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Introduction

Challenges of scalable Bayesian inference
I MCMC: often slow; difficult to access the convergence

I Variational Inference: critically depends on the set of distributions in
which the approximation is defined

Stein Variational Gradient Descent (SVGD)
I Directly minimizes KL({xi} || p).

1 no need to define variational approximation family
2 leverages the gradient information

Particles {xi} Target p(x)

Main Idea

I Idea: Iteratively move {xi}ni=1 towards the target p by updates of form

x ′i ← xi + εφ(xi), (1)

where φ is a perturbation direction chosen
to maximumly decrease the KL divergence
with p, that is,

φ = arg max
φ∈F

{
− ∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

}
,

(2)

where q[εφ] is the density of x ′ = x+εφ(x)
and F is a set of perturbation directions
that we optimize over.

I How to find the optimal φ ?

Stein Variational Gradient Descent (SVGD)

I It turns out the objective in (2) is a simple linear functional of φ,

− ∂

∂ε
KL(q[εφ] || p)

∣∣
ε=0

= Ex∼q[Apφ(x)]

with Apφ(x)
def
= ∇x log p(x)>φ(x) +∇x · φ(x)

I Therefore, the optimization in (2) reduces to

D(q||p)
def
= max

φ∈F

{
Ex∼q[Apφ(x)]

}
(3)

I Stein’s Identity: Ex∼q[Apφ(x)] = 0 iff q = p

Stein Variational Gradient Descent (SVGD) (Cont.)

I Take F to be the unit ball of a vector-valued reproducing kernel
Hibert space (RKHS) H. [Liu et al., 16] showed that the optimal
solution of (3) has a simple closed form:

φ∗(x ′) ∝ Ex∼q[Apk(x , x ′)]

= Ex∼q[∇x log p(x)k(x , x ′) +∇xk(x , x ′)]

I Approximating Ex∼q by using empirical average of the current particles
{xi}ni=1, (1) reduces to,

xi ← xi + εÊx∼{xi}ni=1
[∇x log p(x)k(x , xi) +∇xk(x , xi)] (4)

Algorithm

Algorithm 1 Bayesian Inference via Variational Gradient Descent

Input: A target distribution with density function p(x) and a set of
initial particles {x0

i }ni=1.
Output: A set of particles {xi}ni=1 that approximates the target distri-
bution.

Repeat

xi ← xi +εÊx∼{xi}ni=1
[∇x log p(x)︸ ︷︷ ︸

gradient

k(x , xi)+∇xk(x , xi)︸ ︷︷ ︸
repulsive force

], ∀i = 1 · · · n.

where ε is the step size.

I ∇x log p(x): moves the particles {xi} towards high probability regions
of p(x).

I ∇xk(x , x ′): enforce diversity in {xi} (otherwise all xi collapse to
modes of p(x)).

I Algorithm 1 reduces to a single chain of typical gradient ascent for
MAP when the number of particles n = 1.
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Complexity and Efficient Implementation
I In big data settings, p(x) ∝ p0(x)

∏N
k=1 p(Dk | x) with a very large N

I Approximate ∇x log p(x) with subsampled mini-batches

∇x log p(x) ≈ ∇x log p0(x) +
N

|Ω|
∑
k∈Ω

∇x log p(Dk | x)

Empirical Results

Toy Example on 1D Gaussian Mixture
I Target distribution, p(x) = 1/3N (x ;−2, 1) + 2/3N (x ; 2, 1)

I Initialization: N (x ;−10, 1); 100 particles
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Bayesian Logistic Regression
I Test on Convertype dataset with 581,012 data points

I Compared with Stochastic Langevin [Welling et al., 11], Particle Mirror
Descent [Dai et al., 16] and Doubly Stochastic [Lázaro-Gredilla, 14]
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Stein Variational Gradient Descent (Our Method)
Stochastic Langevin (Parallel SGLD)
Particle Mirror Descent (PMD)
Doubly Stochastic (DSVI)
Stochastic Langevin (Sequential SGLD)

(a) Particle size n = 100 (b) Results at 3000 iteration (≈ 0.32 epoches)

Bayesian Neural Network
I Test Bayesian neural nets on UCI datasets (with 20 particles)

I Compared with probabilistic back-propagation (PBP)
[Hernández-Lobato and Adams, 15]

Avg. Test RMSE Avg. Test LL Avg. Time (Secs)
Dataset PBP Our Method PBP Our Method PBP Ours
Boston 2.977± 0.093 2.957± 0.0992.957± 0.0992.957± 0.099 −2.579± 0.052 −2.504± 0.029−2.504± 0.029−2.504± 0.029 18 161616
Concrete 5.506± 0.103 5.324± 0.1045.324± 0.1045.324± 0.104 −3.137± 0.021 −3.082± 0.018−3.082± 0.018−3.082± 0.018 33 242424
Energy 1.734± 0.051 1.374± 0.0451.374± 0.0451.374± 0.045 −1.981± 0.028 −1.767± 0.024−1.767± 0.024−1.767± 0.024 25 212121
Kin8nm 0.098± 0.001 0.090± 0.0010.090± 0.0010.090± 0.001 0.901± 0.010 0.984± 0.0080.984± 0.0080.984± 0.008 118 414141
Naval 0.006± 0.000 0.004± 0.0000.004± 0.0000.004± 0.000 3.735± 0.004 4.089± 0.0124.089± 0.0124.089± 0.012 173 494949
Combined 4.052± 0.031 4.033± 0.0334.033± 0.0334.033± 0.033 −2.819± 0.008 −2.815± 0.008−2.815± 0.008−2.815± 0.008 136 515151
Protein 4.623± 0.009 4.606± 0.0134.606± 0.0134.606± 0.013 −2.950± 0.002 −2.947± 0.003−2.947± 0.003−2.947± 0.003 682 686868
Wine 0.614± 0.008 0.609± 0.0100.609± 0.0100.609± 0.010 −0.931± 0.014 −0.925± 0.014−0.925± 0.014−0.925± 0.014 26 222222
Yacht 0.778± 0.0420.778± 0.0420.778± 0.042 0.864± 0.052 −1.211± 0.044−1.211± 0.044−1.211± 0.044 −1.225± 0.042 25 25
Year 8.733± NA 8.684± NA8.684± NA8.684± NA −3.586± NA −3.580± NA−3.580± NA−3.580± NA 7777 684684684

Our code is available at
https://github.com/DartML/Stein-Variational-Gradient-Descent
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