

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Qiang Liu Dilin Wang
Dartmouth College

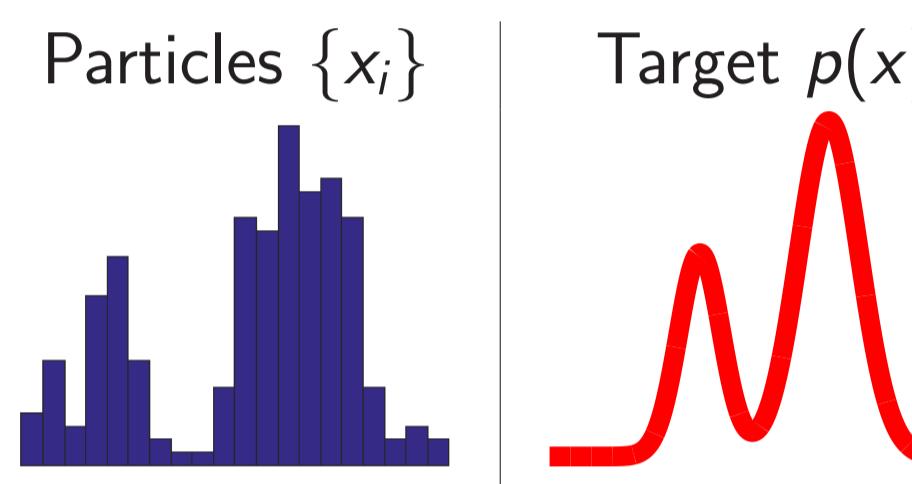
Introduction

Challenges of scalable Bayesian inference

- MCMC: often slow; difficult to access the convergence
- Variational Inference: critically depends on the set of distributions in which the approximation is defined

Stein Variational Gradient Descent (SVGD)

- Directly minimizes $\text{KL}(\{x_i\} \parallel p)$.
 - 1 no need to define variational approximation family
 - 2 leverages the gradient information



Main Idea

- Idea: Iteratively move $\{x_i\}_{i=1}^n$ towards the target p by updates of form

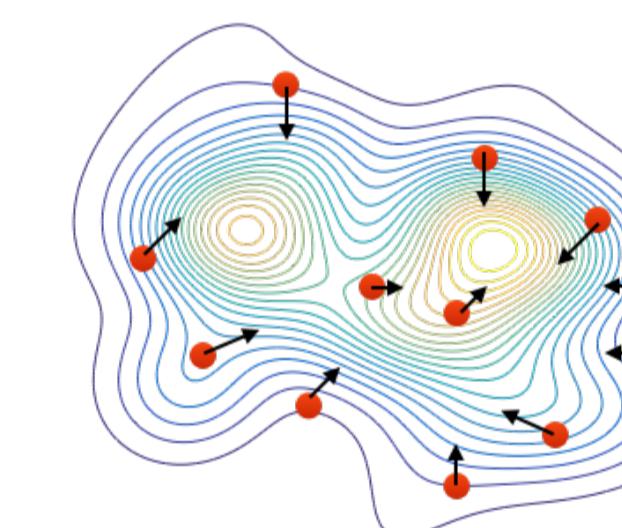
$$x'_i \leftarrow x_i + \epsilon \phi(x_i), \quad (1)$$

where ϕ is a perturbation direction chosen to maximumly decrease the KL divergence with p , that is,

$$\phi = \arg \max_{\phi \in \mathcal{F}} \left\{ -\frac{\partial}{\partial \epsilon} \text{KL}(q_{[\epsilon \phi]} \parallel p) \Big|_{\epsilon=0} \right\}, \quad (2)$$

where $q_{[\epsilon \phi]}$ is the density of $x' = x + \epsilon \phi(x)$ and \mathcal{F} is a set of perturbation directions that we optimize over.

- How to find the optimal ϕ ?



Stein Variational Gradient Descent (SVGD)

- It turns out the objective in (2) is a simple linear functional of ϕ ,

$$-\frac{\partial}{\partial \epsilon} \text{KL}(q_{[\epsilon \phi]} \parallel p) \Big|_{\epsilon=0} = \mathbb{E}_{x \sim q} [\mathcal{A}_p \phi(x)]$$

with $\mathcal{A}_p \phi(x) \stackrel{\text{def}}{=} \nabla_x \log p(x)^\top \phi(x) + \nabla_x \cdot \phi(x)$

- Therefore, the optimization in (2) reduces to

$$\mathcal{D}(q \parallel p) \stackrel{\text{def}}{=} \max_{\phi \in \mathcal{F}} \left\{ \mathbb{E}_{x \sim q} [\mathcal{A}_p \phi(x)] \right\} \quad (3)$$

- Stein's Identity: $\mathbb{E}_{x \sim q} [\mathcal{A}_p \phi(x)] = 0$ iff $q = p$

Stein Variational Gradient Descent (SVGD) (Cont.)

- Take \mathcal{F} to be the unit ball of a vector-valued reproducing kernel Hilbert space (RKHS) \mathcal{H} . [Liu et al., 16] showed that the optimal solution of (3) has a simple closed form:

$$\begin{aligned} \phi^*(x') &\propto \mathbb{E}_{x \sim q} [\mathcal{A}_p k(x, x')] \\ &= \mathbb{E}_{x \sim q} [\nabla_x \log p(x) k(x, x') + \nabla_x k(x, x')] \end{aligned}$$

- Approximating $\mathbb{E}_{x \sim q}$ by using empirical average of the current particles $\{x_i\}_{i=1}^n$, (1) reduces to,

$$x_i \leftarrow x_i + \epsilon \hat{\mathbb{E}}_{x \sim \{x_i\}_{i=1}^n} [\nabla_x \log p(x) k(x, x_i) + \nabla_x k(x, x_i)] \quad (4)$$

Algorithm

Algorithm 1 Bayesian Inference via Variational Gradient Descent

Input: A target distribution with density function $p(x)$ and a set of initial particles $\{x_i^0\}_{i=1}^n$.

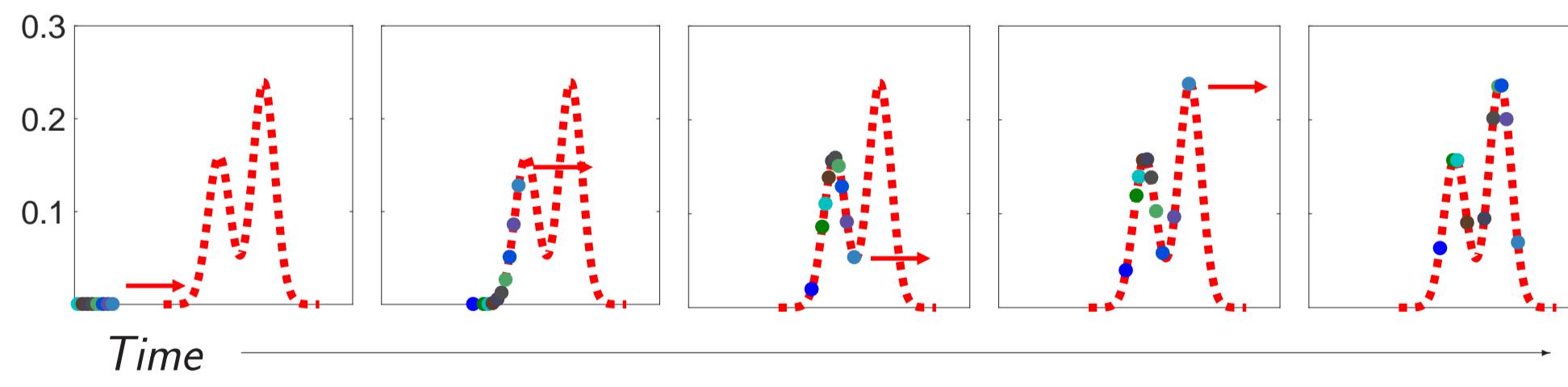
Output: A set of particles $\{x_i\}_{i=1}^n$ that approximates the target distribution.

Repeat

$$x_i \leftarrow x_i + \epsilon \hat{\mathbb{E}}_{x \sim \{x_i\}_{i=1}^n} [\underbrace{\nabla_x \log p(x)}_{\text{gradient}} k(x, x_i) + \underbrace{\nabla_x k(x, x_i)}_{\text{repulsive force}}], \quad \forall i = 1 \dots n.$$

where ϵ is the step size.

- $\nabla_x \log p(x)$: moves the particles $\{x_i\}$ towards high probability regions of $p(x)$.
- $\nabla_x k(x, x')$: enforce diversity in $\{x_i\}$ (otherwise all x_i collapse to modes of $p(x)$).
- Algorithm 1 reduces to a single chain of typical gradient ascent for MAP when the number of particles $n = 1$.



Complexity and Efficient Implementation

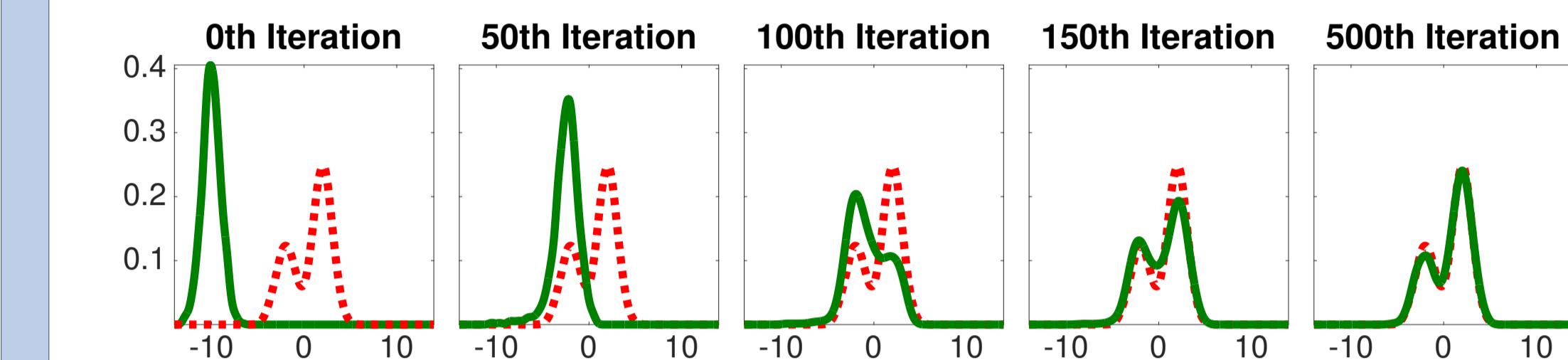
- In big data settings, $p(x) \propto p_0(x) \prod_{k=1}^N p(D_k | x)$ with a very large N
- Approximate $\nabla_x \log p(x)$ with subsampled mini-batches

$$\nabla_x \log p(x) \approx \nabla_x \log p_0(x) + \frac{N}{|\Omega|} \sum_{k \in \Omega} \nabla_x \log p(D_k | x)$$

Empirical Results

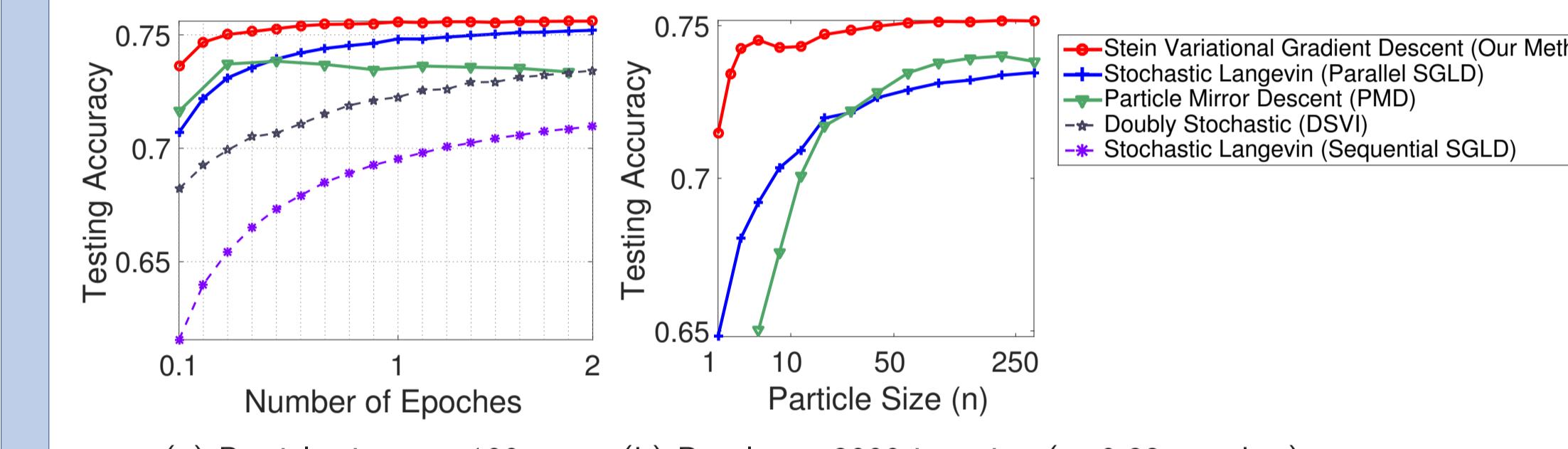
Toy Example on 1D Gaussian Mixture

- Target distribution, $p(x) = 1/3\mathcal{N}(x; -2, 1) + 2/3\mathcal{N}(x; 2, 1)$
- Initialization: $\mathcal{N}(x; -10, 1)$; 100 particles



Bayesian Logistic Regression

- Test on Convertype dataset with 581,012 data points
- Compared with Stochastic Langevin [Welling et al., 11], Particle Mirror Descent [Dai et al., 16] and Doubly Stochastic [Lázaro-Gredilla, 14]



Bayesian Neural Network

- Test Bayesian neural nets on UCI datasets (with 20 particles)
- Compared with probabilistic back-propagation (PBP) [Hernández-Lobato and Adams, 15]

Dataset	Avg. Test RMSE		Avg. Test LL		Avg. Time (Secs)
	PBP	Our Method	PBP	Our Method	
Boston	2.977 ± 0.093	2.957 ± 0.099	-2.579 ± 0.052	-2.504 ± 0.029	18
Concrete	5.506 ± 0.103	5.324 ± 0.104	-3.137 ± 0.021	-3.082 ± 0.018	33
Energy	1.734 ± 0.051	1.374 ± 0.045	-1.981 ± 0.028	-1.767 ± 0.024	25
Kin8nm	0.098 ± 0.001	0.090 ± 0.001	0.901 ± 0.010	0.984 ± 0.008	118
Naval	0.006 ± 0.000	0.004 ± 0.000	3.735 ± 0.004	4.089 ± 0.012	173
Combined	4.052 ± 0.031	4.033 ± 0.033	-2.819 ± 0.008	-2.815 ± 0.008	136
Protein	4.623 ± 0.009	4.606 ± 0.013	-2.950 ± 0.002	-2.947 ± 0.003	682
Wine	0.614 ± 0.008	0.609 ± 0.010	-0.931 ± 0.014	-0.925 ± 0.014	26
Yacht	0.778 ± 0.042	0.864 ± 0.052	-1.211 ± 0.044	-1.225 ± 0.042	25
Year	8.733 ± NA	8.684 ± NA	-3.586 ± NA	-3.580 ± NA	7777
					684

Our code is available at

<https://github.com/DartML/Stein-Variational-Gradient-Descent>

References

- Qiang Liu, Jason D. Lee, Michael I. Jordan. A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation. *arXiv preprint arXiv:1602.03253*, 2016
- Welling, Max and Teh, Yee W. Bayesian learning via stochastic gradient Langevin dynamics. *ICML*, 2011
- B. Dai, N. He, H. Dai, and L. Song. Provable Bayesian inference via particle mirror descent. *AISTATS*, 2016
- Lázaro-Gredilla, Miguel, Doubly stochastic variational Bayes for non-conjugate inference, *ICML*, 2014
- Hernández-Lobato, José Miguel and Adams, Ryan P. Probabilistic backpropagation for scalable learning of bayesian neural networks. *ICML*, 2015

Acknowledgment

This work is supported in part by NSF CRII 1565796.