆcult to communicate
to others.
All of the previous work on distributed classi�cation has

as its primary motivation to speed up learning when dealing
with massive datasets by dividing the training set onto a set
of processors and allowing them to learn concurrently. One
such example is [9] who investigate distributed learning for
classi�cation tasks where the training examples are divided
among processors horizontally. Although it has not been our
primary motivation, whether our method for dividing the
training set in a vertical manner may also be used for dealing
with massive datasets is unclear. However, it is certainly
true that the processing required by an agent is decreased
as the number of attributes available to it is reduced.
Finally, [7] address learning for classi�cation tasks with

redundant views. A view of a given classi�cation problem
consists of an attribute vector from which the target concept
can be learned. Two views are redundant if they are disjoint
and either of them can be used to learn the target concept.
They show that when two redundant views of a problem
are available, two learners, each operating on one view, can
cooperate to improve learning. Our work di�ers in that we
do not assume the agents' views are redundant and we are
able to learn concepts that span the two views.

7. CONCLUSION
This paper introduced the distributed classi�cation task

for learning in multiagent systems. In this problem, a set of
agents must learn to classify training examples when each
agent has access to only some of the features. This is an
extremely general way of formulating multiagent learning.
We describe two algorithms for solving this problem in a
decentralized, collaborative manner by a set of agents who
never share their local features. We showed that collabora-
tive learning is a useful technique because it allows agents
to learn more accurately as a group than any one of them
could learn individually.

Acknowledgements
This research is sponsored in part by DARPA/ITO under
contract number F30602-99-2-0507, and in part by AFOSR
under grant number F49620-01-1-0020.

8. REFERENCES
[1] BAE-Systems.

http://www.sanders.com/ants/ecm.htm. In ECM

Challenge Problem, 2000.

[2] E. Bauer and R. Kohavi. An empirical comparison of
voting classi�cation algorithms: Bagging, boosting
and variants. Machine Learning, 36:105{142, 1999.

[3] Caroline Claus and Craig Boutilier. The dynamics of
reinforcement learning in cooperative mulitagent
systems. In Proceedings of the National Conference on
Arti�cial Intelligence, 1998.

[4] Jerome H. Friedman, Ron Kohavi, and Yeogirl Yun.
Lazy decision trees. In Proceedings of the Thirteenth

National Conference on Arti�cial Intelligence, 1996.

[5] Michael Huhns and Gerhard Weiss. Special issue on
multiagent learning. Machine Learning, 33:123{128,
1998.

[6] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[7] Ion Muslea, Steve Minton, and Craig A. Knoblock.
Selective sampling with redundant views. In
Proceedings of the National Conference on Arti�cial
Intelligence, 2000.

[8] M V Nagendra Prasad, Susan E. Lander, and
Victor R. Lesser. Cooperative learning over composite
search spaces: Experiences with a multi-agent design
system. In Proceedings of the Thirteenth National
Conference on Arti�cial Intelligence, 1996.

[9] Foster John Provost and Daniel N. Hennessy. Scaling
up: Distributed machine learning with cooperation. In
Proceedings of the Thirteenth National Conference on
Arti�cial Intelligence, 1996.

[10] D.V Pynadath, M. Tambe, Y. Arens, H. Chalupsky,
Y. Gil, C. Knoblock, H. Lee, K. Lerman, J. Oh,
S. Ramachandran, P. S. Rosenbloom, and T. Russ.
Electric elves: Immersing an agent organization in a
human organization. In Proceedings of the AAAI Fall
Symposium on Socially Intelligent Agents | the
human in the loop, 2000.

[11] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1:81{106, 1986.

[12] Gerhard Weiss. Learning to coordinate actions in
multi-agent systems. In Proceedings of the
International Joint Conference on Arti�cial
Intelligence, 1993.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
Formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10:673{685, 1998.

