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Introduction Stein Variational Gradient Descent (SVGD) (Cont.) Empirical Results

Challenges of scalable Bayesian inference

» Take F to be the unit ball of a vector-valued reproducing kernel Toy Example on 1D Gaussian Mixture

> MCMC: often slow; difficult to access the convergence Hibert space (RKHS) . [Liu et al., 16] showed that the optimal » Target distribution, p(x) = 1/3N(x; —2,1) +2/3N(x;2,1)
» Variational Inference: critically depends on the set of distributions in solution of (3) has a simple closed form: » Initialization: A/(x; —10,1); 100 particles
which the approximation is defined . - / Oth lteration  50th lteration  100th lteration  150th lteration  500th lteration
Stein Variational Gradient Descent (SVGD) P (x) o Equ__Apk(x,x)] , , > I e
= E,o[Vxlog p(x)k(x, x') + Vk(x, x)] 0.3

» Directly minimizes KL({x;} || p).
1 no need to define variational approximation family
2 leverages the gradient information

» Approximating ., by using empirical average of the current particles 0.2

{x;}7_1, (1) reduces to, 0.1
xi 4= X + el [V log p(x)k(x, %) + Vik(x, x)] () f0 00

Bayesian Logistic Regression
» Test on Convertype dataset with 581,012 data points

Algorithm » Compared with Stochastic Langevin [Welling et al., 11], Particle Mirror
Descent [Dai et al., 16] and Doubly Stochastic [Lazaro-Gredilla, 14]
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Algorithm 1 Bayesian Inference via Variational Gradient Descent 0.75 0.75 o Sisin Variational Gradient Descent (Our Method]
R : : : 9 9 o Paricie Miror Descent (oMD)
Input: A target distribution with density function p(x) and a set of  § . = :g?utaly?tthastic.(D(SSVI) e
. e e . . . -% ocnaslic Langevin (oequentia
Main Idea initial particles {x"}"_;. < < 07
_ Output: A set of particles {x;}7_, that approximates the target distri-| | = =
» ldea: Iteratively move {x;}"_; towards the target p by updates of form bution Dt 0009 ks
' ’ ‘ 0.650 ¢ | i}
X; < x; + ep(x;), (1) R . o1 o o . 580_ ( )250
: : . . epea umber of Epoches article Size (n
where @ is a perturbation direction chosen ( L o
_ _ _ . 2 _ _ - a) Particle size n = 100 (b) Results at 3000 iteration (= 0.32 epoches)
to maximumly decrease the KL divergence Xj S X'+GEX~{X/'}7:1[YX log p(XZ k(x, xi)+ Vik(x,x) ], ¥i=1---n. :
. . ~~ — Bayesian Neural Network
with p, that is, gradient repulsive force . . _
_ _ » Test Bayesian neural nets on UCI datasets (with 20 particles)
0 where € is the step size. _ o _
¢ = argmax < — &KL(q[@] 1 p)| o ¢ » Compared with probabilistic back-propagation (PBP)
cF : : - : 4
¢ (2) » Vi log p(x): moves the particles {x;} towards high probability regions [Herndndez-Lobato and Adams, 15]
/ of p(x). Avg. Test RMSE Avg. Test LL Avg. Time (Secs)
' ' — : S : D PBP Meth PBP Meth PBP
where g is the density of x" = x +eg(x) » V. k(x,x'): enforce diversity in {x;} (otherwise all x; collapse to ataset Our Method Our Method Ours
) e modes of p(x)). Concrete | 5.506 + 0.103 5.324 +0.104 —3.137 +0.021 —3.082+£0.018 33 24
that we optimize over. : - - : : Energy | 1.734+0.051 1.374+0.045 —1.981+0.028 —1.767 +0.024 25 21
> Algorithm 1 reduces to a smgle- chain of typical gradient ascent for Kingnm | 0.098 + 0.001 0.090=£0.001 0.901+0.010 0.984-+0.008 118 41
| MAP when the number of particles n = 1. Naval | 0.006 & 0.000 0.004 +0.000 3.735+0.004 4.080+0.012 173 49
» How to find the optimal ¢ 7 Combined | 4.052 4 0.031 4.033 +£0.033  —2.819 + 0.008 —2.815 +0.008 136 51
Protein | 4.623 +£0.009 4.606 = 0.013 | —2.950 4+ 0.002 —2.947 4-0.003 | 682 68
0.3 Wine 0.614 +£0.008 0.609 +0.010 | —0.931 = 0.014 —0.925 +0.014 26 22
Stein Variational Gradient Descent (SVGD) 3 2 : L— ® Yacht 0.778 +£0.042 0.864 +0.052 | —1.211 +0.044 —1.225+0.042 | 25 25
02 i Lt aii | i o Year 8733+ NA 8684+NA | —3586+NA —3580+NA 7777 684
o L . . ST TS i i T s avai
» It turns out the objective in (2) is a simple linear functional of ¢, 3 HE pe Pyl i% s Our code IS available at | o |
P —i % Y ! P ;o https://github.com/DartML/Stein-Variational-Gradient-Descent
— EKL(CI[@] 1 P)| —y = Ex~qlApd(x)] Time ‘
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