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Persistent Memory (PM) refers to storage class memory that offers non-

volatility, low latency, and high bandwidth. Due to its memory semantics,

high capacity and non-volatility, PM can be used as storage as well as

memory. A number of applications can benefit from PM due to its unique

characteristics. Legacy applications that are built for HDDs and SSDs use

POSIX system-calls to access data on PM. Newer applications designed

specifically to be used on PM access / store data by memory mapping files

and performing loads / stores from user-space to PM-resident addresses.

Finally, modern data-intensive applications can use high-bandwidth net-

working to access hundreds of terabytes of data across PM of multiple

nodes. This thesis answers the question: How to achieve high performance

for all three classes of applications on PM without application changes?

This is achieved by carefully studying data access patterns and redesigning

internals of PM systems; both local and distributed.
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We first present SplitFS, a PM file system aimed at accelerating legacy

I/O intensive applications using a novel split of responsibilities between

a user-space library file system and an existing kernel PM file system.

SplitFS handles data operations in user space, and reuses an existing

kernel file system for metadata operations. Next, we introduce WineFS,

a novel hugepage-aware PM file system aimed at accelerating newer PM

applications. WineFS uses an alignment-aware allocation policy and a

suitable on-PM layout to preserve hugepages, thus reducing page faults,

while achieving high scalability using per-CPU fine-grained journaling. Fi-

nally, we present ScaleMem, which provides a distributed DAX-based

mmap() abstraction to data-intensive PM applications, while transparently

managing their data across the PM of multiple servers.

This dissertation showcases techniques for a wide range of applications

to achieve high performance on top of faster storage devices. The tech-

niques introduced in this dissertation are not limited to PM, but can be

applied to any byte addressable media. With new storage and memory

technologies emerging, we believe that the contributions of this thesis can

be used as a foundation to build storage systems offering high performance

and strong guarantees.
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Chapter 1

Introduction

Today, in the age of data explosion, exabytes of data is generated every-

day [1], and efficient access to the data has become a necessity. Widely

used applications such as cloud services [2, 3, 4, 5, 6, 7, 8], mobile applica-

tions [9, 10, 11, 12], key-value stores [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]

and databases [23, 24, 25, 26, 27, 28, 29, 30] all run in data centers all over

the world, and strive to provide efficient access to data. Traditional storage

technologies such as HDDs have not kept up with the demands for high

bandwidth and low latency access of data. This has led to diversification

of storage as well as memory technologies into a variety of offerings, that

each presents a new trade-off in the space of capacity, performance and

cost. An emerging technology that promises to revolutionalize storage is

Persistent Memory (PM).

Persistent Memory (PM) is a form of storage class memory, and exists

in various forms such as Phase Change Memory [31], Spin-Torque Trans-

fer RAM [32], Battery-backed DRAM, 3D XPoint [33], Memory-semantic

SSDs [34], and so on. In order to accommodate large working sets of data

center workloads, newer interconnects have been proposed, such as the

Compute eXpress Link (CXL). This enables a single data center server to

accommodate terabytes of PM.

The first commercial offering of scalable PM is Intel’s Optane DC Persis-



tent Memory. PM is placed on the memory bus like DRAM and is accessed

via processor loads and stores. Compared to DRAM, loads on PM have

2–3.7× higher latency and 1/3rd bandwidth, while stores have the same

latency but 1/6th bandwidth [35]. A single machine can be equipped with

up to 12 TB of PM. Given its memory semantics, large capacity and low

latency, PM can be used as memory as well as storage.

Given an order of magnitude higher cost per GB of PM along with

two orders of magnitude lower latency compared to modern SSDs, storage

systems must answer the question: how to get the best performance out

of PM? Legacy storage systems are designed with the assumption that

the underlying storage device is a block device and is significantly slower

than memory. The systems typically buffer data in DRAM in the page

cache, batching updates to storage, to amortize the high cost. However,

with PM, which offers similar characteristics to DRAM, buffering of data

is unnecessary and leads to high software overhead due to extra copies of

the data.

Direct Access (DAX) [36] is a feature introduced in the Linux kernel

that removes the extra copies of data in the page cache by performing reads

and writes directly to PM. Furthermore, memory mapping a file using DAX

causes the PM addresses to be mapped to user space, without copying the

data to the page cache. This allows loads and stores to directly reach

PM without going through DRAM. PM storage systems commonly rely on

DAX for low latency access to PM [37, 38, 39, 40].

The applications that use PM for storing data can be categorized into 2

classes. The first class of applications is legacy I/O intensive applications,

that are designed for slower storage media, such as HDDs and SSDs, but

2



that can benefit from the high performance of PM. Examples of these

applications are databases [27, 41], file & mail servers [42, 43], and so

on. The second class of applications are newer applications that are built

for PM, which take advantage of DAX. Examples of these applications

are key-value stores [44, 17, 45], PM-resident indexes [46, 47] and caching

services [48, 49]. There are also big data applications that require low

latency access to terabytes of data that can span across the PM of multiple

nodes. Examples of such applications are graph processing systems [50, 51],

ML training frameworks [52], etc.

One way to get the best performance out of PM is to build new applica-

tion interfaces that are more suited to the characteristics of PM. For exam-

ple, frameworks such as Persistent Memory Development Kit (PMDK) [53]

or Mnemosyne [54] allow applications to create crash-consistent data struc-

tures on PM instead of storing data in files. While new applications can

benefit from using these frameworks, it becomes infeasible for the legacy

applications with millions of lines of code to change the way they interact

with storage.

In this dissertation, we answer the question: how to achieve high per-

formance for applications on PM without application changes?. We study

the software overheads incurred by current storage systems for legacy and

new applications, with varied data sets, and come up with solutions that

minimize the software overheads, maximizing the performance across all

classes of applications.

3



1.1 Accelerating legacy applications with SplitFS

Legacy applications use POSIX system calls such as open(), close(),

read(), write() to access their data on PM. Existing file systems add

large overheads to each file system operation. The overhead comes from

performing expensive operations on the critical path, including allocation,

logging, and updating multiple complex structures. For example, consider

the common operation of appending 4K blocks to a file (total 128 MB).

Current file systems suffer from significant overhead (3.5×–12×) for this

simple operation, as compared to writing raw 4KB data to PM.

In this dissertation, we present SplitFS [55], a PM file system that

seeks to reduce software overhead via a novel split architecture: a user-

space library file system handles data operations while a kernel PM file

system (ext4 DAX) handles metadata operations. We refer to all file sys-

tem operations that modify file metadata as metadata operations. Such

operations include open(), close(), and even file appends (since the file

size is changed). The novelty of SplitFS lies in how responsibilities are

divided between the user-space and kernel components, and the seman-

tics provided to applications. Unlike prior work like Aerie, which used the

kernel only for coarse-grained operations, or Strata, where all operations

are in user-space, SplitFS routes all metadata operations to the kernel.

While FLEX [56] invokes the kernel at a fine granularity like SplitFS, it

does not provide strong semantics such as synchronous, atomic operations

to applications. At a high level, the SplitFS architecture is based on the

belief that if we can accelerate common-case data operations, it is worth

paying a cost on the comparatively rarer metadata operations. This is in

contrast with in-kernel file systems like NOVA which extensively modify

4



the file system to optimize the metadata operations.

SplitFS transparently reduces software overhead for reads and over-

writes by intercepting POSIX calls, memory mapping the underlying file,

and serving reads and overwrites via processor loads and stores. SplitFS

optimizes file appends by introducing a new primitive named relink that

minimizes both data copying and trapping into the kernel. The application

does not have to be rewritten in any way to benefit from SplitFS. SplitFS

reduces software overhead 17× compared to other PM file systems.

Evaluating SplitFS with micro-benchmarks and real applications, we

show that it outperforms state-of-the-art PM file systems like NOVA on

many workloads by up to 2×. The design of SplitFS allows users to

benefit from the maturity and constant development of the ext4 DAX file

system, while getting the performance and strong guarantees of state-of-

the-art PM file systems. SplitFS is publicly available at https://github.

com/utsaslab/splitfs.

1.2 Accelerating modern PM applications withWineFS

Newer PM-native applications memory-map files and access data using

loads and stores directly from user-space. The performance of memory-

mapped applications depends on the number of page faults incurred while

accessing data. Hugepages are an important optimization that reduce the

number of page faults, but require files to be placed in 2MB contiguous

and aligned physical extents on PM.

When existing PM file systems are aged, file layouts and free space tend

to be fragmented. This causes the memory-mapped files to be fragmented

and placed in unaligned holes of free-space. This causes up-to 512× more

5
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page faults in the critical path, and reduces performance significantly.

This dissertation presents WineFS [57], a novel hugepage-aware PM

file system designed to ensure that hugepages can almost always be used

for memory-mapped files, even when the FS is aged and mostly full. Doing

so requires a holistic design that both avoids fragmentation-inducing algo-

rithms and proactively considers hugepage boundaries during allocations.

Aging causes minimal performance loss in WineFS even when 90% full.

WineFS is designed, end-to-end, to avoid disruption of hugepage us-

age. Many inter-related aspects of a file system, from allocation policies

to crash-consistency schemes to concurrency, affect its ability to keep us-

ing hugepages as it ages. WineFS uses a novel alignment-aware alloca-

tor that tries to preserve 2MB-aligned 2MB extents that can be mapped

using hugepages. Large allocation requests are satisfied using aligned ex-

tents, while smaller allocations are satisfied using “holes”. WineFS uses

journaling for crash consistency, rather than the log-structuring popular

in system-call-focused PM file systems [37, 58], to avoid data re-locations

that disrupt its carefully planned layouts.

We evaluate WineFS using a variety of micro-benchmarks, macro-

bench-marks, and applications. We measure performance on both aged file

systems. For applications like RocksDB [13], LMDB [59], and PmemKV [17],

that access PM via memory-mapped files, WineFS outperforms other PM

file systems on an aged setup by up-to 2×.

1.3 Accelerating big data applications with ScaleMem

Big data PM applications refer to PM-native applications that issue loads

and stores to access data on PM using DAX, but whose data does not fit
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in the PM capacity of a single server. Unfortunately, the DAX memory-

mapping method can only be used to access PM that is locally present.

Distributed PM file systems do not support memory mapping, only allowing

system calls like read() and write(). You can memory map remote PM

via the NFS distributed file system; however, this does not offer DAX

semantics. For example, persisting data requires a system call rather than

a simple cache-flush instruction. This limitation is particularly important

since it is common in industry to use centralized storage servers to hold

data; applications cannot use DAX memory-mapping to read and write

such data.

This dissertation introduces the distributed DAX memory mapping ab-

straction, ddmap(), for PM. Unmodified applications can create DAX mem-

ory mappings for PM, regardless of whether it is local or remote in a cluster.

DAX semantics are provided for the memory-mapped data; a cache-flush

instruction is sufficient to persist data. Applications are provided with the

illusion of running on a server with a large amount of PM locally attached

to it. We implement the ddmap() abstraction in the ScaleMem system.

ScaleMem co-designs the file system and memory management sub-

systems, to efficiently handle ddmap() faults. For example, ScaleMem

finds that the default Linux kernel mechanism for unmapping and remap-

ping a page does not scale due to its locking scheme; ScaleMem intro-

duces a new primitive termed Fast Reallocation that allows unmapping and

remapping pages in a more efficient and scalable manner. While handling

page faults, ScaleMem tracks hot data at fine granularities by interposing

on memcpy() and other library calls, and building a fine-grained read-only

cache of PM data. In workloads with high degrees of skew and locality, the
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fine-grained read cache allows ScaleMem to achieve significantly higher

performance.

We evaluate ScaleMem on a variety of microbenchmarks and appli-

cations on multiple nodes. We show that ScaleMem is able to adapt to a

variety of different workloads with the help of application-specific policies,

and outperforms NFS [60] by up-to 60× on certain workloads while doing

100× lesser network I/O. By intercepting POSIX system calls along with

page faults, ScaleMem is able to support complex applications such as

RocksDB [13] and LMDB [61], outperforming NFS by up-to 7× on read-

heavy workloads. ScaleMem also outperforms PM-native applications

such as PmemKV [17] by 2× while providing fine-grained cacheline dura-

bility guarantees.

1.4 Contributions

We describe the main contributions of this dissertation.

1. Analysis of software overheads and degradation of performance with

age in different PM file systems for legacy I/O intensive applications

as well as newer PM applications.

2. Design and implementation of a new file system, SplitFS that ac-

celerates legacy POSIX applications through a novel split of respon-

sibilities between user space and kernel space.

3. Design and implementation of a new huge-page-aware file system,

WineFS that ages gracefully, with the help of alignment-aware al-

locations and a suitable on-PM layout, along with high scalability

through per-CPU journaling.
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4. Introduction of the distributed DAX memory mapping (ddmap())

abstraction for PM, which allows unmodified applications to create

DAX memory mappings for PM, regardless of whether it is in a local

or remote server in a cluster.

5. Implementation of ddmap() abstraction in the ScaleMem system,

which co-designs the file system and memory management layers,

providing the same guarantees to applications as that of local DAX

memory mappings.

1.5 Overview

We present an overview of the remaining chapters in the dissertation.

1. Background. In Chapter 2, we provide background on Persistent

Memory along with its characteristics and modes of operation. We

discuss the different modes in which PM is accessed, via system calls

and memory mapping using Direct Access. We discuss the existing

file systems that are designed for PM. We discuss the different crash

consistency mechanisms used by PM file systems, along with their

trade-offs.

2. Motivation. In Chapter 3, we motivate this dissertation by under-

standing about the software overheads incurred by existing storage

systems on PM. We discuss how the software overheads impact ap-

plication performance when file systems are newly created as well as

when aged. Finally, we discuss the lack of support by PM systems for

applications whose data does not fit in the PM capacity of a single

server.
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3. Solutions. The next three chapters describe our new systems for

accelerating legacy and new PM applications In Chapter 4, we de-

scribe SplitFS, a new PM file system for legacy applications that

uses a novel split of responsibilities for accelerating data operations

from a user library, while relying on a mature kernel file system for

metadata operations. In Chapter 5, we describe WineFS, a new

in-kernel file system that is targeted towards newer PM applications

by reducing page faults through alignment-aware allocations and a

suitable on-PM layout. In Chapter 6, we describe ScaleMem which

implements the ddmap() abstraction for providing native load and

store access to PM applications whose data does not fit in the PM

capacity of a single server.

4. Related Work. In Chapter 8, we describe prior work on PM file

systems, distributed file systems and distributed memory manage-

ment. We discuss work related to our specific techniques, and de-

scribe efforts similar to ScaleMem in scaling application data sets

to multiple servers.

5. Future Work, Lessons Learned, and Conclusions. In Chapter

9, we describe avenues in which our work could be extended. We

describe how we can overcome limitations of our work, and apply it

to other contexts, along with its applicability to other storage media.

In Chapter 10, we highlight lessons learnt and summarise our work.
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Chapter 2

Background

In this chapter, we provide the background required for various aspects of

this dissertation. First, we discuss the different kinds of storage class mem-

ory technologies (§2.1) and the performance characteristics of Intel Optane

DC Persistent Memory (PM) (§2.2). We then talk about the support of

PM in the Linux Kernel (§2.3). We then discuss the existing file systems

that have been designed for PM, along with their properties (§2.4). Finally,

we talk about memory mapping on PM (§2.5).

2.1 Storage Class Memory

Storage class memory (SCM) refers to non-volatile memory technologies

such as Phase Change Memory (PCM), Spin-Torque Transfer RAM (STT-

RAM), resistive RAM (ReRAM), 3D XPoint and Byte-Addressable SSDs.

SCM is also referred to as Non-Volatile Main Memory. Battery-backed

DRAM has been commercially available for a long time from different ven-

dors, while Intel Optane DC persistent memory that uses 3D XPoint tech-

nology made its debut in 2019. While the different NVMM technologies

differ in their characteristics, they share a common goal of providing fast

byte-addressable access to data, along with persistence across power cycles.

NVMMs typically occur in the form of non-volatile DIMMs (NVDIMMs)



and are attached to the main-memory bus, alongside DRAM. Attaching

NVMMs to the main memory bus allows them to be accessed with very low

latencies, similar to DRAM. Due to their byte-addressable nature, NVMMs

can be accessed using processor load and store instructions, and exhibit

high random access performance, in contrast to secondary storage devices

like HDDs and SSDs. In this way, NVMMs blur the gap between volatile

memory and non-volatile storage, offering the best of both worlds in terms

of latency and durability of data.

2.2 Intel Optane DC Persistent Memory

Intel Optane DC Persistent Memory Module (which we refer to as PM)

is the first scalable, commercially available NVMM. Compared to existing

storage devices such as HDDs and SSDs, it offers lower latencies and higher

read/write bandwidth, and offers a load-store interface instead of a block-

based interface. Compared to DRAM, it has lower cost per GB, higher

density and is able to persist data across power cycles.

The introduction of PM has enabled this thesis to understand the trade-

offs and characteristics of NVMM technologies, and allowed us to build

sophisticated systems software, thus getting the best out of NVMM. In the

rest of this thesis, we use the terms PM and NVMM interchangeably, to

refer to Intel Optane DC Persistent Memory Module.

2.2.1 Characteristics of PM

PM uses the 3D XPoint NVMM technology to offer byte-addressable per-

sistence to data, and occurs in the form of NVDIMMs. The NVDIMMs

are attached to the main-memory bus, alongside DRAM, as shown in Fig-
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Figure 2.1: Persistent Memory layout. This figure shows the layout
of PM in CascadeLake Servers. PM is placed alongside DRAM on the
memory bus, and is managed using an integrated Memory Controller.

ure 2.1. PM is supported on Intel’s CascadeLake processors. This processor

contains multiple processor dies, each of which has its own memory bus,

and comprises of separate NUMA nodes. The integrated memory controller

(iMC) contains channels that supports PM NVDIMMs as well as DRAM

volatile DIMMs. A single processor can contain up-to 9 TB of PM across

multiple NUMA nodes.

PM guarantees durability of data in the iMC with the help of Asyn-

chronous DRAM Refresh (ADR). ADR is a feature where the power supply

signals the different components of the processor about an imminent power

failure. The write pending queues (WPQ) use the residual power for flush-

ing data in the memory subsystem. Therefore, once the data is in the

WPQs, it is guaranteed persistence. The ADR domain does not include

the processor caches, which require explicit flushing of data to the WPQs

for guaranteed durability.

Intel processors offer programmers with instructions to control store or-

dering. Data can be written to PM using normal store instructions such

as mov which are cached in the CPU caches, or streaming instructions such
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as movnti, which directly enter the WPQs. The clflush and clflushopt

instructions can be used to flush the processor caches to memory, while

clwb instruction can be used to write-back data, without evicting them.

All these instructions are non-blocking, and can be re-ordered by the pro-

cessor. To ensure ordering, programmers must use the sfence or mfence

instructions, which ensure that all previous cachelines are written to mem-

ory.

2.2.2 PM Operating Modes

PM primarily operates in two modes: Memory Mode and AppDirect Mode.

In both these modes, PM NVMDIMMs can be configured to interleave at

4KB granularities for load balancing. With six NVDIMMs, an access larger

than 24KB will end up accessing all the NVDIMMs.

Memory Mode. Memory mode uses PM to expand DRAM capacity. It

combines an NVDIMM with a conventional DRAM DIMM on the same

memory channel that serves as a direct-mapped cache for the NVDIMM.

In this mode, PM does not guarantee durability of data. Memory mode is

used for increasing the size of heap-based applications such as in-memory

databases, indexes or caches.

AppDirect Mode. AppDirect mode exposes PM in the form of block

devices, similar to other storage media. This allows users to mount PM as

a block device, and to store data in the block device. In this mode, PM

guarantees durability of data. DRAM is not used as a cache for PM in

this mode. The AppDirect mode is used for providing high-performance

storage, such as key-value stores, file systems, persistent graphs and so on.

In this thesis, we focus on PM as a storage device, and use the AppDirect
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Medium Read Latency Write Latency Read BW Write BW

DRAM 100 ns 100 ns 100 GB/s 100 GB/s
PM 300 ns 100 ns 6.6 GB/s 2.2 GB/s
SSD 10 µs 10 µs 2.2 GB/s 0.9 GB/s
HDD 10 ms 10 ms 0.1 GB/s 0.1 GB/s

Table 2.1: PM properties. This table shows the latency and bandwidth
of a single PM NVDIMM in comparison to other memory and storage
technologies.

mode with the interleaved NVDIMM setup.

2.2.3 PM Performance profile

PM offers a unique and complex performance profile that is different from

DRAM, and depends on multiple factors such as number of threads and

access size and access pattern. Loads and stores that are smaller then 256B

cause amplification at the PM media, and have lower performance [35]. Ac-

cessing PM with more threads causes head-of-line blocking at the queues,

which reduces its performance [35]. We now look at the latency and band-

width profile of PM. Table 2.1 shows the performance profile of PM in

comparison with other memory and storage technologies.

Latency. PM offers asymmetric read/write latencies. When performing

8-byte load instructions with a single thread, the sequential read latency

is around 170ns [35], while the random read latency is around 300ns [35].

This difference between sequential and random read latency is because

small random reads lead to read-amplification at the NVDIMMs, due to

the 256B internal block size of PM. Hence, the read latency of PM is 2-3×

higher than DRAM.

The latency of writes on PM for random or sequential writes is approx-
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imately 100ns [35]. This is because stores do not write to NVDIMMs in

the critical path, but go through the WPQs at the processor, which is the

same for DRAM.

Bandwidth. The bandwidth of reads and writes on PM depends on the

number of threads and access sizes and number of NVDIMMs. The max-

imum read bandwidth of a single NVDIMM is 6.6 GB/s [35], while the

maximum write bandwidth of a single NVDIMM is 2.3 GB/s [35]. A server

with the maximum number of PM NVDIMMs, the maximum read band-

width is 1/3rd that of DRAM, while the maximum write bandwidth is

1/6th compared to DRAM.

Effect of NUMA on PM. NUMA-effects play a big role in the perfor-

mance of PM. Remote NUMA read latencies are up-to 1.79× higher than

local NUMA reads, while remote NUMA write latencies are up-to 2.5×

higher than local NUMA writes [62]. Remote PM can achieve 59% and

62% of local PM read and write bandwidth [62].

The bandwidth difference increases when accessing data in a mixed

read/write manner. In a mixed read/write access pattern, remote band-

width is up-to 3× lower than local bandwidth.

2.3 Direct Access (DAX)

The introduction of PM has resulted in addition of new features in the

Linux kernel to take advantage of its low-latency storage. An important

feature introduced in the Linux kernel to help users access PM is called

Direct Access (DAX) [36], that bypasses the page cache while accessing

data on PM.

The page cache is usually used to buffer reads and writes to files. For
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PM, which is a byte-addressable media, the page cache pages cause un-

necessary copies of the original storage. The DAX code removes the extra

copy by performing reads and writes directly to the storage device.

2.4 File systems on PM

File systems that are designed for low-latency persistent storage offered by

PM have the potential to impact a large number of applications. There is

active research on building native PM file systems [37, 63, 64, 40, 58] as

well as extending existing file systems meant for other storage media, to

run efficiently on PM. [38, 39].

2.4.1 POSIX API

PM file systems (similar to HDD/SSD-based file systems) typically imple-

ment the well-known POSIX API, which contains operations to manage

files. We refer to all file system operations that modify file metadata as

metadata operations. Such operations include open(), close(), rename(),

unlink(), etc. We refer to operations that are involved in reading or writ-

ing file data as data operations. These operations are read() and write().

Appending data to a file is considered as a metadata operation, since it

changes the size of the file.

All POSIX-compliant file systems are expected to provide failure-atomic

metadata operations. This implies that in the event of a system crash, the

file system should reflect either the old version of the file metadata in its

entirety, or the new version of the file metadata in its entirety. For guar-

anteeing durability of data, POSIX includes a primitive called fsync().

The fsync() call guarantees that when the call returns, all dirty data as-
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sociated with the file (passed as an argument to fsync()) is persistent on

PM.

2.4.2 File system crash-consistency guarantees

PM file systems strive to provide strong consistency and durability guaran-

tees to applications, which can be broken down into the following classes.

Metadata consistency File systems that provide metadata consistency

are guaranteed to recover to a consistent state after a crash with respect

to its metadata. However, the file data can remain inconsistent, and can

contain garbage values. This guarantee is provided by all POSIX-compliant

PM file systems.

Synchronous Data Operations In synchronous data operations, when

a read() or write() is complete, the data is guaranteed to be durable and

recoverable when the call returns. In other words, applications do not need

a subsequent fsync() for data durability.

Synchronous Metadata Operations Synchronous metadata operations

provide immediate durability of metadata of a files, and guarantee that the

metadata of a file is persisted on successful completion of any file system

operation.

Data consistency Data consistency implies that all data operations are

failure atomic. This implies that if there is a system crash during a write()

operation while updating file data, the file system is guaranteed to recover

to a state that contains the new data in its entirety, or contains the old

data in its entirety.
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2.4.3 Crash consistency mechanisms

PM file systems use different mechanisms such as journaling, copy-on-write

and log structuring for achieving failure atomicity of data and metadata.

Each of these mechanisms offer different performance trade offs.

Journaling. Journaling file systems reserve a specific region in the PM

partition for journaling updates to file metadata and (optionally) file data.

Every operation that modifies the metadata of a file involves creating a

transaction in the journal. In the event of a crash, the journal is replayed

to bring the file system to a consistent state. Journaling can occur in two

forms. Undo journaling or write-ahead logging involves writing old values

of the metadata (or data) to the journal before updating the values in-

place. In the event of a crash, incomplete journal transactions are rolled

back, and the old values are copied from the journal to the file-system data

structures, to bring the file system to a consistent state. redo journaling

involves writing new values in the journal, and a subsequent checkpointing

phase where the new values are copied from the journal to the file system

data structures.

Journaling requires writing data twice: once to the journal and once

to the target location. Data journaling is expensive, since the entire data

has to be written twice, causing high write amplification. As a result, PM

file systems typically journal the metadata and write data directly to the

target location.

copy-on-write or shadow paging. Shadow paging file systems never

update data in-place. Any update to a data involves writing the new version

to another location, flushing the newly written data to PM, and updating

the metadata to point to the new location atomically. The old data is then
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reclaimed and added to the free list of blocks. In the event of a crash, the

metadata points to the old version of the data, and ensures that the file

system is in a consistent state. The file metadata pointing to the file data is

often kept in a tree structure, which uses transactions to atomically point

to the new location.

Updating file data using copy-on-write also suffers from write amplifi-

cation: copying the old data to a new location, and then updating the data

in the new location.

Log structuring. Log structured file systems (LFS) were designed to ex-

ploit the sequential access performance of hard disk drives or SSDs. These

file systems buffer random writes in memory and convert them into larger,

sequential writes to disk, making the best of hard disks’ sequential access

performance. Log structured file systems optionally maintain file meta-

data in a log structured manner as well, by using version control. Stale

metadata is reclaimed in the background to avoid random accesses in the

critical path. Although log structuring makes more sense for HDDs and

SSDs, there are PM file systems that manage metadata in a log structured

fashion, to avoid performing small random updates.

LFS performance relies on being able to write data sequentially, in free

contiguous regions on PM. To ensure a consistent supply of such regions,

LFS constantly clean and compact the log to reclaim space occupied by

stale (meta)data. Log cleaning and compacting incurs from read and write

amplification, which degrades the performance of LFS. Apart from this,

LFS also write data out-of-place, suffering from problems similar to shadow

paging.
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2.4.4 Existing PM file systems

Researchers, companies and open-source communities have designed and

implemented a number of PM file systems. We divide PM file systems into

two groups. Native PM file systems are designed especially for PM. They

exploit the byte-addressability of PM storage and can dispense with many

of the optimizations (and associated complexity) that blockbased file sys-

tems implement to hide the poor performance of disks. BPFS [63] is the

first native PM file system that we are aware of. BPFS is a shadow paging

file system that provides metadata and data consistency. BPFS proposes

a hardware mechanism to enforce store durability and ordering and uses

short-circuit shadow paging to reduce shadow paging overheads in common

cases. PMFS [40] is a lightweight PM file system that bypasses the block

layer and file system page cache to improve performance. PMFS uses jour-

naling for metadata updates. SCMFS [64] utilizes the operating system’s

virtual memory management module and maps files to large contiguous vir-

tual address regions, making file accesses simple and lightweight. SCMFS

does not provide any consistency guarantee of metadata or data. Aerie [65]

implements the file system interface and functionality in user space to pro-

vide low-latency access to data in PM. Aerie journals metadata but does

not support data atomicity or mmap operation. Strata [58] is a “cross me-

dia” file system that runs partly in userspace. It provides strong atomicity

and high performance.

Adapted PM file systems (or just “adapted file systems”) are block-

based file systems extended for PM. xfs DAX [39] and ext4 DAX [38] have

modes in which they become adapted file systems. xfs DAX and ext4 DAX

are the state-of-the-art adapted PM file systems in the Linux kernel. They
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add DAX support to the original file systems so that data page accesses

are bypassing the page cache, but metadata update still go through the

old block-based journaling mechanism. So far, adapted file systems have

been built subject to constraints that limit how much they can change to

support PM. For instance, they use the same on-“disk” format in both

block-based and DAX modes, and they must continue to implement (or at

least remain compatible with) disk-centric optimizations. Existing PM file

systems usually store efficient data structures such as B+tree and radix

tree in PM to manage inodes and files. However, persistent data structures

are difficult to implement and usually incur large performance overheads

due to cache flush and memory ordering operations

2.5 Memory mapping on PM

A memory map operation (performed via the mmap() system call) maps

one or more pages in the process virtual address space to extents on PM.

For example, consider virtual addresses 4K to 8K-1 are mapped to bytes

0 to 4K-1 on file foo. Bytes 0 to 4K-1 in foo then correspond to bytes

10*4K to 11*4K -1 on PM. A store instruction to virtual address 5000

would then translate to a store to byte 40964 on PM. Thus, PM can be

accessed via processor loads and stores without the interference of software;

the virtual memory subsystem is in charge of translating virtual addresses

into corresponding physical addresses on PM.

2.5.1 Page Faults

The process of setting up the mapping between the process virtual address

space and corresponding physical addresses on PM happens on a page fault.
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Figure 2.2: Memory-mapping overhead. This figure shows the time
taken to memory-map and write a 2MB file, with and without huge pages.
With huge pages, most of the time goes towards copying data. Without
huge pages, two thirds of total time goes towards handling page faults and
setting up page tables. Note that using huge pages makes writing the file
2× faster.

Page faults occur on the first access of a page, and trap into the kernel,

which sets up page table entries and TLB mapping for the corresponding

virtual address. By default, the size of a page is 4KB, and accessing a 1GB

file incurs more than 200K page faults.

2.5.2 Hugepages

To reduce the overheads of page faults, modern processors support hugepages,

which are 2MB or 1GB in size. Hugepages reduce the number of page faults

by 500×. We run an experiment where we memory-map and write to a 2MB

file, with and without hugepages. Figure 2.2 shows the results: that map-

ping with hugepages can reduce the overall time taken by 2×, by reducing

the time taken to handle page faults.

Conditions for obtaining hugepages. Despite the benefits of hugepages,

it is challenging for applications using the memory-mapped access mode to

reliably get hugepages. In order to get a hugepage on a page fault, the
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Figure 2.3: Overhead due to TLB misses. This figure shows the
CDF of latencies when reading random elements of a large PM array that
has been memory-mapped and pre-faulted. Using huge pages reduces the
number of TLB misses. On a TLB misses, page table entries are fetched
and cached in the processor caches, reducing cache space for the applica-
tion. The median latency is 10× higher when using base pages rather than
huge pages, as the array element that is read has been knocked out of the
processor cache by page table entries.
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underlying file must be placed on 2MB aligned physical blocks and must

not be fragmented. Even a single byte offset from alignment forces the

operating system to fall back to base pages with a high page-fault cost.

Pre-faulting pages. A natural question that arises is: can we simply

pre-fault all of the pages outside the critical path. First, this is simply

not possible for a number of applications (such as LMDB [59]) as they use

sparse mappings, allocating space on demand when they get a page fault.

Pre-faulting would lead to unacceptable space overhead for these applica-

tions. Second, even if all the pages are pre-faulted, hugepages still provide

a performance benefit by reducing TLB misses. We ran an experiment

where we memory-mapped a file containing a large array and randomly

read elements in the array. The entire file was pre-faulted, so there were

no page faults in the critical path. Figure 2.3 shows the results. There is a

10× reduction in median latency when using hugepages, corresponding to

whether the array element that was read was in the processor cache or not.

When using base pages, the array element was kicked out to make space for

page table entries when handling TLB misses. Thus, even when all pages

are pre-faulted, using hugepages to map files on PM improves performance.

2.6 Summary

In this chapter, we introduced the background material essential for this

dissertation. We discussed about Intel Optane DC Persistent Memory

(PM) and its characteristics. We then looked at support in the Linux

kernel for PM in the form of Direct Access (DAX). We then described the

different ways in which file systems are designed for PM; along with their

crash consistency mechanisms. Finally, we discussed memory mapping on
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PM in the presence of DAX.
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Chapter 3

Motivation

We use the background material presented in Chapter 2 to motivate this

dissertation. We studied existing PM file systems that use different data

structures and crash consistency mechanisms, providing different trade offs

between performance and consistency guarantees for data and file system

metadata.

In this chapter, we discuss the different ways in which applications

access PM (§3.1) along with software overheads of the file systems for the

applications (§3.2). We discuss the limitations of existing file systems and

memory managers to support big data applications that use DAX (§3.3).

3.1 How PM is accessed

The low latency and high bandwidth enable a number of legacy and new

applications to benefit from PM. We classify the applications into 2 cate-

gories based on the way that they access their data on PM.

3.1.1 System-call interface

Traditional applications designed for magnetic hard drives and solid state

drives can access PM through POSIX system calls. The applications in

this category typically create and delete files using creat() and unlink(),



and access their data using read() and write(). Examples of applica-

tions in this category are databases such as MySQL [27], SQLite [30] Post-

greSQL [41], mail servers and file servers such as [43, 42], key-value stores

such as LevelDB [14], etc.

The performance of POSIX system-call applications depends on the

overheads of the kernel and file-system layers in accessing application data.

The applications in this category issue frequent read() and write() calls

for accessing data, with occasional metadata-related calls for creating,

deleting and renaming files. In order to ensure high performance for the ap-

plications in this category, PM file systems must incur minimum overheads

in data-transfer operations such as read() and write().

3.1.2 Memory-mapped interface

Given the performance benefits of memory-mapping, applications designed

specifically for PM tend to use this method to access data (key-value stores

such as PmemKV [17], Pmem-Redis [45], RocksDB-pmem [44], LMDB [61],

caching services such as Memcached [49], Pelikan [48], databases such as

Memhive-PostgreSQL [25], data-structure libraries such as PMDK [53]).

The performance of memory-mapped applications depends on the time

it takes for setting up page table entries so that a virtual address in the

process can point to a location on PM. This overhead directly depends

upon whether hugepages are used to map the underlying file.

3.2 Limitations of existing file systems

In this section, we discuss the limitations of existing file systems in achiev-

ing high performance for both the classes of applications. We discuss soft-

28



File system Append (ns) Overhead (ns) Overhead (%)

ext4 DAX 9002 8331 1241%
PMFS 4150 3479 518%
NOVA 3021 2350 350%

Table 3.1: Software Overhead. The table shows the software overhead
of various PM file systems for appending a 4K block. It takes 671 ns to
write 4KB to PM.

ware overheads incurred by existing file systems for legacy applications in

§3.2.1 and newer PM applications in §3.2.2.

3.2.1 Software Overheads of POSIX system-call in-

terface

Traditional file systems add large overheads to each file-system operation,

especially on the write path. The overhead comes from performing ex-

pensive operations on the critical path, including allocation, logging, and

updating multiple complex structures. The systems community has pro-

posed different architectures to reduce overhead. BPFS [63], PMFS [40],

and NOVA [37] redesign the in-kernel file system from scratch to reduce

overhead for file-system operations. Aerie [65] advocates a user-space li-

brary file system coupled with a slim kernel component that does coarse-

grained allocations. Strata [58] proposes keeping the file system entirely

in user-space, dividing the system between a user-space library file system

and a user-space metadata server. Aerie and Strata both seek to reduce

overhead by not involving the kernel for most file-system operations.

Despite these efforts, file-system data operations, especially writes, have

significant overhead. For example, consider the common operation of ap-

pending 4K blocks to a file (total 128 MB). It takes 671 ns to write a 4

29



Figure 3.1: Free space fragmentation. Free-space becomes increasingly
fragmented as utilization increases in aged NOVA and ext4 DAX. At 70%
utilization, NOVA has close to zero 2MB aligned and contiguous regions.

KB to PM; thus, if performing the append operation took a total of 675

ns, the software overhead would be 4 ns. Table 3.1 shows the software

overhead on the append operation on various PM file systems. We observe

that there is still significant overhead (3.5− 12.4×) for file appends.

3.2.2 Performance overheads of Memory-mapped in-

terface

While it is relatively easier for a freshly-formatted file system to place files

on 2MB aligned and unfragmented regions on PM1, it becomes increasingly

difficult to maintain that alignment as the file system ages. File system in-

stances are routinely used for several years at a time [66, 67, 68]. It is well

known that as the file system ages, it suffers file and free space fragmenta-

tion because of the file creations, deletions and updates causing significant

slowdowns [69, 70, 71, 72, 73]. In the context of PM and hugepages, ar-

bitrary free space fragmentation worsens the problem of obtaining aligned

and contiguous 2MB extents. Figure 3.1 shows the number of hugepages

1PMFS and xfs-DAX cannot get hugepages even when they are clean because unlike
ext4-DAX, these file systems completely disregard alignment even for large extents.
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Figure 3.2: Impact of aging. Write bandwidth to memory-mapped files
for two PM FSs on un-aged (left) and aged (right) file systems stored on
Intel Optane PM. For ext4-DAX and NOVA, aging reduces bandwidth by
≈50% even when the FS is only 60% full.

available as a file system is aged. We performed aging using Geriatrix [70],

an aging framework to perform aging. In this experiment 100GB file sys-

tem partitions of ext4-DAX and NOVA were subjected to up to 40TB of

file creates and deletes. With increasing utilization both ext4-DAX and

NOVA are unable to maintain aligned 2MB extents. In fact at about 70%

utilization, NOVA had close to zero 2MB extents left.

We observed that fragmentation of free space due to aging does not

impact the performance of applications that access PM through POSIX

system calls such as read() and write(), as PM offers similar bandwidth

for sequential and random access of data.

In summary, the performance of applications accessing PM by mmap-

ing files is up-to 2× better than applications accessing PM through POSIX

system calls but can degrade significantly with age due to fragmentation

of free space, while the performance of applications accessing via POSIX

system calls remains constant and independent of age.
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Hugepages without file system support. One solution to obtain

hugepages is via defragmentation. In this context, defragmentation would

mean re-alignment of extents to 2MB boundaries, and not necessarily focus-

ing on its contiguity. One can imagine a user-space utility for defragmenting

mmap-ed files, which would read the fragmented file, and rewrite it using

large allocations. However, without file system support, it is impossible

to guarantee that large allocation requests are satisfied using 2MB aligned

extents. We observe that ext4-DAX and NOVA do not always use aligned

extents when they are available; this is natural since these file systems op-

timize for locality and contiguity, rather than hugepages. For example, in

Figure 3.2 (b), ext4-DAX has 12k aligned extents available at 60% utiliza-

tion, but ends up using only 3k aligned extents, while the workload requires

8k aligned extents.

One could also imagine a file-system-wide defragmentation utility could

be run to reclaim hugepages. However, existing defragmentation utilities

do not aim to recover huge-pages. Such utilities would consume PM band-

width when running in the background. The performance for a given PM

file would only improve if it had been defragmented by the utility; this

could take a lot of time depending on the size of the file system.

Finally, one could use a file system that always allocates in sizes of 2MB;

the bigalloc mode of ext4 does this. However, this leads to significant

space wastage and internal fragmentation, as a large number of user files

tend to be small.
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3.3 Enabling remote DAX memory mappings

Big data applications today must handle vast amounts of data in the pres-

ence of data explosion. For example, the largest graph datasets that are

open source span multiple terrabytes in size [74]. Additionally, the high

price of PM today makes it infeasible to be deployed in large capacities

in singular servers, but makes it more practical to be shared across multi-

ple servers in a cluster. Achieving high performance with increasing data

requires applications to leverage the low-latency access of DAX for data

spanning across the PM of multiple servers.

Big data applications typically use DAX by creating large files on a DAX

file system, memory mapping the files in userspace, and then issuing direct

loads and stores to the files. Examples of such applications are key-value

stores such as LMDB [61], Pmem-Redis [45], PmemKV [17], data structure

libraries such as Persistent Memory Development Kit (PMDK) [53], indexes

such as RECIPE [46], FAST & FAIR [47], and so on.

Handling Remote DAX Page Faults. Using remote DAX requires

the virtual memory subsystem and the file system components to work in

tandem with each other. Consider that we have a simple application that

tries to use DAX memory maps to access a dataset larger than the PM

capacity of a single server. In order to serve a DAX page fault, the virtual

address of the page must correspond to a physical block of the file on PM.

This may involve migrating the block of file from the remote server to the

local server, and set up the memory mapping on a page fault. Similarly, if

the local PM runs out of space, a block of file must be migrated from the

local server to a remote server that has enough PM space, before a new

remote block can be brought in the local node.
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Figure 3.3: Memory Manager Bottleneck. Shows the drop in through-
put with increasing threads due to lock contention in the memory manager
on mmap() and munmap() operations.

Challenges of Remote DAX memory mappings. Supporting remote

DAX memory mappings comes with a unique set of challenges. These

challenges are related to resolving bottlenecks in the virtual memory as

well as file system.

Migrating blocks between servers due to remote DAX page faults re-

quires frequent unmapping and mapping of file regions. Unfortunately, the

Linux memory manager is not equipped to efficiently handle concurrent

frequent mappings and unmappings of memory within the same process.

Linux maintains metadata corresponding to all the memory mappings of

a process, and requires holding exclusive locks on this metadata on every

mmap() and munmap() call. Fig 3.3 shows the cost of each mmap() call in

the presence of other concurrent unmap and map calls on the same file,

which increases as we increase the number of threads.

At the file system layer, frequent migrations of file blocks cause allo-

cations and deallocations that fragment the file as well as the free space.

Fragmentation of files also destroys the memory mappings associated with

the file, because of lack of co-ordination between the memory manager and

file system components. This increases number of page faults and results
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in significant slowdowns.

3.4 Summary

We motivated the need for newer systems software for PM for achieving

high performance along with stronger consistency and durability guaran-

tees. We presented the different ways in which applications access PM,

and saw the shortcomings of current file systems and memory managers in

achieving high performance for a wide range of PM applications.
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Chapter 4

Achieving high performance for legacy I/O

intensive applications

In chapter 3, we discussed how legacy I/O intensive applications access

PM using POSIX system calls. We looked at software overheads incurred

by existing PM file systems in achieving high performance for legacy ap-

plications. In this chapter, we introduce a new design point in PM file

systems for accelerating applications using read() and write() POSIX

system calls for accessing data.

In the rest of the chapter, we first discuss division of responsibilities

between user-space and kernel to reduce software overhead in file systems

(§4.1). We then introduce SplitFS, a file system that lies in user space as

well as the kernel, and achieves high performance for legacy applications.

We present the goals of SplitFS (§4.3). We present an overview of the

design and discuss how SplitFS provides atomic operations at low over-

head (§4.5), and discuss its implementation (§4.6). We then discuss the

performance of SplitFS in comparison to existing PM file systems on a

wide variety of workloads (§4.8).



4.1 Rethinking division of responsibilities between

user-space and the kernel

Legacy applications depend on file systems for every data access. In-kernel

file systems result in context switches between user-space and the kernel

for every data access, and perform expensive operations such as allocations

and deallocations in the critical path. As a result of this, the file systems

such as NOVA [37], PMFS [40], ext4 DAX [38], xfs DAX [39] suffer from

high software overheads for common operations such as file appends. On

the other hand, user-space file systems such as Strata [58] and Aerie [65]

avoid performing expensive operations in the critical path and avoid fre-

quent context switches, but suffer from high complexity and bugs due to

reimplementing the entire VFS layer in user space.

We believe that the right way to achieve high performance combined

with stability and maturity is to design a hybrid file system that lies in

user space as well as the kernel. Common system calls such as read() and

write(), which are easier to implement and are performance-critical, can

be implemented in user space on pre-allocated regions to avoid expensive

operations in the critical path. Metadata operations, which are rare and

have a number of corner cases, can be implemented in the kernel with the

help of a mature in-kernel file system. Such a design offers the best of

both worlds from the point of view of performance and stability for legacy

applications.
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4.2 SplitFS: a user-kernel hybrid PM file system

As a part of this dissertation, we build SplitFS, a PM file system that

seeks to reduce software overhead via a novel split architecture: a user-

space library file system handles data operations while a kernel PM file

system (ext4 DAX) handles metadata operations.

4.3 SplitFS Goals

Low software overhead. SplitFS aims to reduce software overhead for

data operations, especially writes and appends.

Transparency. SplitFS does not require the application to be modified

in any way to obtain lower software overhead and increased performance.

Minimal data copying and write IO. SplitFS aims to reduce the

number of writes made to PM. SplitFS aims to avoid copying data within

the file system whenever possible. This both helps performance and reduces

wear-out on PM. Minimizing writes is especially important when providing

strong guarantees like atomic operations.

Low implementation complexity. SplitFS aims to re-use existing

software like ext4 DAX as much as possible, and reduce the amount of new

code that must be written and maintained for SplitFS.

Flexible guarantees. SplitFS aims to provide applications with a choice

of crash-consistency guarantees to choose from. This is in contrast with PM

file systems today, which provide all running applications with the same

set of guarantees.
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Mode Sync.
Data
Ops

Atomic
Data
Ops

Sync.
Metadata
Ops

Atomic
Metadata
Ops

Equivalent to

POSIX ✗ ✗ ✗ ✓ ext4 DAX

sync ✓ ✗ ✓ ✓ Nova-Relaxed,
PMFS

strict ✓ ✓ ✓ ✓ NOVA-Strict,
Strata

Table 4.1: SplitFS Modes. The table shows the three modes of , the
guarantees provided by each mode, and current file systems that provide
the same guarantees.

4.4 SplitFS Modes and Guarantees

SplitFS provides three different modes: POSIX, sync, and strict. Each

mode provides a different set of guarantees. Concurrent applications can

use different modes at the same time as they run on SplitFS. Across all

modes, SplitFS ensures the file system retains its integrity across crashes.

Table 4.1 presents the three modes provided by SplitFS. Across all

modes, appends are atomic in SplitFS; if a series of appends is followed

by fsync(), the file will be atomically appended on fsync().

POSIX mode. In POSIX mode, SplitFS provides metadata consis-

tency [75], similar to ext4 DAX. The file system will recover to a consistent

state after a crash with respect to its metadata. In this mode, overwrites

are performed in-place and are synchronous. Note that appends are not

synchronous, and require an fsync() to be persisted. However, SplitFS

in the POSIX mode guarantees atomic appends, a property not provided by

ext4 DAX. This mode slightly differs from the standard POSIX semantics:

when a file is accessed or modified, the file metadata will not immediately

reflect that.
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Sync mode. SplitFS ensures that on top of POSIX mode guarantees,

operations are also guaranteed to be synchronous. An operation may be

considered complete and persistent once the corresponding call returns and

applications do not need a subsequent fsync(). Operations are not atomic

in this mode; a crash may leave a data operation partially completed. No

additional crash recovery needs to be performed by SplitFS in this mode.

This mode provides similar guarantees to PMFS as well as NOVA without

data and metadata checksumming and with in-place updates; we term this

NOVA configuration NOVA-Relaxed.

Strict mode. SplitFS ensures that on top of sync mode guarantees,

each operation is also atomic. This is a useful guarantee for applications;

editors can allow atomic changes to the file when the user saves the file,

and databases can remove logging and directly update the database. This

mode does not provide atomicity across system calls though; so it cannot

be used to update two files atomically together. This mode provides similar

guarantees to a NOVA configuration we term NOVA-Strict : NOVA with

copy-on-write updates, but without checksums enabled.

Visibility. Apart from appends, all SplitFS operations become immedi-

ately visible to all other processes on the system. On fsync(), appends are

persisted and become visible to the rest of the system. SplitFS is unique

in its visibility guarantees, and takes the middle ground between ext4 DAX

and NOVA where all operations are immediately visible, and Strata where

new files and data updates are only visible to other processes after the

digest operation. Immediate visibility of changes to data and metadata

combined with atomic, synchronous guarantees removes the need for leases

to coordinate sharing; applications can share access to files as they would
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Technique Benefit

Split architecture Low-overhead data operations, correct
metadata operations

Collection of memory-maps Low-overhead data operations in the
presence of updates and appends

Relink + Staging Optimized appends, atomic data oper-
ations, low write amplification

Optimized operation logging Atomic operations, low write amplifica-
tion

Table 4.2: SplitFS Techniques. The table lists each main technique
used in SplitFS along with the benefit it provides. The techniques work
together to enable SplitFS to provide strong guarantees at low software
overhead.

on any other POSIX file system.

4.5 SplitFS Design

We now provide an overview of the design of SplitFS, and how it uses

various techniques to provide the outlined guarantees. Table 4.2 lists the

different techniques and the benefit each technique provides.

Split architecture. As shown in Figure 4.1, SplitFS comprises of two

major components, a user-space library linked to the application called U-

Split and a kernel file system called K-Split. SplitFS services all data op-

erations (e.g., read() and write() calls) directly in user-space and routes

metadata operations (e.g., fsync(), open(), etc.) to the kernel file system

underneath. File system crash-consistency is guaranteed at all times. This

approach is similar to Exokernel [76] where only the control operations are

handled by the kernel and data operations are handled in user-space.

Collection of mmaps. Reads and overwrites are handled by mmap()-ing
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U-Splitmmaps

POSIX Application

close()

fsync()
read() write() 

[append]

PM Device

File on PM Staging File

K-Split

User space
Kernel space

open()
write()

Op log

U-Splitmmaps

POSIX Application

close()

fsync()
read() write() 

[append]
open()

write()

File on PM Staging File Op log

Figure 4.1: SplitFS Overview. The figure provides an overview of how
SplitFS works. Read and write operations are transformed into loads
and stores on the memory-mapped file. Append operations are staged in
a staging file and relinked on fsync(). Other metadata POSIX calls like
open(), close(), etc. are passed through to the in-kernel PM file system.
Note that loads and stores do not incur the overhead of trapping into the
kernel.

the surrounding 2 MB part of the file, and serving reads via memcpy()

and writes via non-temporal stores (movnti instructions). A single logical

file may have data present in multiple physical files; for example, appends

are first sent to a staging file, and thus the file data is spread over the

original file and the staging file. SplitFS uses a collection of memory-

maps to handle this situation. Each file is associated with a number of

open mmap() calls over multiple physical files, and reads and over-writes

are routed appropriately.

Staging. SplitFS uses temporary files called staging files for both ap-

pends and atomic data operations. Appends are first routed to a staging

file, and are later relinked on fsync(). Similarly, file overwrites in strict

mode are also first sent to staging files and later relinked to their appro-
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priate files.

Relink. On an fsync(), all the staged appends of a file must be moved

to the target file; in strict mode, overwrites have to be moved as well. One

way to move the staged appends to the target file is to allocate new blocks

and then copy appended data to them. However, this approach leads to

write amplification and high overhead. To avoid these unnecessary data

copies, we developed a new primitive called relink. Relink logically moves

PM blocks from the staging file to the target file without incurring any

copies.

Relink has the following signature: relink(file1, offset1, file2, offset2,

size). Relink atomically moves data from offset1 of file1 to offset2 of file2.

If file2 already has data at offset2, existing data blocks are de-allocated.

Atomicity is ensured by wrapping the changes in an ext4 journal transac-

tion. Relink is a metadata operation, and does not involve copying data

when the involved offsets and size are block aligned. When offset1 or off-

set2 happens to be in the middle of a block, SplitFS copies the partial

data for that block to file2, and performs a metadata-only relink for the

rest of the data. Given that SplitFS is targeted at POSIX applications,

block writes and appends are often block-aligned by the applications.

Optimized Logging. In strict mode, SplitFS guarantees atomicity for

all operations. To provide atomicity, we employ an Operation Log and use

logical redo logging to record the intent of each operation. Each U-Split

instance has its own operation log that is pre-allocated, mmap()-ed by U-

Split, and written using movnti instructions. We use the necessary memory

fence instructions to ensure that log entries persist in the correct order. To

reduce the overheads from logging, we ensure that in the common case, per
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Figure 4.2: relink steps. This figure provides an overview of the steps
involved while performing a relink operation. First, appends to a target file
are routed to pre-allocated blocks in the staging file and subsequently on
an fsync(), they are relinked into the target file while retaining existing
memory-mapped regions.
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operation, we write one cache line (64B) worth of data to PM and use a

single memory fence (sfence in x86) instruction in the process. Operation

log entries do not contain the file data associated with the operation (e.g.,

data being appended to a file), instead they contain a logical pointer to the

staging file where the data is being held.

We employ a number of techniques to optimize logging. First, to dis-

tinguish between valid and invalid or torn log entries, we incorporate a 4B

transactional checksum [77] within the 64B log entry. The use of checksum

reduces the number of fence instructions necessary to persist and validate a

log entry from two to one. Second, we maintain a tail for the log in DRAM

and concurrent threads use the tail as a synchronization variable. They

use compare-and-swap to atomically advance the tail and write to their

respective log entries concurrently. Third, during the initialization of the

operation log file, we zero it out. So, during crash recovery, we identify all

non-zero 64B aligned log entries as being potentially valid and then use the

checksum to identify any torn entries. The rest are valid entries and are

replayed. Replaying log entries is idempotent, so replaying them multiple

times on crashes is safe. We employ a 128MB operation log file and if it

becomes full, we checkpoint the state of the application by calling relink()

on all the open files that have data in staging files. We then zero out the

log and reuse it. Finally, we designed our logging mechanism such that

all common case operations (write(), open(), etc.) can be logged using

a single 64B log entry while some uncommon operations, like rename(),

require multiple log entries.

Our logging protocol works well with the SplitFS architecture. The

tail of each U-Split log is maintained only in DRAM as it is not required
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for crash recovery. Valid log entries are instead identified using checksums.

In contrast, file systems such as NOVA have a log per inode that resides on

PM, whose tail is updated after each operation via expensive clflush and

sfence operations.

Providing Atomic Operations. In strict mode, SplitFS provides syn-

chronous, atomic operations. Atomicity is provided in an efficient manner

by the combination of staging files, relink, and optimized logging. Atomic-

ity for data operations like overwrites is achieved by redirecting them also

to a staging file, similar to how appends are performed. SplitFS logs these

writes and appends to record where the latest data resides in the event of

a crash. On fsync(), SplitFS relinks the data from the staging file to

the target file atomically. Once again, the data is written exactly once,

though SplitFS provides the strong guarantee of atomic data operations.

Relink allows SplitFS to implement a form of localized copy-on-write.

Due to the staging files being pre-allocated, locality is preserved to an ex-

tent. SplitFS logs metadata operations to ensure they are atomic and

synchronous. Optimized logging ensures that for most operations exactly

one cache line is written and one sfence is issued for logging.

4.5.1 Handling reads, Overwrites and Appends

Reads. Reads consult the collection of mmaps to determine where the

most recent data for this offset is, since the data could have been overwrit-

ten or appended (and thus in a staging file). If a valid memory mapped

region for the offsets being read exists in U-Split, the read is serviced from

the corresponding region. If such a region does not exist, then the 2 MB

region surrounding the read offset is first memory mapped, added to the
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the collection of mmaps, and then the read operation is serviced using

processor loads.

Overwrites. Similar to reads, if the target offset is already memory

mapped, then U-Split services the overwrite using non-temporal store in-

structions. If the target offset is not memory mapped, then the 2MB region

surrounding the offset is first memory mapped, added to the collection of

mmaps, and then the overwrite is serviced. However, in strict mode, to

guarantee atomicity, overwrites are first redirected to a staging file (even

if the offset is memory mapped), then the operation is logged, and finally

relinked on a subsequent fsync() or close().

Appends. SplitFS redirects all appends to a staging file, and performs a

relink on a subsequent fsync() or close(). As with overwrites, appends

are performed with non-temporal writes and in strict mode, SplitFS also

logs details of the append operation to ensure atomicity.

4.6 SplitFS Implementation

We implement SplitFS as a combination of a user-space library file system

(9K lines of C code) and a small patch to ext4 DAX to add the relink

system call (500 lines of C code). SplitFS supports 35 common POSIX

calls, such as pwrite(), pread(), fread(), readv(), ftruncate(), openat(), etc;

we found that supporting this set of calls is sufficient to support a variety

of applications and microbenchmarks. Since PM file systems PMFS and

NOVA are supported by Linux kernel version 4.13, we modified 4.13 to

support SplitFS. We now present other details of our implementation.

Intercepting POSIX calls. SplitFS uses LD PRELOAD to intercept
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POSIX calls and either serve from user-space or route them to the kernel

after performing some book-keeping tasks. Since SplitFS intercepts calls

at the POSIX level in glibc rather than at the system call level, SplitFS

has to intercept several variants of common system calls like write().

Relink. We implement relink by leveraging an ioctl provided by ext4

DAX. The ioctl swaps extents between a source file and a destination file,

and uses journaling to perform this atomically. The ioctl also deallocates

blocks in the target file if they are replaced by blocks from the source

file. By default, the ioctl also flushes the swapped data in the target file;

we modify the ioctl to only touch metadata, without copying, moving, or

persisting data. We also ensure that after the swap has happened, existing

memory mappings of both source and destination files are valid; this is

vital to SplitFS performance, as it avoids page faults. The ioctl requires

blocks to be allocated at both source and destination files. To satisfy this

requirement, when handling appends via relink, we allocate blocks at the

destination file, swap extents from the staging file, and then deallocate the

blocks. This allows us to perform relink without using up extra space, and

reduces implementation complexity at the cost of temporary allocation of

data.

Handling file open and close. On file open, SplitFS performs stat()

on the file and caches its attributes in user-space to help handle later calls.

When a file is closed, we do not clear its cached information. When the file

is unlinked, all cached metadata is cleared, and if the file has been memory-

mapped, it is un-mapped. The cached attributes are used to check file

permissions on every subsequent file operation (e.g., read()) intercepted

by U-Split.
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Handling fork. Since SplitFS uses a user-space library file system, spe-

cial care needs to be taken to handle fork() and execve() correctly.

When fork() is called, SplitFS is copied into the address space of the

new process (as part of copying the address space of the parent process),

so that the new process can continue to access SplitFS.

Handling execve. execve() overwrites the address space, but open file

descriptors are expected to work after the call completes. To handle this,

SplitFS does the following: before executing execve(), SplitFS copies

its in-memory data about open files to a shared memory file on /dev/shm;

the file name is the process ID. After executing execve(), SplitFS checks

the shared memory device and copies information from the file if it exists.

Handling dup. When a file descriptor is duplicated, the file offset is

changed whenever operations are performed on either file descriptor. SplitFS

handles by maintaining a single offset per open file, and using pointers to

this file in the file descriptor maintained by SplitFS. Thus, if two threads

dup a file descriptor and change the offset from either thread, SplitFS

ensures both threads see the changes.

Staging files. SplitFS pre-allocates staging files at startup, creating 10

files each 160 MB in size. Whenever a staging file is completely utilized, a

background thread wakes up and creates and pre-allocates a new staging

file. This avoids the overhead of creating staging files in the critical path.

Cache of memory-mappings. SplitFS caches all memory-mappings

it creates in its collection of memory mappings. A memory-mapping is

only discarded on unlink(). This reduces the cost of setting up memory

mappings in the critical path on read or write.
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Multi-thread access. SplitFS uses a lock-free queue for managing

the staging files. It uses fine-grained reader-writer locks to protect its

in-memory metadata about open files, inodes, and memory-mappings.

4.6.1 Tunable Parameters

SplitFS provides a number of tunable parameters that can be set by ap-

plication developers and users for each U-Split instance. These parameters

affect the performance of SplitFS.

mmap() size. SplitFS supports a configurable size of mmap() for handling

overwrites and reads. Currently, SplitFS supports mmap() sizes ranging

from 2MB to 512MB. The default size is 2 MB, allowing SplitFS to employ

huge pages while pre-populating the mappings.

Number of staging files at startup. There are ten staging files at

startup by default; when a staging file is used up, SplitFS creates another

staging file in the background. We experimentally found that having ten

staging files provides a good balance between application performance and

the initialization cost and space usage of staging files.

Size of the operation log. The default size of the operation log is 128MB

for each U-Split instance. Since all log entries consist of a single cacheline

in the common case, SplitFS can support up to 2M operations without

clearing the log and re-initializing it. This helps applications with small

bursts to achieve good performance while getting strong semantics.

4.6.2 Security

SplitFS does not expose any new security vulnerabilities as compared to

an in-kernel file system. All metadata operations are passed through to the
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kernel, which performs security checks. SplitFS does not allow a user to

open, read, or write a file to which they previously did not have permissions.

The U-Split instances are isolated from each other in separate processes;

therefore applications cannot access the data of other applications while

running on SplitFS. Each U-Split instance only stores book-keeping in-

formation in DRAM for the files that the application already has access to.

An application that uses SplitFS may corrupt its own files, just as in an

in-kernel file system.

4.7 Discussion

We reflect on our experiences building SplitFS, describe problems we en-

countered, how we solved them, and surprising insights that we discovered.

Page faults lead to significant cost. SplitFSmemory maps files before

accessing them, and uses MAP POPULATE to pre-fault all pages so that later

reads and writes do not incur page-fault latency. As a result, we find that

a significant portion of the time for open() is consumed by page faults.

While the latency of device IO usually dominates page fault cost in storage

systems based on solid state drives or magnetic hard drives, the low latency

of persistent memory highlights the cost of page faults.

Huge pages are fragile. A natural way of minimizing page faults is to

use 2 MB huge pages. However, we found huge pages fragile and hard to

use. Setting up a huge-page mapping in the Linux kernel requires a number

of conditions. First, the virtual address must be 2 MB aligned. Second, the

physical address on PM must be 2 MB aligned. As a result, fragmentation

in either the virtual address space or the physical PM prevents huge pages

from being created. For most workloads, after a few thousand files were
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created and deleted, fragmenting PM, we found it impossible to create

any new huge pages. Our collection-of-mappings technique sidesteps this

problem by creating huge pages at the beginning of the workload, and

reusing them to serve reads and writes. Without huge pages, we observed

read performance dropping by 50% in many workloads. We believe this is

a fundamental problem that must be tackled since huge pages are crucial

for accessing large quantities of PM.

Staging writes in DRAM. An alternate design that we tried was staging

writes in DRAM instead of on PM. While DRAM staging files incur lower

allocation costs than PM staging files, we found that the cost of copying

data from DRAM to PM on fsync() overshadowed the benefit of staging

data in DRAM. In general, DRAM buffering is less useful in PM systems

because PM and DRAM performance is similar.

Legacy applications need to be rewritten to take maximum ad-

vantage of PM. We observe that the applications we evaluate such as

LevelDB spent a significant portion of their time (60 − 80%) performing

POSIX calls on current PM file systems. SplitFS is able to reduce this

percentage down to 46-50%, but further reduction in software overhead

will have negligible impact on application runtime since the majority of the

time is spent on application code. Applications would need to be rewritten

from scratch to use libraries like libpmem that exclusively operate on data

structures in mmap() to take further advantage of PM.

4.8 SplitFS Evaluation

In this section, we use a number of microbenchmarks and applications to

evaluate SplitFS in relation to state-of-the-art PM filesystems like ext4
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DAX, NOVA, and PMFS. While comparing these different file systems, we

seek to answer the following questions:

• How does SplitFS affect the performance of different system calls

as compared to ext4 DAX? (§4.8.4)

• How do the different techniques employed in SplitFS contribute to

overall performance? (§4.8.5)

• How does SplitFS compare to other file systems for different PM

access patterns? (§4.8.6)

• Does SplitFS reduce file-system software overhead as compared to

other PM file systems? (§4.8.7)

• How does SplitFS compare to other file systems for real-world ap-

plications? (§4.8.8 & §4.8.9)

• What are the compute and storage overheads incurred when using

SplitFS? (§4.8.10)

We first briefly describe our experimental methodology before addressing

each of the above questions.

4.8.1 Experimental Setup

We evaluate the performance of SplitFS against other PM file systems

on Intel Optane DC Persistent Memory Module (PMM). The experiments

are performed on a 2-socket, 96-core machine with 768 GB PMM, 375

GB DRAM, and 32 MB Last Level Cache (LLC). We run all evaluated

file systems on the 4.13 version of the Linux kernel (Ubuntu 16.04). We

run each experiment multiple times and report the mean. In all cases,
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Application Description

TPC-C [78] on SQLite [79] Online transaction processing
YCSB [80] on LevelDB [81] Data retreival & maintenance
Set in Redis [23] In-memory data structure store
Git Popular version control software
Tar Linux utility for data compression
Rsync Linux utility for data copy

Table 4.3: Applications used in evaluation. The table provides a
brief description of the real-world applications we use to evaluate PM file
systems.

the standard deviation was less than five percent of the mean, and the

experiments could be reliably repeated.

4.8.2 Workloads

We used two key-value stores (Redis, LevelDB), an embedded database

(SQLite), and three utilities (tar, git, rsync) to evaluate the performance

of SplitFS. Table 4.3 lists the applications and their characteristics.

TPC-C on SQLite. TPC-C [78] is an online transaction processing

benchmark. It has five different types of transactions each with differ-

ent ratios of reads and writes. We run SQLite v3.23.1 [79] with SplitFS,

and measure the performance of TPC-C on SQLite in Write-Ahead-Logging

(WAL) mode.

YCSB on LevelDB. The Yahoo Cloud Serving Benchmark [80] has six

different key-value store benchmarks, each with different read/write ratios.

Table 4.4 shows the details of the different workloads of YCSB. We run

all the YCSB workloads on the LevelDB key-value store [81]. We set the

sstable size to 64 MB as recommended in Facebook’s tuning guide [82].

Redis. We set 1M key-value pairs in Redis [23], an in-memory key-value
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Workload Description Represents

Load A 100% writes Insert data for workloads A–D and F

A 50% reads, 50% writes Session recording recent actions

B 95% reads, 5% writes Browsing and tagging photo album

C 100% reads Caches

D 95% reads (latest values),
5% writes

News feed or status feed

Load E 100% writes Insert data for Workload E

E 95% Range queries, 5%
writes

Threaded conversation

F 50% reads, 50% Read-
modify-writes

Database workload

Table 4.4: YCSB Workloads. The table describes the six workloads in
the YCSB suite. Workloads A–D and F are preceded by Load A, while E
is preceded by Load E.

store. We run Redis in Append-Only-File mode, where it logs updates to

the database in a file and performs fsync() on the file every second.

Utilities. We also evaluate the performance of SplitFS for tar, git, and

rsync. With git, we measured the time taken for git add and git commit

of all files in the Linux kernel ten times. With rsync, we copy a 7 GB

dataset of 1200 files with characteristics similar to backup datasets [83]

from one PM location to another. With tar, we compressed the Linux

kernel 4.18 along with the files from the backup dataset.

4.8.3 Correctness and recovery

Correctness. First, to validate the functional correctness of SplitFS we

run various micro-benchmarks and real-world applications and compare the

resulting file-system metadata such as the number of files and contents of

each file, to the one obtained with ext4 DAX. We observe that the file-

system metadata obtained with ext4 DAX and SplitFS are equivalent,
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validating how SplitFS handles POSIX calls in its user-space library file

system.

Recovery times. Crash recovery in POSIX and sync modes of SplitFS

does not require anything beyond allowing the underlying ext4 DAX file

system to recover. In strict mode, however, all valid log entries in the

operation log need to be replayed on top of ext4 DAX recovery. This

additional log replay time depends on the number and type of valid log

entries in the log. To estimate the additional time needed for recovery,

we crash our real-world workloads at random points in their execution

and measure the log replay time. In our crash experiments, the maximum

number of log entries to be replayed was 18,000 and that took about 3

seconds on emulated PM (emulation details in §4.8.8). In a worst-case

micro-benchmark where we perform cache-line sized writes and crash with

2M (128MB of data) valid log entries, we observed a log replay time of 6

seconds on emulated PM.

4.8.4 SplitFS system call overheads

The central premise of SplitFS is that it is a good trade-off to accelerate

data operations at the expense of metadata operations. Since data oper-

ations are more prevelant, this optimization improves overall application

performance. To validate this premise, we construct a micro-benchmark

similar to FileBench Varmail [84] that issues a variety of data and meta-

data operations. The micro-benchmark first creates and appends 16KB to

a file (as four appends, each followed by an fsync()), closes it, opens it

again, read the whole file as one read call, closes it, then opens and closes

the file once more, and finally deletes the file. The multiple open and close
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System call Strict Sync POSIX ext4 DAX

open 2.09 2.08 1.82 1.54
close 0.78 0.69 0.69 0.34
append 3.14 3.09 2.84 11.05
fsync 6.85 6.80 6.80 28.98
read 4.57 4.53 4.53 5.04
unlink 14.60 13.56 14.33 8.60

Table 4.5: SplitFS system call overheads. The table compares the
latency (in us) of different system calls for various modes of SplitFS and
ext4 DAX.

calls were introduced to account for the fact that their latency varies over

time. Opening a file for the first time takes longer than opening a file that

we recently closed, due to file metadata caching inside U-Split. Table 4.5

shows the latencies we observed for different system calls and they are re-

ported for all the three modes provided by SplitFS and for ext4 DAX on

which SplitFS was built.

We make three observations based on these results. First, data op-

erations on SplitFS are significantly faster than on ext4 DAX. Writes

especially are 3–4× faster. Second, metadata operations (e.g., open(),

close(), etc.) are slower on SplitFS than on ext4 DAX, as SplitFS has

to setup its own data structures in addition to performing the operation

on ext4 DAX. Third, as the consistency guarantees provided by SplitFS

get stronger, the syscall latency generally increases. This increase can

be attributed to the additional work SplitFS has to do (e.g., logging in

strict mode) for each system call to provide stronger guarantees. Overall,

SplitFS achieves its objective of accelerating data operations albeit at the

expense of metadata operations.
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Figure 4.3: SplitFS techniques. This figure shows the contributions of
different techniques to overall performance. We compare the relative merits
of these techniques using two write intensive microbenchmarks; sequential
overwrites and appends.

4.8.5 SplitFS performance breakdown

We examine how the various techniques employed by SplitFS contribute

to overall performance. We use two write-intensive microbenchmarks: se-

quential 4KB overwrites and 4KB appends. An fsync() is issued every

ten operations. Figure 4.3 shows how individual techniques introduced one

after the other improve performance.

Sequential overwrites. SplitFS increases sequential overwrite perfor-

mance by more than 2× compared to ext4 DAX since overwrites are served

from user-space via processor stores. However, further optimizations like

handling appends using staging files and relink have negligible impact on

this workload as it does not issue any file append operations.

Appends. The split architecture does not accelerate appends since with-
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Figure 4.4: Performance on different IO patterns. This figure com-
pares SplitFS with the state-of-the-art PM file systems in their respective
modes using micrbenchmarks that perform five different kinds of file ac-
cess patters. The y-axis is throughput normalized to ext4 DAX in POSIX
mode, PMFS in sync mode, and NOVA-Strict in Strict mode (higher is
better). The absolute throughput numbers in Mops/s are given over the
baseline in each group.

out staging files or relink all appends go to ext4 DAX as they are metadata

operations. Just introducing staging files to buffer appends improves per-

formance by about 2×. In this setting, even though appends are serviced

in user-space, overall performance is bogged down by expensive data copy

operations on fsync(). Introducing the relink primitive to this setting

eliminates data copies and increases application throughput by 5×.

4.8.6 Performance on different IO patterns

To understand the relative merits of different PM file systems, we compare

their performance on microbenchmarks performing different file IO pat-

terns: sequential reads, random reads, sequential writes, random writes,
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and appends. Each benchmark reads/writes an entire 128MB file in 4KB

operations. We compare file systems providing the same guarantees: SplitFS-

POSIX with ext4 DAX, SplitFS-sync with PMFS, and SplitFS-strict

with Nova-strict and Strata. Figure 4.4 captures the performance of these

file systems for the different micro-benchmarks.

POSIX mode. SplitFS is able to reduce the execution times of ext4

DAX by at least 27% and as much as 7.85× (sequential reads and appends

respectively). Read-heavy workloads present fewer improvement opportu-

nities for SplitFS as file read paths in the kernel are optimized in modern

PM file systems. However, write paths are much more complex and longer,

especially for appends. So, servicing a write in user-space has a higher

payoff than servicing a read, an observation we already made in Table 4.5.

Sync mode. Compared to PMFS, SplitFS improves the performance

for write workloads (by as much as 2.89×) and increases performance for

read workloads (by as much as 56%). Similar to ext4 DAX, SplitFS’s

ability to not incur expensive write system calls translates to its superior

performance for the write workloads.

Strict mode. NOVA, Strata, and SplitFS in this mode provide atom-

icity guarantees to all operations and perform the necessary logging. As

can be expected, the overheads of logging result in reduced performance

compared to file systems in other modes. Overall, SplitFS improves the

performance over NOVA by up to 5.8× on the random writes workload.

This improvement stems from SplitFS’s superior logging which incurs half

the number of log writes and fence operations than NOVA.
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Figure 4.5: Software overhead in applications. This figure shows the
relative file system software overhead incurred by different applications with
various file systems as compared providing the same level of consistency
guarantees (lower is better). The numbers shown indicate the absolute
time taken to run the workload for the baseline file system.

4.8.7 Reducing software overhead

The central premise of SplitFS is that it is possible to accelerate appli-

cations by reducing file system software overhead. We define file-system

software overhead as the time taken to service a file-system call minus the

time spent actually accessing data on the PM device. For example, if a

system call takes 100 s to be serviced, of which only 25 µs were spent read

or writing to PM, then we say that the software overhead is 75 µs. In

addition to avoiding kernel traps of system calls, the different techniques

discussed in §4.5 help SplitFS reduce its software overhead. Minimizing

software overhead allows applications to fully leverage PMs.

Figure 4.5 highlights the relative software overheads incurred by differ-

ent file systems compared to SplitFS providing the same level of guaran-
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tees. We present results for three write-heavy workloads, LevelDB running

YCSB Load A and Run A, and SQLite running TPCC. ext4 DAX and

NOVA (in relaxed mode) suffer the highest relative software overheads,

up to 3.6× and 7.4× respectively. NOVA-Relaxed incurs the highest soft-

ware overhead for TPCC because it has to update the per-inode logical

log entries on overwrites before updating the data in-place. On the other

hand, SplitFS-sync can directly perform in-place data updates, and thus

has significantly lower software overhead. PMFS suffers the lowest rela-

tive software overhead, capping off at 1.9× for YCSB Load A and Run A.

Overall, SplitFS incurs the lowest software overhead.

4.8.8 Performance on data intensive workloads

Figure 4.6 summarizes the performance of various applications on differ-

ent file systems. The performance metric we use for these data intensive

workloads (LevelDB with YCSB, Redis with 100% writes, and SQLite with

TPCC) is throughput measured in Kops/s. For each mode of consistency

guarantee (POSIX, sync, and strict), we compare SplitFS to state-of-the-

art PM file systems. We report the absolute performance for the baseline

file system in each category and relative throughput for SplitFS. Despite

our best efforts, we were not able to run Strata on these large applications;

other researchers have also reported problems in evaluating Strata [56]. We

evaluated Strata with a smaller-scale YCSB workload using a 20GB private

log.

Overall, SplitFS outperforms other PM file systems (when providing

similar consistency guarantees) on all data-intensive workloads by as much

as 2.70×. We next present a breakdown of these numbers for different
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Figure 4.6: Data Intensive Workloads. This figure shows the perfor-
mance of data intensive applications (YCSB, Redis, and TPCC) with differ-
ent file systems, providing three different consistency guarantees, POSIX,
sync, and strict. Overall, SplitFS beats all other file systems on all data
intensive applications (in their respective modes). The numbers indicate
the absolute throughput in Kops/s for the base file system.

Figure 4.7: Metadata Intensive Workloads. This figure shows the per-
formance of metadata instensive utilities (git, tar, and rsync) with differ-
ent file systems, providing three different consistency guarantees, POSIX,
sync, and strict. Overall, SplitFS incurs minor performance degradation
on metadata heavy workloads. The numbers indicate latency in seconds
for the base file system.
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Workload Strata

Load A 29.1 kops/s 1.73×
Run A 55.2 kops/s 1.76×
Run B 76.8 kops/s 2.16×
Run C 94.3 kops/s 2.14×
Run D 113.1 kops/s 2.25×
Load E 29.1 kops/s 1.72×
Run E 8.1 kops/s 2.03×
Run F 73.3 kops/s 2.25×

Table 4.6: SplitFS vs. Strata. This table compares the performance of
Strata and SplitFS strict running YCSB on LevelDB. We present the raw
throughput numbers for Strata and normalized SplitFS strict throughput
w.r.t Strata. This is the biggest workload that we could run reliably on
Strata.

guarantees.

POSIX mode. SplitFS outperforms ext4 DAX in all workloads. Write-

heavy workloads like RunA (2×), LoadA (89%), LoadE (91%), Redis (27%),

etc. benefit the most with SplitFS. SplitFS speeds up writes and ap-

pends the most, so write-heavy workloads benefit the most from SplitFS.

SplitFS outperforms ext4 DAX on read-dominated workloads, but the

margin of improvement is lower.

Sync and strict mode. SplitFS outperforms sync-mode file systems

PMFS and NOVA (relaxed) and strict-mode file system NOVA (strict) for

all the data intensive workloads. Once again, it’s the write-heavy work-

loads that show the biggest boost in performance. For example, SplitFS

in sync mode outperforms NOVA (relaxed) and PMFS by 2× and 30% on

RunA and in strict mode outperforms NOVA (strict) by 2×. Ready-heavy

workloads on the other hand do not show much improvement in perfor-

mance.
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Comparison with Strata. We were able to reliably evaluate Strata (em-

ploying a 20 GB private log) using LevelDB running smaller-scale YCSB

workloads (1M records, and 1M ops for workloads A–D and F, 500K ops

for workload E). We were unable to run Strata on Intel DC Persistent

Memory. Hence, we use DRAM to emulate PM. We employ the same PM

emulation framework used by Strata. We inject a delay of 220ns on every

read() system call, to emulate the access latencies of the PM hardware.

We do not add this fixed 220ns delay for writes, because writes do not go

straight to PM in the critical path, but only to the memory controller. We

add bandwidth-modeling delays for reads as well as writes to emulate a

memory device with 1/3rd the bandwidth of DRAM, an expected charac-

teristic of PMs [35]. While this emulation approach is far from perfect, we

observe that the resulting memory access characteristics are in line with

the expected behavior of PMs [58]. SplitFS outperforms Strata on all

workloads, by 1.72×–2.25× as shown in Table 4.6.

4.8.9 Performance on metadata intensive workloads

Fig 4.7 compares the performance of SplitFS with other PM file systems

(we only show the best performing PM file system) on metadata-heavy

workloads like git, tar, and rsync. These metadata-heavy workloads do

not present many opportunities for SplitFS to service system calls in

user-space and in turn slow metadata operations down due to the addi-

tional bookkeeping performed by SplitFS. These workloads represent the

worst case scenarios for SplitFS. The maximum overhead experienced by

SplitFS is 13%.
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4.8.10 Resource consumption

SplitFS consumes memory for its file-related metadata (e.g. to keep track

of open file descriptors, staging files used). It also additionally consumes

CPU time to execute background threads that help with metadata man-

agement and to move some expensive tasks off the application’s critical

path.

Memory usage. SplitFS uses a maximum of 100MB to maintain its own

metadata to help track different files, the mappings between file offsets and

mmap()-ed regions, etc. In strict mode, SplitFS additionally uses 40MB

to maintain data structures to provide atomicity guarantees.

CPU utilization. SplitFS uses a background thread to handle vari-

ous deferred tasks (e.g. staging file allocation, file closures). This thread

utilizes one physical thread of the machine, occasionally increasing CPU

consumption by 100%.

4.9 Conclusion

This chapter presents SplitFS, a PM file system built using the split ar-

chitecture. SplitFS handles data operations entirely in user-space, and

routes metadata operations through the ext4 DAX PM file system. SplitFS

provides three modes with varying guarantees, and allows applications run-

ning at the same time to use different modes. SplitFS only requires adding

a single system call to the ext4 DAX file system. Evaluating SplitFS with

micro-benchmarks and real applications, we show that it outperforms state-

of-the-art PM file systems like NOVA on many workloads. The design of

SplitFS allows users to benefit from the maturity and constant devel-
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opment of the ext4 DAX file system, while getting the performance and

strong guarantees of state-of-the-art PM file systems. SplitFS is publicly

available at https://github.com/utsaslab/splitfs.
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Chapter 5

Achieving high performance for modern PM

applications

In this chapter, we target a second class of applications that access PM

using loads and stores on memory mapped files from user space. We saw in

Chapter 3 that the performance of these applications depends on whether

the applications are able to get hugepages for the memory mapped files.

We also studied the impact of file systems on getting hugepages and the

limitations of existing file systems to reliably get hugepages as they age.

In this chapter, we first discuss the need for a hugepage-aware PM

file system for accelerating modern PM applications (§5.1). We introduce

WineFS, a PM file system that relies on a novel allocation policy and

on-PM layout to achieve hugepage awareness. We then present the goals of

WineFS (§5.3). We then discuss the overview of the design of WineFS

(§5.4). We discuss how WineFS achieves hugepage awareness (§5.4.3) and

high scalability (§5.4.4), along with its implementation (§5.5). Finally, we

evaluate WineFS against existing file systems (§5.7).

5.1 Building a hugepage-aware file system

The performance of applications that issue loads and stores on memory

mapped files depends on whether the files can be mapped using hugepages.



Getting hugepages involves placing file extents on hugepage aligned bound-

aries on PM. Due to misalignment and fragmentation of the free space and

file extents with frequent allocations and deallocations, the free space con-

tiguity must be maintained by periodic defragmentation of files. We believe

that it is a better approach to be proactive about conserving hugepages,

rather than reactively defragmenting files. We require support from the file

system to conserve aligned extents. Current PM file systems do not opti-

mize for this goal. Some file systems such as Strata [58] and NOVA [37]

make it harder to map files using hugepages due to their log-structured na-

ture. NOVA could be modified to become hugepage-aware, but would re-

quire non-trivial changes to its design which would reduce its performance.

For example, dedicating on-PM regions for the per-file journals would in-

crease the load on garbage collection and its interference with foreground

threads. Changing the copy-on-write granularity of NOVA to the size of

hugepages to avoid fragmentation would result in increased write as well

as space amplification.

Mature file systems such as ext4 DAX [38] or xfs-DAX [39] have allo-

cators that care more about contiguity than alignment, which makes them

sacrifice hugepages as part of their design. Additionally, in order to achieve

high performance for a wide range of legacy as well as newer PM applica-

tions, the mature file systems would have to change several fundamental

components such as incorporating a hugepage-aware allocator, devising an

on-PM layout that avoids fragmentation of free space, supporting low-cost

data atomicity and adding fine-grained low-cost journaling for crash con-

sistency.

Designing a hugepage-aware PM file system requires revisiting all as-
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pects of file system design from the lens of hugepage-awareness, rather than

tweaking one or two aspects of an existing file system.

5.2 WineFS: A hugepage-aware file system that ages

gracefully

We build WineFS, a hugepage-aware PM file system that ages gracefully.

WineFS uses a novel allocation policy that takes into account alignment

of free space and contiguity of free space, reliably getting hugepages for

memory mapped files even when aged. WineFS uses a suitable on-PM

layout and a hybrid crash consistency mechanism that avoids fragmentation

while providing strong consistency and durability guarantees for data and

metadata.

5.3 WineFS Goals

• WineFS must be POSIX-compliant, and should not require any

changes in the application.

• WineFS must try to provide hugepage-sized extents aligned at the

hugepage boundary for files that are memory-mapped.

• WineFS must not sacrifice performance of applications that use

POSIX system calls to access PM.

• WineFS must not sacrifice performance when the file system is new,

either for memory-mapped or system-call access to PM.

• The design of WineFS must seek to preserve hugepages wherever

possible.
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Figure 5.1: WineFS Architecture. The figure shows the main com-
ponents of WineFS. WineFS partitions the file system per logical CPU
for concurrency. Each logical CPU has its own journal, inode table, and
free lists for aligned extents and holes. WineFS uses DRAM indexes for
metadata for efficient directory and resource lookups. The shared locks in
the VFS layer help WineFS coordinate its multiple journals.

• WineFSmust provide strong guarantees such as atomic, synchronous

operations, similar to the strict mode of SplitFS.

5.4 WineFS Design

We provide an overview of the design of WineFS, and describe the design

choices that lead to hugepage awareness and graceful aging.

5.4.1 Overview

WineFS achieves these goals through a set of design choices. WineFS

achieves hugepage-awareness through:
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• A novel alignment-aware allocator that satisfies large allocation re-

quests using aligned extents, and smaller requests using unaligned

holes.

• Using a PM data layout with contained fragmentation: metadata

structures and journals that are updated in-place.

• Using journaling for crash consistency as it preserves data layout,

even at the cost of writing metadata twice to PM.

• Using per-CPU metadata structures (rather than per-file) for obtain-

ing concurrent updates.

• Using data journaling to atomically update files with aligned extents,

and using copy-on-write to atomically update holes.

WineFS ensures good performance for applications that access PM

via POSIX system calls through a second set of design choices. The key

observation is this second list is chosen such that it composes well with

first list. For example, this would not be the case if WineFS had used

log-structuring for accelerating metadata updates. The design choices:

• WineFS uses fine-grained journaling optimized for PM.

• WineFS uses DRAM metadata indexes to accelerate operations such

as directory lookups.

Figure 5.1 presents an overview of the WineFS architecture and how

all these design choices come together.

72



5.4.2 Guarantees

WineFS can be run in two modes: strict mode and relaxed mode. The

default is the strict mode. The mode can be changed using mount options.

Strict Mode. All file system operations, both data operations and meta-

data operations, are atomic and synchronous. Upon completion of each

write() system call, the data involved is guaranteed to be durable. NOVA,

SplitFS-strict, and Strata provide the same guarantees.

Relaxed Mode. All metadata operations such as rename() are atomic

and synchronous. Data operations are not atomic, and may be partially

completed on a crash. ext4 DAX, xfs, and PMFS provide the same guar-

antees.

5.4.3 Hugepage Awareness

We now describe in detail the design choices that makeWineFS a hugepage-

aware PM file system.

Data Layout: Controlled Fragmentation. WineFS uses controlled

fragmentation in designing its data layout on PM. Typically, metadata

structures cause significant fragmentation as they tend to be small. For

example, NOVA has a per-file log that causes fragmentation, using up an

aligned extent. WineFS tries to control the fragmentation caused by meta-

data structures, by assigning dedicated locations for metadata structures.

The metadata structures are updated in-place within these locations. The

space in these locations is recycled for other metadata structures.

Concurrency: Per-CPU data pool and metadata structures. Closely

related to the data layout is how WineFS achieves concurrency. NOVA
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achieves high concurrency by providing a per-file log. While this provides

high concurrency, it also fragments the free space and uses up aligned

extents. WineFS chooses a different design: per-CPU journal, data struc-

tures, and data and metadata pools. The PM free space is divided by the

number of logical CPUs. Each logical CPU gets its own journal, inode ta-

ble, and pool of aligned extents and unaligned holes. Each CPU maintains

free lists in DRAM that keep track of free inodes and extents in the CPU’s

own pool of inodes and extents. In the common case, an allocation request

arising at a logical CPU can be handled locally, without any communica-

tion with other logical CPUs. Since the unit of parallelism is a logical CPU,

rather than a file, this design provides high concurrency without incurring

fragmentation. Experimental results show that WineFS scales as well as

NOVA, while being more hugepage-friendly.

A natural question that arises is: how are the per-CPU journals coordi-

nated? WineFS uses the Virtual File System (VFS) layer for coordination.

The namespace is shared across all logical CPUs, and VFS provides shared

locks for directory inodes, while WineFS holds locks for file modification

operations such as write() or fallocate(). An inode can only be locked

by one logical CPU at a time. WineFS ensures that all file system opera-

tions that require journaling also grab inode locks, implying that a file can

only be part of one per-CPU journal at a given time. Different files can be

locked by different CPUs and journaled concurrently.

Allocation: Alignment-Aware Allocation. WineFS uses a novel

alignment-aware allocator. The allocator splits the entire partition into

aligned hugepage-sized extents. Incoming allocation requests are split into

requests of hugepage sizes or below. Large allocation requests (that are
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hugepage-sized) are satisfied using an aligned extent. Small allocation re-

quests, less than the size of a hugepage, are satisfied by small, unaligned

holes. If required, a single aligned extent is broken up to satisfy small

allocation requests.

The allocator uses two data structures in DRAM to help with allocation.

One is a linked list of aligned extents, and the other is a red-black for

finding unaligned extents quickly. These data structures are written to

PM on unmount. On a crash, they are re-initialized by scanning the set of

used inodes in the file system (similar to NOVA).

The allocator uses the following policy to decide which extent to utilize

for an allocation request. It always tries to satisfy the request locally, at

the same logical CPU where the request was made. If this is not possi-

ble, it picks from other logical CPUs in a greedy manner. It chooses a

aligned extent from the logical CPU that has the most free aligned extents.

It chooses an unaligned extent from the logical CPU with the most free

unaligned extents.

Whenever an unaligned extent is deleted, the allocator tries to merge

it with its nearby extents. If the extents can be merged into an aligned

extent, they are; and the resulting aligned extent is tracked in the aligned

extent pool.

Crash Consistency: Journaling. WineFS chooses to use journaling for

updating file system metadata in an atomic fashion. There is a fundamen-

tal trade-off between using journaling and copy-on-write or log-structuring.

Journaling results in writing metadata twice, once to the journal and once

in-place. However, journaling preserves the data layout. In contrast, copy-

on-write or log-structuring require only a single write to PM for metadata.
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However, copy-on-write will write metadata throughout the partition, vary-

ing its location. The single write nature of log-structuring is attractive,

which is why it has been adopted in NOVA and Strata. However, we be-

lieve that trading off an extra write for preserving the data layout is the

right trade-off given how small metadata is, and how important hugepages

are for performance. In this respect, WineFS makes a fundamentally dif-

ferent decision than NOVA and Strata.

Data Atomicity: Hybrid Techniques. WineFS provides atomic data

updates by default. WineFS uses different techniques to update a file

atomically, depending upon how the file extents are allocated. WineFS

uses data journaling to update aligned extents, preserving their data layout.

As a result, atomically updating a file will not cause it to lose its hugepages.

WineFS uses copy-on-write to update unaligned extents, with the extents

being written to new unaligned holes provided by the alignment-aware al-

locator. In this manner, WineFS strikes a balance between incurring the

extra write for preserving data layout (when it matters), and using copy-

on-write when preserving the data layout does not matter.

5.4.4 Ensuring good performance for applications us-

ing POSIX system calls

The design decisions described so far will preserve huge pages and help ob-

tain good performance for applications using memory-mapped files. WineFS

also seeks to obtain good performance for applications using POSIX sys-

tem calls to access PM. The techniques WineFS uses to achieve this are

well-known. The challenge lies in adopting techniques that compose well

with the huge-page-aware design decisions, such that good performance is
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obtained for applications using either memory-mapped files or system calls.

Fine-grained journaling. Similar to other PM file systems such as PMFS

and SplitFS, WineFS optimizes journaling for PM. WineFS uses a per-

CPU, fine-grained, undo journal. Each log entry is only a cache line in size.

All metadata operations inWineFS are synchronous, so the journal entries

are immediately persisted. Since metadata operations are synchronous, re-

claiming journal space can be done immediately once the operation com-

pletes.

WineFS uses undo journaling instead of the redo journaling used in

systems like ext4 DAX or SplitFS. In undo journaling, the old data is

first copied to the journal, and then the new data is updated in place. If

there is a crash, the data is rolled back to the old version using the jour-

nal. While undo journaling and redo journaling are functionally equivalent,

their performance characteristics differ. Redo journaling has lower latency

for writing transactions (no lock to write to the journal), but higher latency

for updating data in place (need to get a global lock or set of locks). In

contrast, undo journaling has higher latency for writing transactions (need

to get locks to update data in place), but does not incur any delay once

the transaction is committed; the log entries can be discarded. WineFS

employs undo journaling as it reduces tail latency and provides more de-

terministic performance.

DRAM indexes. WineFS uses red-black trees for traversing directory

entries and for maintaining inode free-lists in the per-CPU allocation group,

similar to NOVA. The DRAM indexes help in fast metadata operations, as

opposed to PMFS that does sequential scanning of directory entries and

inode free-lists, causing significant slowdowns.
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5.5 WineFS Implementation

WineFS is implemented based on the PMFS code base (6K LOC), and

implemented in Linux kernel 5.1. We choose PMFS to build on, as PMFS

is a journaling file system and has the on-disk layout that helps WineFS

achieve all its goals. It is totally 10K LOC. The following optimizations

have been added to the PMFS codebase: (a) PM-optimized per-CPU jour-

naling: 1K LOC, (b) alignment-aware allocator and hugepage handling

on page faults: 1K LOC, (c) auxiliary metadata indexes: 700 LOC, (d)

NUMA-awareness: 300 LOC, (e) Crash recovery: 1K LOC, and (f) hybrid

data atomicity mechanism: 500 LOC. We describe some of the additional

implementation details below.

Alignment-aware Allocation. The allocator uses two pools to help with

allocation. One is a pool of free aligned extents, and the other is a pool of

free unaligned extents. These pools are written to PM on unmount. On a

crash, they are re-initialized by scanning the set of used inodes in the file

system (similar to NOVA).

Aligned extent pool. WineFS maintains a linked list of free aligned

extents in each logical CPU. On getting a hugepage-sized allocation request,

WineFS removes an extent from the head of the linked list and uses the

extent for satisfying the allocation request. Whenever a free aligned extent

is deleted, it is added to the tail of the linked list of the corresponding

logical CPU.

Unaligned extent pool. WineFS re-uses the implementation of red-black

trees in the linux kernel to keep track of free unaligned extents in each

logical CPU. The red-black tree is keyed based on block offsets of the free

extents. WineFS uses a first-fit approach to allocate an unaligned extent
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for small allocation requests. Whenever an unaligned extent is deleted,

the allocator tries to merge it with its nearby extents. If the extents can

be merged into an aligned extent, it is merged and tracked in the aligned

extent pool.

Journaling. Each thread in WineFS starts a transaction in its per-CPU

journal. Once a transaction is started at a per-CPU journal, it continues

there even if the thread is migrated away. Each journal transaction contains

transaction-entries 64B in size, along with a start and commit entry to mark

the start and end of the transaction.

Transaction entries. Each transaction entry contains the following

metadata persisted on PM:

• shared transaction ID: This is an atomic counter shared by the per-

CPU journals, which increments on every transaction create. As a

result, a transaction ID is unique across all the per-CPU journals.

• per-CPU wraparound-counter: Each per-CPU journal contains a wraparound

counter, incremented every time that the journal is wrapped around.

• transaction entry type: This provides information about the type

of log entry, it is either START, COMMIT or DATA. The START

and COMMIT entries are used to mark the start and end of a journal

transaction, while the DATA entry is used to store system-call specific

entries.

Reclaiming journal space. All operations in WineFS are immediately

durable, allowing WineFS to reclaim the space in per-CPU journals that is

occupied by the committed transactions. Every journal transaction reserves

the maximum number of log entries that it requires in the per-CPU journal
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before starting the transaction. Across all system calls, the maximum

number of log-entries required are 10, occupying 640 bytes in the journal.

If there is not enough space in the journal, the thread waits till enough

space is reclaimed before starting the journal transaction.

Handling concurrent updates to shared files. When multiple threads try

to modify the same directory by creating files in a shared directory, the

VFS locks the directory inode, and only one of the threads is allowed to

proceed at any given time. This VFS locking for all the shared metadata

updates ensures that there is only a single uncommitted transaction for

any file/directory on a crash.

Handling thread migrations. WineFS creates a journal transaction in

its respective per-CPU journal. If the OS scheduler migrates the thread

to another CPU after creating a journal transaction, WineFS still ensures

that the migrated thread uses the per-CPU journal in which the transaction

was created, for the duration of the transaction.

Journal Recovery. During recovery, WineFS has to recover multiple

per-CPU journals. Note that transaction IDs are global across the per-

CPU journals. WineFS rolls back journal entries across per-CPU journals

based on the transaction ID order. The per-CPU wraparound-counter helps

WineFS in identifying the valid journal entries during recovery. WineFS

rolls-back all the transactions that contain the START log entry but that

don’t have the COMMIT log entry. WineFS ignores all committed trans-

actions.

Minimizing remote NUMA accesses Given that PM will be deployed

on multiple NUMA nodes, it is important that the PM file system try to

minimize remote NUMA accesses. WineFS uses a number of mechanisms
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to try to reduce remote NUMA accesses.

The NUMA-awareness strategy of WineFS builds on the insight that

remote writes are more expensive than remote reads [85, 35]. Thanks to

temporal locality, if writes are routed to the local NUMA node, reads of

the newly written data in the near future will also be local. We recognize

that it is challenging to prevent all remote accesses, and thus focus on

minimizing remote writes.

Determining the home NUMA node for a process. WineFS assigns a home

NUMA node to each process when the process first creates or writes a file.

The assigned home NUMA node is the NUMA node with most free space.

Writes. On each write, WineFS checks if the process is in its home NUMA

node. If required, the process is migrated to its home NUMA node, and

space is allocated from one of the per-thread allocation groups on that

NUMA node. Further allocations and writes continue at the home NUMA

node. If the home NUMA node runs out of free space, a new home is

selected, and the process is migrated.

Reads. All reads to recently written data will be local since WineFS

ensures the writes happen on the home NUMA node. Older reads will be

remote; WineFS does not migrate the process to prevent this situation.

Thread migrations are expensive, and the process may access data spread

out over different NUMA nodes causing it to thrash if it is migrated too

often. Instead, WineFS focuses on keeping writes local.

Child process. Children of a process inherit its home NUMA node, under

the assumption that they will be accessing data written by the parent

process.
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Crash Recovery and unmount. On a clean unmount, the data struc-

tures maintained in DRAM (e.g., alignment-aware allocator’s free list, in-

ode free list) are serialized and stored on PM. On mount, these data struc-

tures are deserialized and reconstructed in memory. If there is a crash,

WineFS is first recovered to a consistent state using the per-CPU journals

as explained above.

Reactively rewriting a file. If WineFS finds on memory-mapping a

file that it is fragmented, it adds it to a list to be rewritten. A background

thread in WineFS later reads the file and rewrites it using big alloca-

tions. A journal transaction is used to atomically delete the old file and

point the directory entry to the new file. This situation may arise if an

application uses small allocations when writing to a file that will be later

memory-mapped. Due to the small allocation requests, WineFS would

have allocated unaligned holes to the file. Note that reactive rewriting of

files is an extremely rare operation. Applications that use the memory-

mapped interface usually perform occasional large allocations in order to

avoid frequently trapping into the kernel.

Supporting extended attributes for preserving alignment of files.

Once WineFS provides aligned extents to a file, it makes this information

persistent by using a special extended attribute. This is useful if a file

allocated using aligned extents is later copied over to another partition or

file system by an external utility such as rsync and cp. Ideally, we would

want the file to retain aligned extents after the move or copy. Many linux

utilities such as rsync and cp will read and copy extended attributes as-

sociated with files. WineFS uses the extended attributes to communicate

alignment information of files from one WineFS partition to another (on

82



the same or different servers) no matter how that file is transferred. For ex-

ample, if an aligned file is transferred from a WineFS partition on server

A to a WineFS parition on server B via rsync, the receiving partition

will allocate aligned extents (and not holes) to the file by referring to its

extended attributes, even though rsync typically copies data using small

allocations. Moreover, WineFS also supports directory level extended at-

tributes where all files directly within a directory (not its subdirectories)

will inherit alignment information from the extended attributes of the par-

ent directory.

5.6 Discussion

Proactive approach is required to maintain hugepages. WineFS

shows that by designing the file system to be hugepage-aware, it is possible

to preserve hugepages in the face of aging and high utilization. We believe

this is the right approach, as it can be implemented at modest additional

complexity without sacrificing performance for applications using system

calls to access PM. In contrast, reactive approaches like defragmentation

provide only temporary relief before the file system becomes fragmented

again. The defragmentation utility would need to be run at high frequency

to provide benefits equivalent to WineFS. As with any background main-

tenance task, defragmentation requires IO and steals device bandwidth

from the foreground process. We ran an experiment where we read a frag-

mented 5GB file and rewrote it with aligned extents. In parallel, we also

ran a foreground workload that performed mmap-ed reads on another file.

We observed a slowdown of 25–40% when the defragmentation is going on.

Thoughts on adding hugepage-friendliness to existing file systems.
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We initially tried to add hugepage preservation in ext4 DAX by changing

the multi-block allocator to provide 2MB aligned extents for large alloca-

tions. To accelerate applications using the system-call access mode, we

changed the journaling mechanism of ext4 DAX to perform fine-grained

journaling instead of relying on the JBD2 journal. With our changes, man-

aged to get hugepages reliably in a clean setup for memory-mapped files.

However, the allocator spent a significant amount of time in searching for

available aligned extents, degrading performance when aged, compared to

the original ext4 DAX. With respect to applications using system calls

to access PM, the performance increased due to fine-grained journaling,

but still suffered overheads such as ensuring consistency between on-disk

versions of DRAM indexes.

NOVA uses log-structured layout for its metadata, and contains a per-

inode log in the form of a linked list. Although NOVA tries to allocate

aligned extents to large files, it is incapable of preserving hugepages due to

extensive free-space fragmentation, as shown in Figure 3.1. NOVA would

need to employ frequent (and expensive) garbage collection to retain free-

space contiguity and alignment, interfering with foreground application

performance.

Our experience shows that hugepage-awareness is an over-arching con-

cern and not something that can be easily added to an existing PM file sys-

tem. When designing WineFS, we had to incorporate hugepage-awareness

in multiple core components of the file system.

Supporting different hugepage sizes. The size of a huge-page is not

fundamental to the design of WineFS. We used 2MB hugepages in this

work since our test machine had only 2MB hugepages available. While
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WineFS currently has one allocator for 2MB hugepages, it can have addi-

tional allocators for each hugepage size that can be supported. For example,

since modern kernels and devices support 1GB hugepages, WineFS could

have two alignment-aware allocators, one for each hugepage size and one

hole-filling allocator.

Using different aging profiles. Throughout the paper, we use the

Agrawal aging profile [66] to age all file systems. The Agrawal profile

contains a mix of large (≥2MB) and small files (<2MB). We also experi-

mented with other profiles, and saw that in some cases, the fragmentation

of other file systems is significantly worse compared to the fragmentation

seen by the Agrawal profile. For example, in another profile that mimics an

HPC environment [86], we see that even with 50% utilization, only 28% of

the free-space is aligned and unfragmented in ext4 DAX, while more than

90% of the free-space is aligned and unfragmented in WineFS. Depending

upon how the file system is aged, the user might experience more severe

performance degradation than what we show in this work.

5.7 WineFS Evaluation

We seek to answer the following questions:

• DoesWineFS handle crashes and metadata updates correctly? (§5.7.2)

• What is the read / write throughput of WineFS in an aged setting?

(§5.7.3)

• What isWineFS performance for applications accessing PM through

memory-mapped files in an aged setting? (§5.7.4)
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• What isWineFS performance for benchmarks and applications using

system calls to access PM? (§5.7.5)

• Is WineFS scalable? (§5.7.6)

5.7.1 Experimental Setup

We use a two-socket machine with 28 cores, 112 threads, and 500GB of

Intel Optane DC Persistent Memory module, with Fedora-30 and Linux

5.1 kernel. We use a single socket on this machine for our evaluation, since

the other file systems that we compare against are not NUMA-aware. We

evaluate the scalability of WineFS across NUMA nodes in §5.7.7. We

compare WineFS with two groups of PM file systems. First, we compare

WineFS in relaxed mode with other file systems providing metadata con-

sistency: ext4 DAX [38], xfs DAX [39], PMFS [40], NOVA-relaxed [87], and

SplitFS [55]. Second, we compare WineFS in the default (strict) mode

with file systems providing both data and metadata consistency: NOVA

and Strata [58].

FS aging setup. To reflect PM file systems in the real world, we use the

Geriatrix [70] tool to age evaluated file systems. Agrawal et al. [66] is one

of the widely cited profiles that is used to measure the performance of aged

file systems. We use the Agrawal profile to represent all the file systems

aged by 165TB of write activity in a 500GB partition caused by creation

and deletion of files, with a mix of small (< 2MB) and large (>= 2MB)

files. 56% of the total capacity is occupied by large files, while the rest is

occupied by small files.
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5.7.2 Crash Consistency & POSIX Compliance

Crash consistency. We use a modified form of the CrashMonkey frame-

work [88] to test whether WineFS recovers correctly from crashes. We use

the Automatic Crash Explorer (ACE) to generate workloads with system

calls that modify file-system metadata. For each workload, we use Crash-

Monkey to generate crash states corresponding to all possible re-orderings

of in-flight writes inside each system call. The number of in-flight writes

inside each system call were low, so CrashMonkey was able to exhaustively

test crash states. Finally, we check that WineFS always recovers to a con-

sistent state. This exercise was useful in finding minor bugs in WineFS

early in its development. Currently, WineFS passes all the CrashMonkey

tests.

As WineFS uses per-CPU journaling, we also check if WineFS is

crash-consistent for multi-threaded applications. Note thatWineFS shares

a single namespace across all its CPUs. It uses the VFS locks to ensure

that only one journal transaction (across all CPUs) involves each file. As

a result, after a crash, WineFS has at most one per-CPU journal with

pending updates for a given file or directory. WineFS recovers multi-

ple per-CPU journals by using the global transaction ID to order different

journal entries.

Time to recover. On recovery, WineFS must reconstruct the DRAM

data structures such as the alignment-aware free-space allocator and per-

CPU inode inuse lists using relevant metadata on PM. WineFS scans the

per-CPU inode tables in parallel. Note that the recovery time depends on

the number of files, and not the total amount of data in the file system.

By inducing a crash in WineFS with 675GB of data, WineFS recov-
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ered in 7.8s. In this experiment, there were 3.5M files in the partition that

was recovered.

POSIX compliance. We use the Linux POSIX file system test suite [89]

to test if WineFS meets POSIX standards. WineFS passes all the tests.

This is important because it means applications will obtain the expected

POSIX behavior from WineFS without the need for application modifica-

tions.

5.7.3 Read and Write Throughput

We analyze the throughput of WineFS with microbenchmarks capturing

sequential/random read/write workloads. We age the file systems as de-

scribed in the experimental setup and then run experiments.

Performance for memory-mapped access. We memory-map a 50GB

file and use memcpy() to perform reads and writes in sequential and random

order. WineFS has the highest throughput across all aged PM file systems:

WineFS outperforms NOVA by 2.6× on sequential and random writes, and

by 2.3× on sequential reads, and by 2.7× on random reads, as shown in

the Figure 5.2(a). WineFS spends about 3% of the total time on handling

page faults while NOVA spends 60% of the time handling faults. WineFS

has comparable performance with the best performing PM file systems in

a clean, unaged setting since all file systems are able to map files using

hugepages.

Performance for system-call access. We start with an empty file and

append data at 4KB granularity until it fills 50% of the free space. We

perform reads and in-place writes at 4KB granularities in sequential and

random order. Overall, WineFS has equal or better throughput compared
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Figure 5.2: Read and write throughput for system calls and
memory-mapped access. This figure shows the throughput of se-
quential and random reads and writes in different file systems. There is
an fsync() after every 10 operations. POSIX strong indicates data con-
sistency while POSIX weak indicates metadata consistency. SplitFS does
not perform well on random writes and sequential reads in POSIX weak,
because of a large number of memory mappings, and inefficient data struc-
tures that are used for indexing into file offsets while handling updates
and reads compared to ext4 DAX. ext4 DAX suffers from slowdowns in
random reads and performs similar to SplitFS. Across all these work-
loads, WineFS matches or betters the performance of the best PM file
system. Good performance on memory-mapped workloads is due to huge-
page-awareness, while good performance on system-call workloads is due
to fine-grained journaling and DRAM indexing.

89



Figure 5.3: Performance on aged file systems. This figure shows
the performance of different file systems when aged using the Geriatrix
tool [70]. At the end of aging, the file systems are 75% full. Overall,
WineFS outperforms all other file systems by up-to 70% compared to
ext4 DAX in PmemKV and up-to 2× compared to NOVA on LMDB. The
file-systems with metadata consistency guarantees are shown in (a), (b)
and (c) whereas the file-systems with data as well as metadata consistency
guarantees are shown in (d), (e), (f). Note that we do not compare with
PMFS, as PMFS was not able to age successfully.

to other file systems on reads and writes, as shown in Figures 5.2(b) and

5.2(c). On writes, WineFS outperforms NOVA by up-to 25%, as NOVA

has to add new log entries, invalidate older entries, and update its DRAM

indexes for handling overwrites. Further, WineFS and NOVA perform

better than Strata on writes as Strata has to perform expensive data copies

from its per-process logs to the shared PM region for making data visible

to other processes.

Summary. These results show that WineFS achieves excellent read and

write throughput, regardless of whether memory-mapped files or system

calls are used. It validates that the design choices made to increase memory-

mapped and system-call access modes work well together.
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Load A A B C D E F

WineFS 1.59 3.83 3.83 1.34 1.36 0.48 4.85

ext4 DAX 11.85× 17.86× 6.20× 10.60× 18.36× 45.38× 14.57×
xfs DAX 28.26× 23.24× 7.04× 11.21× 20.27× 56.38× 17.70×
SplitFS 16.46× 20.52× 6.73× 10.93× 19.94× 50.58× 16.15×
NOVA 32.03× 1.57× 7.65× 1.05× 23.23× 1.15× 22.30×

(a) YCSB Page Faults (In Millions).

fillseqbatch fillseq

WineFS 0.06 0.01

ext4 DAX 205× 292×
xfs DAX 280× 455×
SplitFS 208× 296×
NOVA 261× 399×

(b) LMDB and PmemKV Page Faults (In Millions).

Table 5.1: Page faults. This table shows the number of page faults
incurred by various applications on aged file systems. Overall WineFS
suffers from the fewest page faults, up-to 450× lower than the other file
systems. The software overheads of the applications, along with prefaulting
of memory-mapped files in PmemKV limit the improvements for WineFS
in terms of end-to-end application performance to 2× (Figure 5.3).

5.7.4 Performance for memory-mapped access mode

We evaluateWineFS using data stores like RocksDB, LMDB, and PmemKV.

We continue to use the aged file system setting.

YCSB on RocksDB.We run RocksDB configured to use memory-mapped

reads and writes, with hugepages enabled and a memory cap of 64GB.

We run the industry-standard YCSB workloads on RocksDB with 60GB

dataset consisting of 50M keys and operations. We report RocksDB through-

put on all file systems in Figure 5.3(a). WineFS provides the best

throughput, outperforming ext4 DAX and NOVA by up to 50% on av-

erage across all YCSB workloads. RocksDB incurs the fewest page faults
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on WineFS. On other PM file systems, RocksDB incurs up-to 56× higher

number of page faults.

LMDB. We run LMDB [59], a btree-based memory-mapped database,

with db bench benchmark’s fillseqbatch workload with 50M keys. This

workload batches and writes 1KB sized key-value pairs sequentially, which

according to LMDB is its best-performing workload [90]. LMDB does on-

demand allocations and zeroes pages on page faults by using ftruncate()

instead of fallocate() for the allocations. This reduces space-amplification,

but leads to costly page faults. WineFS outperforms ext4 DAX by 54%

and NOVA by 2×, as shown in Figure 5.3(b). LMDB running on WineFS

incurs 200× and 250× lower page faults in comparison to ext4 DAX and

NOVA, as shown in the Table 5.1.

PMemKV. We run PMemKV [17], a key-value store from Intel that

uses 128MB memory-mapped files for storing data on PM. We configure

PMemKV’s cmap concurrent engine to run with 16 threads. We run the

write-only fillseq workload that sequentially inserts keys with 4KB-sized

values. In this workload, PmemKV creates a PM pool using fallocate(),

and keeps extending the pool as it gets used up by creating more files and

allocating them via fallocate(). PMemKV gets the best performance on

WineFS, which is 20% higher than on NOVA, 70% higher than on ext4

DAX, and 45% higher than xfs DAX, as shown in the Figure 5.3(c). NOVA

does the allocations and zeroing of pages on fallocate() while the page

fault routine only sets up page tables. On the other hand, ext4 DAX zeroes

pages on a page fault and not on fallocate(), making page faults more

expensive in ext4 DAX. As a result, the performance of NOVA is better

than ext4 DAX; even though NOVA suffers from higher number of page
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Figure 5.4: Latency distribution for P-ART lookups. The fig-
ure shows the latency distribution for lookups on the P-ART persistent
radix tree. The tree is memory-mapped and pre-faulted before the lookups.
WineFS has up-to 60% lower median latency compared to the other PM
file systems as WineFS incurs fewer TLB misses and LLC cache misses.

faults compared to ext4 DAX.

Persistent radix tree. We study the performance of the persistent adap-

tive radix tree, P-ART [46], on WineFS. P-ART creates a PM pool using

the vmmalloc library and pre-faults this region during initialization to avoid

page faults in the critical path. We insert 60M keys to the index; page-

table mappings are setup during inserts. We then perform 60M lookups of

a hot-set of 125K unique keys in random order. The lookups don’t suffer

from page faults as page table entries are already setup. Figure 5.4 shows

that the median latency of WineFS is 35% lower than ext4-DAX and

60% lower than NOVA. WineFS suffers 400× fewer LLC misses and 2×

lower TLB misses compared to the next-best ext4-DAX.
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Figure 5.5: Performance of applications using POSIX system calls
on clean file systems. WineFS has equal or better than the best
file system in a clean file system setup. Performance of file systems in the
relaxed mode (metadata consistency) is in (a), (b) and (c) and in the strict
mode (data + metadata consistency) is in (d), (e) and (f).
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Performance on newly created file system. We repeat all the above-

mentioned experiments on newly created PM file systems. In general, PM

file systems find it easier to map files with hugepages on a new file sys-

tem. We find that all file systems perform similarly in a clean setup, with

WineFS performing up-to 30% better compared to ext4 DAX and 35%

compared to NOVA on YCSB Load A. WineFS outperforms PMFS by

80% in LMDB as PMFS does not get hugepages even in a clean file system

setup. WineFS outperforms xfs-DAX by up-to 35% for reasons similar to

PMFS. Across all these applications, WineFS gets the best performance

or matches the performance of the best PM file system. This indicates

that the design of WineFS is effective for memory-mapped files even on a

newly created file system.

5.7.5 Performance for system-call access mode

We now evaluate WineFS on macro-benchmarks and applications that

access PM via system calls. Aging does not impact system call performance

on PM. We therefore use newly created file systems for these experiments.

Filebench. We use the Filebench [84, 91] macrobenchmark to evaluate

WineFS. We use the varmail, fileserver, webserver, and webproxy bench-

marks, with configurations as shown in Table 4.3. These benchmarks em-

ulate the I/O behavior of several real-world applications.

WineFS and NOVA-Relaxed outperform ext4 DAX by up to 5×.

ext4 DAX and xfs perform poorly on varmail due to costly fsync() oper-

ations and metadata overheads. Although SplitFS outperforms ext4 DAX

due to faster appends, it inherits low scalability for creates and deletes as

it relies on ext4 DAX’s JBD2 journal. The poor metadata structures, direc-
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tory traversals, and inode free lists limit PMFS’s performance on metadata-

heavy workloads like varmail. WineFS outperforms existing file systems

on other Filebench macrobenchmarks, as shown in Figure 5.5 (a) and (d).

PostgreSQL. We use the PostgreSQL [24] database and run the read-

write workload of pgbench suite (similar to TPC-B).WineFS outperforms

NOVA by 15%, as shown in Figures 5.5 (b) and (e). The performance

improvements trace back to overwrites. NOVA has to delete per-inode

log entries, add new entries for handling overwrites, and update DRAM

indexes to reflect the new data. WineFS only modifies the inode in a

journal transaction to point to the newly allocated blocks.

WiredTiger. We use WiredTiger [15], a key-value store that MongoDB

uses by default, and run the FillRandom and ReadRandom workloads of the

db bench suite [81] with 1KB sized values. In FillRandom, WiredTiger

on WineFS performs 60% faster than on NOVA, and outperforms ext4

DAX by 20%, as shown in Figures 5.5 (c) and (f). WineFS outperforms

NOVA because WiredTiger appends data at unaligned offsets and NOVA

forces these appends to a new 4KB page to ensure data atomicity, caus-

ing high write amplification. NOVA copies the data in the partial block

to the new block and then appends new data. WineFS continues to ap-

pend to partially full blocks without having to copy old data like NOVA,

while ensuring data atomicity via journaling. In ReadRandom, WiredTiger’s

throughput remains the same across different file systems.

Other utilities. We evaluate WineFS using kernel compilation, tar, and

rsync. Linux kernel compilation (v5.6; using 64 threads) takes similar time

across all PM file systems. WineFS has comparable performance as its

competitors across all utilities.
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Figure 5.6: Microbenchmark: Scalability. WineFS throughput scales
with increasing threads on metadata-heavy workloads.

5.7.6 Scalability

We measure the scalability of WineFS using a multi-threaded system call

workload: we create a file, append at 4KB granularities, fsync, and unlink

in each thread. Figure 5.6 shows the results. WineFS and NOVA have

the best scalability. NOVA achieves its scalability through per-inode logs

which have the side effect of fragmenting free space (and reducing per-

formance for memory-mapped files). WineFS achieves similar scalability

by using per-CPU fine-grained journals that minimize the fragmentation.

ext4 DAX and xfs DAX have low scalability as they use a stop-the-world

approach on fsync() to flush the journal to PM. SplitFS inherits low

scalability as it runs atop ext4 DAX. Finally, PMFS scales well due to its

fine-grained journaling. All the file systems plateau beyond 16 thread due

to the scalability bottlenecks in the VFS layer.

5.7.7 NUMA-awareness

We run a microbechmark using 32 threads to append 100GB of data to

thread-private files in different directories. Table 5.2 shows the percentage

of remote NUMA writes incurred in different file systems. As each NUMA

node has 500GB of free-space, file systems should be able to ensure com-
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File system Remote Writes File system Remote Writes

ext4-DAX 45.62% NOVA 59.17%
xfs-DAX 27% Strata 0%
PMFS 43.23% SplitFS 50.21%
WineFS 0%

Table 5.2: Remote NUMA accesses. Percentage of remote NUMA
writes by different file systems. Only NUMA-aware WineFS and Strata
perform no remote writes.

Figure 5.7: Performance across NUMA nodes. The performance of
WineFS improves by up to 80% on write-heavy workloads when run on
two NUMA nodes, due to its NUMA-aware thread migrations.

plete NUMA locality in the best case. WineFS incurs no remote NUMA

writes due to its NUMA-aware allocation and thread migration policies.

WineFS and Strata are the only file systems that are NUMA-aware. Other

file systems incur 25%-60% remote NUMA writes.

We also measure the NUMA-awareness of WineFS on real applications

that use POSIX system-calls to access data on PM. We create WineFS

on a PM partition spanning across two NUMA nodes and evaluate the

performance of WineFS on the workloads mentioned in §5.7.5. WineFS

is able to perform up-to 80% better than a single NUMA node, as shown

in Figure 5.7. The write-heavy workloads experience higher performance

than read-heavy workloads, due to prioritizing writes over reads for local

NUMA accesses, as described in §5.5.
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5.7.8 Resource Consumption

WineFS consumes memory for its DRAM metadata indexes (e.g., red-

black trees used for directory indexing, keeping track of free extents and

inode free lists). It also additionally consumes CPU time to execute back-

ground activity such as journal space reclamation and retroactive rewriting

of files.

Memory usage. WineFS uses a per-directory RB-tree to index the di-

rectory entries. The directory entries are hashed and stored, requiring less

than 64B of memory per entry. Filling an entire 500GB partition of PM

(used in our evaluation) with small 4KB files requires less than 10GB of

DRAM for metadata. The memory usage of other DRAMmetadata indexes

such as the alignment-aware allocator and inode free lists is insignificant

compared to the per-directory RB-tree, and can be safely assumed to be

less than 1GB.

CPU utilization. WineFS uses a background thread to reclaim space

occupied by committed transactions in the per-CPU journals, and uses

another background thread in case of reactive re-writing of files to get

hugepages. We expect the re-writing of files to be extremely rare, and in

the common case, not utilizing a thread.

5.7.9 Summary

Overall, we show that WineFS achieves its goals (§5.3). It conserves

hugepages and provides excellent performance for applications using memory-

mapped files. It does not sacrifice performance for applications using sys-

tem calls to access PM, performing equal to or better than the state-of-the-

art PM file systems. It provides atomic, synchronous data and metadata
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operations. It achieves these properties while being POSIX-compliant and

not requiring any changes to the application.

5.8 Conclusion

This chapter presentsWineFS, a hugepage-aware PM file system. WineFS

demonstrates that it is possible to design a file system that achieves good

performance for applications accessing PM via either memory-mapped files

or system calls. WineFS revisits a number of file-system design choices

in the light of hugepage-awareness. The design of WineFS allows it to

resist aging, offering the same performance in the aged and unaged setting.

WineFS is publicly available at https://github.com/utsaslab/winefs.
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Chapter 6

Supporting and accelerating big data PM

applications

In this chapter, we target the third class of applications called big data PM

applications. These applications access large amounts of data using loads

and stores on memory mapped files such that the data may not fit in the

PM capacity of a single node. In Chapter 3, we saw that existing mem-

ory management systems and distributed file systems fail to provide DAX

properties to big data PM applications, and compromise on the durability

and consistency of data.

To enable big data applications on PM, this chapter introduces a new

abstraction called Distributed DAX memory mappings (ddmap()) (§6.1).

We then introduce ScaleMem, a system that implements the ddmap()

abstraction. We first discuss the goals of ScaleMem and its target use

cases (§6.3). We then present an overview of the design of ScaleMem and

its mechanisms and policies for providing ddmap() (§6.4), along with the

implementation of ScaleMem (§6.5). Finally, we evaluate ScaleMem

with other systems that provide distributed memory mappings and show

that ScaleMem outperforms the existing systems while providing stronger

durability and consistency guarantees (§6.7).



System Distributed FS
(e.g. NFS)

Far-Memory
(e.g. Fastswap)

HotPot

File-backed
mapping ✓ ✗ ✓

Scalability ✓ ✓ ✗

Cacheline
Durability ✗ ✗ ✓

Consistency ✗ ✓ ✓

Unmodified
App Support ✓ ✓ ✗

Distributed
File Mapping ✗ ✗ ✗

Table 6.1: DAX Features. The table shows the different features that
are important for remote DAX memory mappings, and different systems
that provide a subset of the features.

6.1 Need for a remote DAX mmap() abstraction

DAX offers important advantages for data intensive applications, with re-

spect to performance by avoiding software overheads in the critical path,

durability of data at cacheline granularity, and resource utilization, by

avoiding extra copies of data in DRAM. Applications that are built for

DAX rely on these characteristics of DAX and its durability guarantees.

For example, applications such as PmemKV [17] and Pmem-Redis [45] use

clwb for writing their data to PM at cacheline granularity from user space,

rather than using expensive msync() that goes into the kernel. When run

with large datasets, it is important that these applications get the same

guarantees that they expect out of DAX memory mappings.

Existing systems that offer direct load/store access to large datasets

are distributed file systems such as NFS [60], far memory systems such as

Fastswap [92] and Infiniswap [93], and HotPot [94]. Table 6.1 shows the
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list of features that are required for DAX along with different systems that

offer remote memory mappings.

NFS allows unmodified applications at the clients to access memory

mapped files in the server through page fault handling. However, NFS

does not honor the characteristics of DAX, and copies data in the page

cache of the client on page faults, causing data loss for certain applications

such as PmemKV [17] that rely on the durability of data using clwb on

DAX memory mappings. Fastswap and Infiniswap both modify the swap

subsystem to enable access to remote DRAM instead of local disks, but are

only restricted to heap-based applications. Applications that use memory-

mapped files do not use the swap subsystem and cannot take advantage

of Fastswap and Infiniswap. HotPot uses an intuitive API similar to lo-

cal memory mapping for increasing the total available memory capacity

to applications, but requires application modifications for issuing commit

points. Furthermore, HotPot requires the entire dataset of applications to

fit in the PM of a single server, which poses limitations on the application

dataset size.

6.2 ScaleMem: Enabling Distributed DAX Memory-

Mapping for Persistent Memory

As a part of this dissertation, we build ScaleMem, a system that im-

plements the ddmap() abstraction. ScaleMem allows unmodified appli-

cations to access data using native loads and stores on memory mapped

files, without worrying about the physical server on which their data lies.

ScaleMem provides DAX memory mappings for distributed PM files, al-

lowing applications to transparently scale in capacity to the available PM
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across multiple nodes.

6.3 ScaleMem Goals

No application modifications. ScaleMem should be POSIX compli-

ant, and support applications issuing POSIX system calls along with loads

/ stores on memory mapped files. ScaleMem should not require changing

the application code.

Scalability across multiple nodes. ScaleMem should be able to sup-

port PM in multiple nodes and should allow applications to use large

datasets spanning multiple nodes.

Strong consistency and durability guarantees. ScaleMem should

allow applications to issue native loads and stores to their data on PM using

DAX, and should allow cacheline-level durability of data using processor

instructions like clwb and sfence. ScaleMem should provide immediate

visibility and strong consistency guarantees for the data of applications

that is similar to running the applications on a single node.

Flexibility. ScaleMem should use policies that provide high performance

a diverse set of applications that access data in different patterns, without

interfering with other concurrently running applications.

High PM utilization. ScaleMem should ensure high utilization of PM,

and should allow free PM capacity in each node to be used for storing data

of remote applications.

6.3.1 ScaleMem Setup and Usage Scenarios

ScaleMem is targeted towards applications that run on a single server,

104



but access large amounts of data that cannot fit in the PM capacity of

one server. These applications are different from distributed applications

where the compute is spread across multiple connected servers.

ScaleMem offers remote DAX memory mappings for such applica-

tions, and allows them to use loads and stores for the memory mappings.

ScaleMem does not require any changes to the applications. While the

applications that benefit the most out of ScaleMem are the applications

that use memory mapped files, ScaleMem also supports applications that

issue POSIX system calls to access their data. Supporting both modes

of data access allows a broad range of applications to be supported with

ScaleMem. Since ScaleMem is targeted at single-node applications, it

does not provide properties such as fault tolerance for the data. Obtaining

such properties is orthogonal to the goals of ScaleMem.

ScaleMem is designed for the common setup where multiple servers in

a datacenter are connected to each other and use Remote Direct Memory

Access (RDMA) for communication. We use the term ”server” and ”node”

interchangeably. Each node has compute and memory, and uses PM for

storing persistent data. Each node can run user applications independently

of the other nodes, and can scale the application to use the PM of other

connected nodes. This allows higher utilization of expensive PM across all

the nodes. All the compute and DRAM for an application lies in the node

that runs the application.

6.4 ScaleMem Design

In this section, we discuss the design of ScaleMem, starting with an

overview of how ScaleMem manages to achieve the goals mentioned in
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Figure 6.1: ScaleMem overview. This figure shows the main compo-
nents of ScaleMem. ScaleMem uses fine-grained caching, and page
fault handling at theApp Manager to intercept application data accesses,
and services remote page faults through RDMA at the Node Manager.
ScaleMem uses background eviction for evicting cold data and reclaiming
space in the local node. Fast reallocation is used to allow parallel page fault
handling.
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§6.3. We then discuss about how ScaleMem handles DAX memory map-

pings along with loads and stores. Finally, we discuss how ScaleMem

handles POSIX system calls such as read() and write(), supporting a

broad range of applications.

6.4.1 Overview

ScaleMem is a new system for supporting distributed DAX-based memory

mappings. On a high level, ScaleMem services page faults of DAX-based

memory mappings by migrating data to the application server, making the

data part of the local file system in the application server. ScaleMem

migrates cold data from the application server to a remote server when the

local PM free space reaches below a particular threshold.

ScaleMem consists of two components. The App Manager han-

dles memory mappings and DAX page faults, while the Node Manager

handles file management and migration of data between nodes. Figure 6.1

shows the overview of ScaleMem. We now discuss the high-level ideas in

ScaleMem that motivate its design.

Handling page faults in userspace. ScaleMem completely lies in user

space. ScaleMem dynamically links to applications and intercepts system

calls made by the application related to the memory management and file

system. Being in userspace allows ScaleMem to employ custom policies

for managing data specific to the applications it is linked to. Scale-

Mem registers file-backed memory mappings with userfaultfd [95]; the

Linux kernel then forwards page fault events that are handled by dedicated

threads.

Unifying the memory manager and file system layers. ScaleMem
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reduces the bottlenecks that arise because of the lack of co-ordination of

the memory manager and file system layers when it comes to remote DAX

memory mappings. ScaleMem introduces a new primitive called fast

reallocation in the kernel which allows in efficient migration of data between

nodes while serving page faults.

Avoiding duplicate copies of dirty data across nodes. ScaleMem

runs unmodified applications that are designed for single nodes, to use the

PM of other nodes for large datasets. The applications expect strong con-

sistency and global visibility of their data across different threads. Scale-

Mem achieves this by avoiding maintaining duplicate copies of data in

different nodes. Every remote DAX page fault moves a 4KB block of file

from a remote node to the local node. This has an additional benefit of

high utilization of PM, and applications can scale up in capacity to the

aggregate PM of all the connected nodes.

Tracking hot data at cacheline granularity. ScaleMem caches hot

read-only data in the local node for minimizing network I/O. However,

tracking hot data at page granularities is wasteful and leads to over-estimation

of the hot data for data intensive applications like key-value stores and

graphs, causing inefficient use of local space. To avoid this problem, Scale-

Mem intercepts loads and stores in userspace, and caches hot read-only

data at cacheline granularity. ScaleMem uses caching only for data that

is private to a particular application, and marks the data as read-only in

the remote node. This avoids any modifications to the data by applications

running on the other nodes.

We will now discuss about the mechanisms in ScaleMem that help it to

run unmodified applications that issue loads and stores on memory mapped
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files, while transparently scaling their data set sizes to the PM capacity of

multiple nodes ( §6.4.2). We will then talk about how ScaleMem supports

POSIX system calls, and handle applications such as RocksDB [13] that

issue system calls as well as memory maps, while scaling in capacity to

multiple nodes ( §6.4.3). Finally, we will discuss about the different policies

used in ScaleMem that enable high performance for these applications

( §6.4.4).

6.4.2 ScaleMem Mechanisms

ScaleMem has to handle allocations and placement of file blocks, migra-

tion of blocks, as well as page faults to transparently support remote DAX

memory mappings.

Allocation and Memory Mapping. Every file is assigned a home node, which

is the node belonging to the application that created the file. ScaleMem

intercepts file allocation calls such as fallocate(), ftruncate() or file

appends in the App Manager, and uses a greedy approach to allocate as

much space in the home node of the file as possible. If the entire allocation

does not fit in the free space of the home node, the rest of the allocation is

serviced by contacting other nodes in a round robin fashion.

Upon mmap(), ScaleMem maps the file into virtual memory and reg-

isters the memory range for userfaultfd. ScaleMem then tracks the map-

ping from virtual address to file offset for each page that it manages. This

information is used for migrating file blocks between nodes. ScaleMem

tries to keep small files in the local node, because small files such as lock

files are often short lived and temporary. When the local PM space is low

and falls below a certain threshold determined experimentally, ScaleMem
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also evicts small files.

Migration. ScaleMem monitors the space utilization periodically using

a background thread in each node. As the free space starts getting used

up, ScaleMem starts to evict file blocks to remote nodes in the back-

ground. The App Manager uses application-specific policies for finding

cold blocks to evict. Evicting a cold block involves destroying the memory

mapping corresponding to the block by the App Manager, and punching

a hole in the file at the corresponding offset by the Node Manager for

reclaiming space. Similar to HeMem [96], migration happens periodically

and is rate-limited to avoid conflicting with application threads.

Page Fault Handling. ScaleMem handles page faults using userfaultfd [95].

ScaleMem creates a userfaultfd file descriptor and issues ioctls on it to

register managed memory with userfaultfd. When ScaleMem intercepts

memory allocation calls, it registers the virtual address range with user-

faultfd, allowing it to receive page and write-protection faults on this range.

ScaleMem uses dedicated page fault handling threads in the App Man-

ager to receive fault events from the kernel. These threads read the user-

faultfd file descriptor for page fault events.

In the event of a page fault, the App Manager locates the node of

file block. If the block is absent in the local node, the Node Manager is

contacted to fetch the block from the remote node. The Node Manager

contains metadata for local files for locating the node corresponding to

every block. The Node Manager then migrates the block using two-

sided RDMA from a remote node, and the remote node punches a hole

in its place and thus reclaims space. On receiving the block from the

remote node, the local Node Manager writes the block contents to the
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corresponding offset in the file, and returns to the App Manager. The

App Manager then calls mmap() with MAP POPULATE for setting up

page table entries for the block.

Fast Reallocation. ScaleMem introduces novel changes in the Linux

kernel to reduce the bottlenecks associated with parallel page fault handling

and file fragmentation when dealing with remote DAX page faults and

evictions.

Supporting parallel page faults. The design of ScaleMem exposes bottle-

necks in the memory manager because of frequent mappings and unmap-

pings due to data migration. Every mapping and unmapping operation

requires metadata management in the kernel, which results in obtaining

exclusive coarse-grained locks for the entire address space of the process.

Fig 3.3 shows the effect of bottlenecks associated with multiple threads

creating and destroying mappings.

ScaleMem introduces a new system call in the kernel for low-cost effi-

cient unmapping called mmap unpopulate(). When mmap unpopulate() is

invoked, it refrains from modifying the data structure responsible for main-

taining memory mapped regions of the process. Instead, it removes the

underlying physical memory page mapped to the memory mapped virtual

address, which is extremely efficient. This effectively marks the memory

mapped page as “stale”, and any subsequent access to the virtual address

of the memory mapped page results in a page fault, which is efficiently

handled by ScaleMem as explained above. The only disadvantage of

mmap unpopulate() in contrast with conventional unmapping is that the

virtual address range being marked stale is not reclaimed by the process.

Note that the process’s virtual address space is 248 bytes; practically, this
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does not hamper the application in a meaningful way. An alternative is to

prevent heavy-weight global locking within the kernel by using fine-grained

locks, or lockfree approaches, either of which are extremely complicated

in a kernel environment and are likely to make multiple core components

of the kernel vulnerable to bugs and breaking changes. We highlight the

effect of mmap unpopulate() in §6.7.2.

Reusing holes for small allocations. Migration of cold blocks of files to

remote nodes creates holes in the files, causing file and free-space fragmen-

tation in the file system. Instead of merging the small holes to form large

free extents, we change the underlying file system to keep holes in a sepa-

rate queue. We then allocate from the queue when migrating blocks from

remote node to the local node on remote page faults. This reduces the

bloating of free-space trees in the file system, and requires constant time

for addition and removal of free blocks. Note that reusing holes for small

allocations has also been explored in WineFS [97].

6.4.3 ScaleMem Mechanisms for POSIX system calls

ScaleMem primarily supports applications that issue loads and stores on

DAX memory mappings, by handling page faults in userspace. However,

this is not enough. Applications often issue POSIX read() and write()

in addition to loads and stores for accessing data. For example, LMDB [61]

and RocksDB [13] use read() and write() for storing the metadata of the

key-value store. For supporting a diverse range of applications, ScaleMem

supports POSIX data and metadata calls such as open(), read(), write(),

unlink() made by the application, and handles them from userspace.

ScaleMem passes all the metadata operations to the local file sys-
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tem in each node and maintains metadata in userspace for the files that it

manages. Data operations such as POSIX read() and write() are inter-

cepted by App Manager, and data is fetched from the node containing

the corresponding file blocks.

6.4.4 ScaleMem Policies

ScaleMem uses the App Manager to dynamically bind to applications

in userspace, and uses application-specific policies to improve the perfor-

mance of applications. ScaleMem supports different policies for finding

hot pages, prefetching pages and find-grained caching of read-only data.

ScaleMem has configurable parameters for these policies that can be

tuned according to the application access patterns by cloud providers and

users. The policies do not interfere with other concurrently running appli-

cations on the same node.

Tracking hot blocks. ScaleMem uses an approximate Least Recently

Used (LRU) policy by default to evict cold blocks when the free space

reaches below a particular threshold. The App Manager uses a back-

ground thread to keep track of hot and cold blocks by tracking their ac-

cesses. The App Manager uses access and dirty bits of the pages that

have mapped the blocks and intercepts POSIX read() and write() calls,

in order to keep a count of accesses made to each block. The hot and cold

blocks in separate queues, which are updated periodically by scanning the

blocks in each queue. During eviction, a separate migration thread in the

App Manager dequeues from the cold block queue and migrates blocks to

a remote node. ScaleMem uses fast reallocation to remove page table en-

tries corresponding to blocks that are scheduled for eviction. ScaleMem’s

113



estimates of hot and cold blocks are kept fresh by periodically cooling the

blocks by halving their access counts.

ScaleMem is able to use different application-specific policies such as

First-In-First-Out (FIFO) and Least Frequently Used (LFU) for evicting

data, as specified by the users.

Fine-grained caching. For read-heavy workloads with skewed access

patterns, ScaleMem uses an application-specific cache for caching read-

only hot data in the PM of the local node. ScaleMem intercepts read(),

write() calls as well as memcpy() calls made by the applications, and

tracks frequently read data at cacheline granularity. This significantly re-

duces the number of remote page faults in read-heavy workloads, while not

compromising on consistency. The applications start with a cache size of

1GB which adaptively increases or decreases in size based on the available

free space and the utilization of the cache.

By default, ScaleMem uses the LFU policy for tracking hot cache-

lines, but it can be configured to use any other policy that is specific to

applications’ access patterns.

Prefetching. For applications that access data with predictable patterns,

ScaleMem allows the option of prefetching blocks and avoiding remote

accesses in the critical path. Prefetching can be done in a sequential or a

striped manner, depending on the application. While prefetching is kept

on by default, applications have the option for turning it off if they do not

access data using predictable patterns.
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Components Lines of Code

App Manager

mmap() + Page fault handling 2.5K
Background eviction 1K
Space Management 1K
Prefetching + Read-only cache 300
POSIX system calls 1.5K
Other 2K

Node Manager

File management 2.5K
Data migration 1.5K
RDMA Communication 1K
Other 2K

Table 6.2: Code breakdown of ScaleMem. This table gives a break-
down of the code in ScaleMem, in different components in the App Man-
ager and Node Manager.

6.5 ScaleMem Implementation

We implement ScaleMem as a userspace library (17K lines of C code) and

a small patch to the Linux kernel (200 LOC) to add the mmap unpopulate()

system call, modify the page fault handling in userfaultfd and the FAST REALLOC

flag to fallocate() in WineFS [97]. ScaleMem supports 22 common

POSIX system calls, such as read(), write(), open(), unlink(), etc; we

found that supporting this set of calls is sufficient to support a wide va-

riety of applications and microbenchmarks. Furthermore, we rely on the

contributions made by HeMem [96] in enabling userfaultfd for DAX. Since

this support is implemented in Linux 5.1, we use the same kernel for our

implementation.

Intercepting POSIX system calls and glibc calls. ScaleMem uses

the syscall intercept [98] library to intercept POSIX system calls and ei-
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ther serve from user-space or route them to the kernel after performing

some book-keeping tasks. Furthermore, ScaleMem uses LD PRELOAD

to intercept glibc calls such as memcpy() in order to support fine-grained

caching (§6.4.4).

Free Space Management. The entire space in a node is managed by the

Node Manager service in that node. When starting an application, the

App Manager contacts the Node Manager, and the Node Manager

reserves space for the App Manager depending on other concurrently

running applications on the node. The App Manager then constructs its

own free list on top of the allocated space to manage the space according to

its own policies. The App Manager uses a red black tree for managing

its free space. The App Manager divides the free space into blocks,

each of which as a unique ID and corresponds to an offset in the free

space. ScaleMem maintains data structures for inodes in userspace, and

associates inodes to blocks on allocations. Memory mappings of a block by

different threads in an application are maintained in a linked list.

Handling shared files. ScaleMem uses leases to handle files shared by

multiple processes. Whenever the Node Manager gets a request for a

file from multiple applications, the Node Manager issues a lease in a

round-robin fashion to each App Manager, and uses timeouts to avoid

starvation.

ScaleMem allows only one node to establish DAX memory-mappings

for a page at any given time. If some other node tries to map the same page,

ScaleMem waits to get the lease, and then migrates the corresponding

page to the new node.
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6.6 Discussion

Transparent fine-grained tracking of data. Workloads of data inten-

sive applications such as key-value stores and indexes are typically skewed,

and consist of small objects [99], of hundreds of bytes. While designing

ScaleMem, we observed that tracking hot data at such small granularities

reduces the network I/O by orders of magnitude. However, transparently

tracking hot data at granularities below page size is fundamentally limited,

because the entire Linux kernel virtual memory subsystem operates on

pages. For example, a page fault requires setting up a minimum mapping

of 4KB, and tracking hot data using access and dirty bits also is limited to

page granularities. Tracking at page granularities leads to over-estimation

of the hot data, and results in inefficient utilization of local space.

In ScaleMem, we use LD PRELOAD to intercept memcpy() calls

made by the application to track hot data at cacheline granularities. This

greatly benefits applications that issue memcpy() calls to access their data

on PM. We discuss about the benefits of our read-only fine-grained tracking

in §6.7.2.

Using one-sided RDMA verbs. ScaleMem uses two-sided RDMA

verbs (SEND and RECV) for migrating data between nodes. This is be-

cause ScaleMem has to perform active work in local and remote nodes to

service page faults as well as evictions. Page faults require punching holes

in the remote node, while evictions require allocating blocks in the remote

node. We design a mode of ScaleMem that uses one-sided RDMA verbs

(READ and WRITE) for a disaggregated setup with large amounts of PM

in a remote cluster without compute, called ScaleMem- Passive. In this
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mode, ScaleMem never deallocates or allocates space in the remote clus-

ter, and performs one-sided RDMA for reading and writing to the remote

PM cluster. However, we stick to using two-sided RDMA verbs in Scale-

Mem by default, as one of the major goals of ScaleMem is to utilize PM

efficiently and work with commonly available hardware.

Overheads of userfaultfd. ScaleMem is a userspace library, and uses

userfaultfd to service page faults, allowing applications to transparently

scale to the PM of multiple nodes. We find that userfaultfd contributes to

a significant overhead in page fault handling, especially when the data is

present in the local node, due to multiple context switches between user-

space and the kernel for every page fault. Our technique of fast reallocation

reduces the number of context switches required for userfaultfd by reusing

”stale” pages, and not creating new mappings on page faults.

Supporting Hugepages with ScaleMem. Hugepages reduce the num-

ber of page faults and increase the TLB reach by 512×. However, in Scale-

Mem, we observe that while hugepages are very beneficial when the dataset

fits in a single node, they increase the network I/O significantly on remote

page faults. We instead find that using 4KB base pages with prefetching

for sequential access patterns is more beneficial, and achieves the same

purpose of reducing the number of page faults in the critical path.

Using ScaleMem with CXL. Use of RDMA is not fundamental to the

design of ScaleMem. We use a distributed setup with RDMA in this

work to make it accessible for use with commonly available hardware, and

due to the lack of clarity with respect to CXL support for PM as a storage

device. Using CXL instead of RDMA has the potential to unlock higher

performance through the use of hugepages, NUMA affinity of data and
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hardware-managed cache coherency.

6.7 ScaleMem Evaluation

We first breakdown the performance of ScaleMem using microbench-

marks that access data in different patterns. We then evaluate the per-

formance of ScaleMem on a variety of applications, where the data does

not fit in the PM of a single node.

In our evaluation, we seek to answer the following questions:

• What is the latency breakdown of DAX memory accesses in Scale-

Mem? (§6.7.1)

• What is the impact of different policies of ScaleMem, for different

access patterns? (§6.7.3)

• Does ScaleMem scale in throughput with increasing number of

threads? (§6.7.3)

• Does ScaleMem scale in capacity with increasing number of nodes?

(§6.7.4)

• How does ScaleMem perform in real-world applications that use

DAX memory mappings? How does it compare to other systems

that offer similar semantics in terms of consistency guarantees and

performance? (§6.7.5)

• Can ScaleMem support complex applications that use POSIX sys-

tem calls along with DAX memory mappings? (§6.7.5)

• What is the CPU and memory utilization in ScaleMem? (§6.7.6)
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NFS: the closest alternative to ScaleMem. While there is no

system today that offers the semantics of ScaleMem in terms of DAX

memory mappings for remote files, the closest alternative is NFS [60]. NFS

offers remote memory mappings via copying the data in the page cache

of the clients on remote page faults. Using page cache for serving remote

page faults violates the properties of DAX, of writing directly to persistent

media, and results in data loss when the applications do not issue msync()

for their data. Furthermore, Use of unbounded amount of page cache

leads to memory becoming full in the client nodes, and leads to significant

slowdown of the clients in general.

Semantic differences between ScaleMem and HotPot. Hot-

Pot [94] is a distributed shared PM system that exposes a global address

space across multiple nodes, and allows applications to access data in this

global address space via memory mapping. Despite allowing addressabil-

ity spanning multiple nodes, HotPot requires that the entire dataset of a

process fits in a single node (even if it is fetched remotely). Furthermore,

HotPot requires changing the application to use their API, whereas Scale-

Mem is entirely transparent to the application. Since all of our experiments

require accessing data either entirely, or partially stored on a remote ma-

chine, and the data size is strictly larger than a single node’s capacity, we

cannot compare our setup with HotPot.

Experimental setup and competitor systems. Our PM setup is emu-

lated using DRAM. Semantically, this setup acts as a stand-in replacement

for any PM hardware. We purposefully choose not to run on Intel Optane

DC Persistent Memory. This is because our design is not dependent on the

idiosyncrasies of Optane, particularly the degree of parallelism it supports
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Figure 6.2: Page Fault Latency Breakdown. Shows the latency costs
broken down by components in Fastswap and . ’s cost is higher due to
involvement of filesystems rather than just memory.

and its read / write asymmetry. We primarily focus our evaluation against

the performance of NFS, since to the best of our knowledge, there is no

other system that offers functionality similar to ScaleMem.

6.7.1 ScaleMem Remote page fault cost.

ScaleMem provides a unique abstraction of a distributed DAX memory

mapping for applications whose datasets do not fit in the available PM

capacity of a single node. In order to provide this abstraction without

application modifications, ScaleMem has to build a unified management

layer for file system as well as memory management components. This

is because DAX memory mappings access data directly on PM, without

copying it to DRAM, and hence also involve the file systems. In this section,

we evaluate the different costs that ScaleMem has to incur when it comes

to servicing a remote page fault on a memory-mapped file that uses DAX.

We run a simple experiment where we access a 4KB page in remotely

stored file using memcpy(). A remote memcpy() invokes the ScaleMem

page fault handling routine due to userfaultfd (as discussed in §6.4.2). Fig-
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Read Rand Read Seq Read Zipf

ScaleMem 3.05 GB 3.05 GB 3.05 GB

NFS 114.98× 7× 36.8×

Table 6.3: Network IO. This table shows the network I/O incurred by
NFS and . Overall does much lesser network I/O.

ure 6.2 shows the total latency in servicing a remote page fault, along with

a breakdown in different components of ScaleMem. In order to high-

light the unique challenges faced by ScaleMem, we issue a 4KB remote

memcpy() which leads to a page fault on the state-of-the-art far memory

system called Fastswap [92]. Figure 6.2 shows the latency breakdown of

ScaleMem vs Fastswap. While Fastswap is over 4× faster than Scale-

Mem, it is important to note that the challenges faced by ScaleMem to

provide its unique semantics are not the same as those faced by far-memory

systems such as Fastswap. In particular, Fastswap does not support mem-

ory mapped files; only supports heap-based (i.e. not file backed) alloca-

tions. By supporting neither DAX nor file backing (since it is a heap-based

system), Fastswap does not involve the file system, and therefore manages

to avoid a lot of complexity that comes with it. As a result, Fastswap

cannot provide the strong durability guarantees provided by ScaleMem.

Since ScaleMem incurs high remote page fault cost, its design has

several optimizations to lower this cost as is explained in §6.4.4. We now

quantify the benefits of these techniques.

6.7.2 ScaleMem Techniques

First we evaluate the effect of the fine-grained caching and background

prefetching techniques. Both these techniques result in fewer page faults
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and network IO, which in turn improves overall application performance.

We run a separate experiment for each technique in ScaleMem, to high-

light its advantages.

Fast Reallocation. To measure Fast Reallocation, we sequentially read

a 10GB file, half of which is present in the local node, and the local node

capacity is set to 5GB (i.e. there is no more space in the local node). We

read the file with increasing number of threads ranging from 1 through 8.

We disable caching to highlight the effect of Fast Reallocation. We observe

that in the absence of Fast Reallocation, the overall throughput only in-

creases by 1.45× as we increase from 1 to 8 threads. This is attributed to

global locks captured by the kernel for the entire memory mapped region.

Using Fast Reallocations, we are able to scale in throughput to as high as

4.7× for 8 threads as shown in Fig 6.3.

Background prefetching. We run the same microbenchmark in which we

sequentially memcpy() a remote 10GB file using 4KB requests. We measure

the total time taken to read the entire file with and without prefetching.

We also measure the number of remote page faults incurred by the mi-

crobenchmark in reading 10GB of data in each case as shown in Table 6.4.

We observe that prefetching significantly helps in reducing the end-to-

end runtime. Prefetching reduces the number of remote page faults by over

97%, which in turn results in reducing the runtime by 2×. Despite almost

entirely eliminating number of remote page faults, the relatively modest

2× improvement in runtime is attributed to stalls in the application thread

that are waiting for the the prefetched block to be migrated from the remote

node before it can be successfully memory mapped locally.

Fine-grained read caching. The effect of caching can be quantified us-
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ing a realistic access pattern. Typically, file accesses are not done uniformly

at random, but instead follow a heavy-tailed distribution. Thus, we run

a microbenchmark in which we perform 200M 1KB memcpy() reads us-

ing a Zipfian access pattern over 10M values (α = 0.99 which is used in

YCSB [80]), with and without caching enabled. We measure the number

of remote accesses in this experiment, and also report the end-to-end time

taken for all 200M read operations. This result is also shown in Table 6.4.

Similar to prefetching, using a fine-grained read cache helps in reduc-

ing the runtime by 2.18×. This is because the cache is pre-created, pre-

populated and fine-grained as explained in §6.4.4. The cache does not

suffer from any file system overheads. Moreover, the fine-grained cache

line level accesses captured by the cache allows reading lesser overall data

over RDMA compared to a block or file level cache. We observed that data

transfer was reduced by 70% compared to fetching 4KB-at-a-time from the

remote node. Our cache uses the Least Frequently Used (LFU) algorithm,

which is widely considered as the best caching policy for Zipfian workloads,

and is able to get a hit rate of 90%.

To conclude, fast reallocation, prefetching and caching significantly re-

duces the overheads in ScaleMem. Both prefetching and caching and can

be activated on a per-application-basis.

Next, we put together techniques evaluated above for a comparison of

ScaleMem and NFS on commonly used microbenchmarks, and in §6.7.5

we compare the same systems for real-world application.
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Prefetching (ops/sec) Caching (ops/sec)

Disabled 14k 257k

Enabled 1.77× 2.1×

Table 6.4: ScaleMem Techniques. This table shows the techniques
employed by ScaleMem to reduce remote DAX page faults.

Figure 6.3: Effect of Fast Reallocation. ScaleMem, with the help of
Fast Reallocation, is able to scale performance with threads.

6.7.3 Microbenchmarks

We analyze the throughput of ScaleMem by running microbenchmarks

that capture sequential, uniform and Zipfian read/write workloads. We

create a large file such that only half of it fits in a single node, memory

map the entire file, and use memcpy() to perform reads and writes using

different access patterns. We run this experiment using 4 threads. Each

memcpy() command reads/writes 1KB of data in this experiment. We

enable caching and prefetching depending on the access pattern, and report

the throughput in terms of ops/s. We compare our performance with NFS,

by restricting the DRAM in each node such that the DRAM can use the

page cache to cache half the size of the file for a fair comparison.
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Figure 6.4: Reads/Writes performance comparison with NFS. NFS
suffers from low performance in zipf and random reads as readahead in
NFS leads to high network overhead and thrashing.

Sequential Accesses. For sequential accesses, ScaleMem without read

caching performs similar to NFS, since both the systems suffer from the

same number of page faults. However, note that ScaleMem provides

DAX memory mappings and utilizes significantly lower memory compared

to NFS which caches all the remote pages in the page cache of the local

node. Furthermore, the durability guarantees provided by ScaleMem is

always the same as that for locally present data, even if it fetched as a

result of remote page fault. Whereas, for NFS, when it does a remote page

fault, the remote data is present exclusively in DRAM until an msync() is

invoked making it potentially more vulnerable to data loss in the presence

of client side crash or power loss. With read caching enabled, ScaleMem

outperforms NFS by 2.4× for reads as shown in Fig 6.4. Writes in Scale-
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Mem are 1.3× faster than NFS, since NFS has to perform more remote

I/O to flush the dirty data to the remote node, while ScaleMem uses the

local PM.

Uniform Random Accesses. Fine-grained caching and background prefetch-

ing work best when data access patterns are not uniformly random. Op-

timization techniques used by NFS such as sequential readahead on page

fault also suffer from poor performance due to thrashing for this access pat-

tern. Nevertheless, ScaleMem still outperforms NFS significantly. Specif-

ically, the ability to turn off prefetching for this workload prevents unnec-

essary (and useless) data transfers over the network. Fig 6.4 shows that

NFS requires almost 115× more I/O compared to ScaleMem, resulting

in ScaleMem obtaining over 10× speedup, mainly due to to caching.

Zipfian Accesses. ScaleMem is able to perform significantly better

than NFS in non-uniform, and specifically Zipfian workloads. ScaleMem

takes advantage of fine-grained caching, and manages to avoid remote page

faults, thus transferring less data over the network. The total network

I/O done by NFS is 36.8× higher than ScaleMem. This reflects in the

performance improvement, and ScaleMem outperforms NFS by 34× in

this workload. Writes do not benefit from the read cache, but ScaleMem’s

flexibility allows disabling prefetching and background evictions for writes

resulting in a 5× speedup over NFS for writes as shown in Fig 6.4.

6.7.4 Scalability in capacity

We run an experiment where we check the throughput of ScaleMem as

we keep increasing the dataset. We perform multiple experiments, first of

which creates a file of size 25GB, second creates a 50GB file that fits equally
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Figure 6.5: ScaleMem scaling with nodes. Shows sequential memcpy
writes to a file that gradually increases in size expands across 4 nodes.
Performance of ScaleMem scales with increasing number of nodes.

RocksDB LMDB PmemKV

ScaleMem 480.25 GB 305.94 GB 377.31 GB

NFS 5.14× 11.14× 1.25×

Table 6.5: Applications Network IO. This table shows the network I/O
incurred by NFS and ScaleMem. Overall ScaleMem does much lesser
network I/O. They show the aggregate network traffic across Load A, Run
A and Run C for YCSB and fillseq and randseq for DB Bench.

in 2 nodes, third creates a 75GB that fits in 3 nodes and lastly 100GB that

fits in 4 nodes. We then perform memcpy() reads in Zipfian access pattern.

ScaleMem is able to comfortably scale in capacity to 4 nodes. We report

the throughput of ScaleMem as we increase the size of the dataset. We

see that ScaleMem gracefully handles increased sizes in datasets, and is

able to sustain large workloads. Fig 6.5 shows this result.

6.7.5 Real-world Applications

We evaluate the end-to-end performance of real-world applications that

use ScaleMem to scale in PM capacity beyond the size of a single node.
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Figure 6.6: Application Performance Comparison. This Figure com-
pares the performance of ScaleMem with NFS on 3 real-world applica-
tions: RocksDB (a), LMDB (b) and PmemKV (c). ScaleMem outper-
forms NFS on all the 3 applications due to fast page fault handling using
Fast Reallocations and lesser network I/O due to its policies such as fine-
grained caching and configurable prefetching.
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We reiterate that only ScaleMem can run applications whose data spans

across multiple nodes without any modifications, and provides the same

consistency and durability guarantees to the applications as if all their

data was present on a single node.

We evaluate ScaleMem using production key-value databased, viz.

RocksDB [13], LMDB [61] and PmemKV [17].

YCSB on RocksDB.We run RocksDB configured to use memory-mapped

file reads and writes, with a memory cap of 25GB. We run the industry-

standard YCSB workloads on RocksDB with 50GB dataset consisting of

40M keys and operations. Each node is configured to 25GB of PM. We re-

port RocksDB throughput on ScaleMem and NFS in Figure 6.6. Scale-

Mem outperforms NFS by up-to 3x on read-heavy workloads, which have

a zipfian distribution, due to its efficiency in utilizing memory and hot data

tracking. ScaleMem suffers from 3× fewer page faults than NFS in Run

C which is a read-only workload. ScaleMem is slightly slower than NFS

on the write-only Load A workload, because it highlights the best case for

NFS. NFS is able to read ahead large chunks of data in the page cache for

this workload. Although ScaleMem also supports pre-fetching, the cost

of a page fault due to DAX in ScaleMem is more than NFS , resulting in

better performance for NFS in this workload. network I/O for ScaleMem

and NFS is provided in Table 6.5.

YCSB on LMDB. We run LMDB [61], a btree-based memory mapped

database, with the same YCSB workload suite, with a 100GB dataset.

We report the throughput of LMDB on Load A which has 100% writes,

Run A which performs 50% reads and 50% writes, and Run C which per-

forms 100% reads. The value sizes are approximately 1KB in size. The
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throughput numbers are reported in Fig 6.6. ScaleMem again manages

to outperform NFS by up-to 7x in the read-heavy workloads, due to rea-

sons similar to RocksDB. Note that ScaleMem is not able to use the

fine-grained cache in this workload because LMDB performs loads / stores

on the data instead of memcpy(), and loads / stores cannot be intercepted

via LD PRELOAD. Thus, the improvements observed in LMDB are purely

because of better tracking of hot pages in ScaleMem compared to NFS,

and better utilization of memory. The network I/O for ScaleMem and

NFS are provided in Table 6.5.

db bench on PmemKV. We run PMemKV [17], a key-value store from

Intel that uses a large memory-mapped file for storing data on PM. We con-

figure PMemKV’s cmap concurrent engine to run with 8 threads. We run

the write-only fillseq workload that sequentially inserts keys with 4KB-sized

values, followed by the readseq workload that reads the keys. PMemKV

gets better performance on ScaleMem, which is 2.2x higher than on NFS,

as shown in the Figure 6.6. ScaleMem manages to use the fine-grained

cache effectively in this workload, and suffers from significantly lower net-

work I/O compared to NFS.

6.7.6 CPU and Memory utilization

ScaleMem consumes DRAM for its metadata management in the App

Manager and Node Manager components (e.g. using red-black trees

for managing free space, maintaining inodes and open files in structures in

DRAM, etc). It additionally consumes CPU time to execute parallel page

faults and for performing background migration of data.

Memory usage. ScaleMem keeps track of all the blocks in the local

131



node using an array of structures. Each page entry is 64B in size, and

filling an entire partition of 50GB takes up less than 2GB of DRAM. The

memory usage of other components such as free-space trees and inodes

increases with the number of files, but is low enough to be assumed to be

less than 1GB in size.

CPU utilization. ScaleMem uses a configurable number of threads for

servicing page faults. The default is set to be 4 threads. Apart from this,

ScaleMem performs background tracking and evictions of cold blocks

using 2 threads. Furthermore, ScaleMem uses 4 dedicated threads for

RDMA, and uses one more thread for the Node Manager service per

node. Hence, ScaleMem has to use 11 additional threads in the default

case for its background activity and RDMA management, apart from the

application threads in the foreground.

6.8 Conclusion

This chapter presents ScaleMem, a system to support distributed DAX

memory mapping, that allows unmodified applications to create DAX mem-

ory mappings for PM, regardless of whether it is local or remote in a cluster.

ScaleMem uses Fast Reallocation, a novel technique to reduce bottlenecks

associated with the memory manager and file system in supporting remote

DAX memory mappings. ScaleMem demonstrates that it is possible to

scale application datasets while not compromising on durability guarantees

using remote DAX memory mappings.
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Chapter 7

Discussion

In this chapter, we discuss about alternative solutions to our work in achiev-

ing the same goals mentioned in the dissertation and how our systems com-

pare with each other. First, we discuss modifying existing file systems for

achieving our goals as opposed to creating new file systems (§7.1). Next,

we compare SplitFS and WineFS in terms of their design, and we discuss

how they can be used to complement each other (§7.2). We then discuss us-

ing ScaleMem with WineFS (§7.3). Finally, we talk about the relevance

of our contributions to other storage media (§7.4).

7.1 Modifying existing file systems

In this dissertation, we build two new file systems: SplitFS that targets

POSIX system call applications, and WineFS, which targets applications

that use memory-mapped files. An alternative way is to modify existing

production file systems to achieve the same goals, instead of building new

file systems from scratch, while leveraging the maturity of the file systems.

In this section, we discuss our attempts in modifying ext4 DAX instead of

building new file systems.



7.1.1 Leveraging ext4 DAX’s maturity in SplitFS

One of the major goals of SplitFS is to accelerate data operations (read()

and write()), while leveraging the maturity of ext4 DAX for metadata

operations (open(), close(), rename(), etc).

Accelerating Data operations from user space. The most common

operations in data-intensive applications are read() and write(). The

common case read() and write() operations are straightforward to im-

plement and test; SplitFS takes advantage of this fact and accelerates the

data operations. Data operations are serviced from user space by mem-

ory mapping the file regions to the applications’ address space and issuing

loads and stores from user space, bypassing all software layers. The major

gains in the performance of data operations come from avoiding expensive

operations such as allocations and context switches in the critical path.

Modifying ext4 DAX to optimize for data operations would involve mak-

ing changes to the allocation policy and journaling mechanisms, affecting

the functionality of metadata operations as well. Moreover, this would not

eliminate the overheads of context switching and the OS stack for every

data operation.

Leveraging the maturity ext4 DAX for metadata operations. Meta-

data operations are comparatively rare in data intensive applications. Fur-

thermore, POSIX has a number of corner cases to handle metadata op-

erations. All the reported file system crash consistency and correctness

bugs are for metadata operations. SplitFS relies on the maturity of ext4

DAX for these complex and rare operations. The operations are simply

forwarded to ext4 DAX in the kernel from user space, and the result of the

operation is returned to the applications.
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In this way, SplitFS strikes a balance between high performance by

accelerating common case data operations and maturity, by relying on the

stable and mature ext4 DAX for the complex and rare metadata operations.

7.1.2 Modifying ext4 DAX instead of building WineFS

While designingWineFS, we tried to modify ext4 DAX to achieve hugepage

friendliness for mmap() applications and high scalability for POSIX system-

call applications, without compromising on its maturity. In particular, we

tried to change the multi-block allocator as well as the journaling mecha-

nism in ext4 DAX.

Changing the allocation policy of ext4 DAX. ext4 DAX contains an

on-PM block bitmap which keeps track of the free-blocks. On top of the

bitmap, ext4 DAX maintains an in-memory multi-block allocator to keep

track of free extents. An allocation request first results in a scan of the

multi-block allocator for the best-fit extent, and then the block bitmap, if

the free-space is fragmented.

We changed the in-memory multi-block allocator take into account the

physical addresses along with contiguity. The multi-block allocator was

modified to allocate 2MB-sized aligned free-space regions for large alloca-

tions, getting hugepages for mmap()-based applications.

Changing block-based journaling to fine-grained journaling. ext4

DAX maintains a block-based JBD2 journal for crash consistency. The

journal suffers from high write amplification, especially for metadata op-

erations that require fine-grained updates. Furthermore, a call to fsync()

requires flushing the entire journal to PM, and requires a stop-the-world

approach, limiting the scalability of ext4 DAX. We changed the block-based
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journal to perform fine-grained journaling in ext4 DAX.

Problems. Changing the allocator helped in reliably getting hugepages for

mmap()-based applications on freshly-formatted ext4 DAX. However, when

aged, the allocator became a significant bottleneck, performing multiple

scans of the in-memory multi-block buddy allocator as well as the on-PM

block bitmap for finding free space.

Changing the data structure of the multi-block allocator and removing

the block bitmap would have required changes to the recovery mechanism

in ext4 DAX, along with changes to the core data structures of the file

system.

Tweaking the JBD-2 journal to perform fine-grained journaling helped

in reducing the overhead of fsync(), but the scalability was still limited

due to expensive locks held by the journal. Changing the journal altogether

to remove the locks and to perform per-core journaling would have led to

changes to the on-PM layout of ext4 DAX and the way it managed the

free-space.

Summary. Making changes to the allocation policy and the journaling

mechanism in ext4 DAX introduced necessary changes to multiple core

components of the file system, defeating the purpose of using a production-

level file system to leverage its maturity.

7.2 Comparing SplitFS and WineFS

SplitFS and WineFS are designed to satisfy different goals: SplitFS is

designed to accelerate legacy POSIX system-call applications, whileWineFS

is designed to accelerate mmap()-based applications. Thus, they involve dif-

ferent design decisions. We compare SplitFS and WineFS, and discuss
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whether SplitFS can be used with WineFS (instead of ext4 DAX) for

its kernel component. We compare SplitFS and WineFS along two axes:

design goals, performance.

7.2.1 Design Goals and Trade Offs

The different target applications for SplitFS and WineFS lead to differ-

ent design goals as well as design trade-offs.

Design goals of SplitFS and WineFS. The main motivation behind

designing SplitFS is to remove the software overheads from the critical

path of data access, for legacy data-intensive applications. For this purpose,

SplitFS was written in user-space to convert system calls into library calls

underneath the hood with no context switch overheads for data operations.

SplitFS relies on the kernel only for rare metadata operations.

The main motivation behind designing WineFS is to remove the soft-

ware overheads for mmap()-based applications running on PM. These ap-

plications are meant to run on byte-addressable media, and issue loads and

stores themselves for accessing data, without going through the file system.

However, in the presence of DAX, the file systems still impact application

performance due to placement of files on PM. WineFS uses a novel on-PM

layout and allocation policy to consider physical alignment along with con-

tiguity of free-space, while preserving the contiguity as the file system ages.

Since WineFS has to manage physical layout of files on PM, WineFS lies

in the kernel.

Design trade-offs in SplitFS and WineFS. Due to the different goals

of SplitFS and WineFS, they make different trade-offs. SplitFS lever-

ages the maturity of ext4 DAX for complex metadata operations, but also
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inherits the inefficiencies of ext4 DAX in handling metadata operations.

SplitFS does not optimize for mmap()-based applications, and, as a re-

sult, is not able to sustain high performance for such applications with

age.

WineFS, on the other hand, suffers from frequent context switches

for legacy data-intensive applications that issue POSIX system-call appli-

cations for accessing data. WineFS manages to achieve high scalability

along with hugepage friendliness, and hence has to build the file system

from scratch, without relying on the maturity of ext4 DAX.

7.2.2 Using SplitFS with WineFS

The different classes of applications targeted by SplitFS and WineFS

raise an interesting question: Can SplitFS be run on top of WineFS to

get high performance for legacy POSIX system-call applications as well as

mmap()-based applications?.

While it is possible to achieve high performance for a broad range of

applications by using WineFS as the kernel component for SplitFS, it

is not without limitations. Firstly, one of the main goals of SplitFS is

to rely on the maturity of a production file system, and to achieve high

performance along with stability. On average, production file systems take

a decade to mature and become stable [100, 101, 102, 103]. Since WineFS

is a research prototype, it does not promise to provide the stability and ma-

turity of ext4 DAX, which has been developed by thousands of developers

for decades, and is actively being maintained even today.

Secondly, using SplitFS may result in fragmentation of free space,

which contradicts with the goals of WineFS, and would compromise its
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performance. Specifically, the relink() system call introduced in SplitFS

moves 4KB blocks from one file to another, without moving data. This

system call alters the on-PM layout of files, and breaks alignment of files.

This causes file and free-space fragmentation, breaking hugepages. The

straighforward solution for this is to perform relink() for 2MB extents

instead of individual blocks, to maintain alignment and contiguity of free

space. The downside of this approach is write amplification: Moving 2MB

of data when 4KB is dirty will create a large number of journal entries,

making the relink() operation expensive.

7.3 Using ScaleMem with WineFS vs ext4 DAX

ScaleMem is targeted towards mmap()-based applications that run on

a single server, but access large amounts of data that cannot fit in the

PM capacity of one server. Such applications typically create large files,

memory map the files, and issue loads and stores from user-space.

Using ScaleMem with WineFS improves the performance of applica-

tions due to two reasons. First, WineFS helps obtain hugepages for such

applications, and reduces the number of page faults. Second, WineFS uses

efficient data structures compared to ext4 DAX for managing free-space

and to allocate blocks. For applications with frequent allocations in the

critical path (for e.g. PmemKV [17], LMDB [59], RocksDB [13], etc), fast

allocations have a severe impact on the end-to-end performance. PmemKV

when run with ScaleMem on top of WineFS provides 2× higher perfor-

mance compared to ext4 DAX on the write-only fillseq workload due to its

efficient allocation policy.
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7.4 Applicability to other storage media

In this section, we discuss whether the contributions made in this disser-

tation can be applied to other storage media. We first discuss whether our

techniques apply to block-based secondary storage devices such as HDDs

and SSDs. Then we discuss about the application of our techniques to

other byte-addressable media such as battery-backed DRAM or PCM.

7.4.1 Block-based storage devices

Block-based secondary storage devices such as HDDs and SSDs offer a

different interface compared to byte addressable media. We think that

the different contributions made in this paper, while well suited for byte-

addressable storage, do not apply to block-based storage devices, due to

the following reasons.

Software overheads do not dominate performance in POSIX system-

call applications. HDDs have an access latency in the order of millisec-

onds, while SSDs have an access latency in the order of tens or hundreds

of microseconds (Table 2.1). As opposed to this, the latency of a context

switch during a system call is in the order of a few nanoseconds. While

context switches become important for PM which is a low-latency storage

medium, the bottlenecks are shifted to the latency of the hardware when it

comes to HDDs or SSDs. As a result, the main contributions of SplitFS

for eliminating software overheads in the OS stack would not lead to a sig-

nificant improvement in overall performance for slower secondary storage

media.

File systems do not affect the performance of mmap()-based appli-
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cations. HDDs and SSDs do not allow direct loads and stores to storage

from user-space. As a result of this, the mmap()-based applications cannot

take advantage of DAX in order to map user-space addresses directly to

storage regions. File systems on HDDs and SSDs do not need to worry

about the placement of files on storage; data is copied from storage to

DRAM on a mmap() call, and is handled entirely by the memory man-

agement system in Linux. Thus, the contributions made by WineFS in

modifying the allocation policies to consider alignment along with contigu-

ity of free-space do not apply to block-based secondary storage media.

Aging on HDDs and SSDs is different from PM. HDDs and SSDs

benefit significantly from sequential access patterns, compared to random

access. The problem of aging of file systems on HDDs and SSDs is related

to contiguity of free-space, not the alignment of free-space. Furthermore,

aging on these storage media impacts the performance of POSIX system-

call based applications, and not applications that use memory-mapped files.

The design decisions made in WineFS to consciously use holes for the

POSIX system-call applications (§5.4.3) are contradictory to the properties

of HDDs and SSDs, and would lead to significant performance degradations.

Secondary storage devices are not impacted due to NUMA. Sec-

ondary storage devices are attached to the I/O bus instead of the memory

bus, and are not tied to NUMA nodes. Due to this, the file systems de-

signed for HDDs and SSDs need not be NUMA-aware, and do not need

to consider the physical address space and CPU affinities. The trade-offs

required to build file systems on HDDs and SSDs are thus different from

byte-addressable media.
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7.4.2 Byte addressable persistent media

In this dissertation, we build and evaluate systems on top of Intel Op-

tane DC Persistent Memory. However, there are different ways in which

byte-addressable persistent memory is offered, such as Phase Change Mem-

ory (PCM) [104], Spin-Torque Transfer RAM (STT-RAM) [32], Battery-

backed DRAM, and the emerging media such as memory-semantic SSDs [34]

and CXL-attached memory expansion [105, 106, 107, 108]. In this section,

we discuss the relevance and usefulness of the contributions and techniques

of this dissertation in the context of other byte-addressable persistent me-

dia.

The contributions of this dissertation assume certain properties of un-

derlying media, which are as follows:

1. Low access latency. Access latency should be similar to DRAM, in

the order of nanoseconds. Our contributions eliminate the software

overheads in the OS stack, where hardware is not the bottleneck.

2. Support for DAX. DAX should be supported for the underlying

medium, since this dissertation analyses the implications of DAX on

memory management and file systems, and proposes solutions.

3. Fast random access. Since this dissertation targets byte-addressable

media, we assume that the random access performance of the medium

is fast and similar to sequential access. In SplitFS and WineFS,

we design the file system to take advantage of the fast random access

by using up holes to sustain high performance in an aged setup.

We believe that these properties are common across all offerings of byte-

addressable persistent media, and we argue that the contributions of this
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dissertation are relevant and useful beyond the scope of Intel Optane DC

Persistent Memory.

7.5 Summary

In this chapter, we discuss how SplitFS and WineFS compare to each

other in terms of their goals, target use cases and design. We then discussed

how they could be used together to accelerate legacy applications as well as

modern PM applications. We then discussed about WineFS as the local

file system for ScaleMem. Finally, we discussed about how this work

is relevant generally to byte addressable media and not specific to Intel

Optane DC Persistent Memory.
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Chapter 8

Related Work

In this chapter, we discuss research and systems that are related to this

dissertation. First, we discuss past efforts made in designing PM file sys-

tems (§8.1). Then we discuss past work done on hugepage-friendliness and

NUMA affinity for PM systems (§8.2). Finally, we discuss distributed file

systems, far memory systems and distributed shared memory systems in

the context of big data mmap()-based applications (§8.3).

8.1 PM file systems

There has been a large body of work on PM file systems and building

low-latency storage systems. We briefly describe the work done in PM file

systems in this section.

Aerie. Aerie [65] was one of the first systems to advocate for accessing PM

from user-space. Aerie proposed a split architecture similar to SplitFS,

with a user-space library file system and a kernel component. Aerie used

a user-space metadata server to hand out leases, and only used the ker-

nel component for coarse-grained activities like allocation. In contrast,

SplitFS does not use leases (instead making most operations immedi-

ately visible) and uses splitfs as its kernel component, passing all metadata

operations to the kernel. Aerie proposed eliminating the POSIX interface,



and aimed to provide applications flexibility in interfaces. In contrast,

SplitFS aims to efficiently support the POSIX interface.

Strata. The Strata [58] cross-device file system is similar to Aerie and

SplitFS in many respects. There are two main differences from SplitFS.

First, Strata writes all data to a process-private log, coalesces the data, and

then writes it to a shared space. In contrast, only appends are private (and

only until fsync) in SplitFS; all metadata operations and overwrites are

immediately visible to all processes in SplitFS. SplitFS does not need

to copy data between a private space and a shared space; it instead relinks

data into the target file. Finally, since Strata is implemented entirely in

user-space, the authors had to re-implement a lot of VFS functionality in

their user-space library. SplitFS instead depends on the mature codebase

of ext4 DAX for all metadata operations.

Quill and FLEX. Quill [109] and File Emulation with DAX (FLEX) [56]

both share with SplitFS the core technique of transparently transforming

read and overwrite POSIX calls into processor loads and stores. How-

ever, while Quill and FLEX do not provide strong semantics, SplitFS

can provide applications with synchronous, atomic operations if required.

SplitFS also differs in its handling of appends. Quill calls into the kernel

for every operation, and FLEX optimizes appends by pre-allocating data

beyond what the application asks for. In contrast, SplitFS elegantly han-

dles this problem using staging files and the relink primitive. While Quill

appends are slower than ext4 DAX, SplitFS appends are faster than ext4

DAX appends. At the time of writing this paper, FLEX has not been made

open-source, so we could not evaluate it.

Native PM file systems. Several file systems such as SCMFS [64],
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BPFS [63], and NOVA [37] have been developed specifically for PM. While

each file system tries to reduce software overhead, they are unable to avoid

the cost of trapping into the kernel. The relink primitive from SplitFS

is similar to the short-circuit paging presented in BPFS. However, while

short-circuit paging relies on an atomic 8-byte write, SplitFS relies on

ext4’s journaling mechanism to make relink atomic.

Kernel By-Pass. Several projects have advocated direct user-space ac-

cess to networking [110], storage [111, 112, 113, 114], and other hardware

features [115, 116, 117]. These projects typically follow the philosophy of

separating the control path and data path, as in Exokernel [76] and Neme-

sis [118]. SplitFS follows this philosophy, but differs in the abstraction

provided by the kernel component; SplitFS uses a PM file system as its

kernel component to handle all metadata operations, instead of limiting it

to lower-level decisions like allocation.

8.2 Hugepage-friendliness and file system aging

We now discuss prior research done in hugepage-friendliness in the context

of PM file systems, for mmap()-based applications. We also discuss prior

research done in reducing journaling overheads for POSIX system-call ap-

plications.

Hugepage-friendliness. Prior work studied the high cost of page faults in

PM file systems and proposed changes to the memory sub-system [119]; in

contrast, WineFS does not require any changes to the memory subsystem.

Intel PMDK [53] recommends using ext4 DAX [120] or xfs DAX [39] with

2MB sized blocks, to ensure hugepage-friendliness. However, the down-

side of this approach is high space amplification for applications with files
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smaller than 2MB.

NOVA [37] attempts to allocate hugepage-aligned physical extents, but

requires allocation requests to be exact multiples of 2MB. The log-structured

design of NOVA fragments free space; NOVA does not seek to prevent this.

The free-space allocator in other PM file systems ignores fragmentation and

physical alignment, causing a decrease in hugepages. WineFS is the first

PM file system that has hugepage-friendliness as a primary design concern

and shows that hugepages can be achieved without high space amplifica-

tion.

Aging in PM file systems. Prior work has studied aging in file systems

on magnetic hard drives [69] and SSDs [71, 72, 70]. While prior work has

studied aging on emulated persistent memory [70], our work is the first to

not only understand the problems that occur with aging on actual PM, but

also address it via WineFS.

TLB effects. The correlation of increased performance due to larger TLB

reach and coarser TLB mappings on PM was noted by prior work [121],

but WineFS is the first to explain the reason behind these observations.

Recent work [122] also speaks about the perils of TLB shootdowns, though

not in the context of PM.

Fsync overhead. PM file systems like BPFS [63], PMFS [40], NOVA [37],

Strata [58], and SplitFS [55] have reduced the overhead of fsync(). How-

ever, the log-structuring or copy-on-write design of NOVA, Strata, and

SplitFS causes fragmentation and reduces hugepages. PMFS uses a sin-

gle journal that becomes the bottleneck in multi-threaded applications.

WineFS uses fine-grained per-CPU undo journal which minimizes fsync()

overhead without trading off hugepages.

147



8.3 Distributed file and memory management

We now discuss past research on distributed file and memory systems for

PM. We put this research in the context of ScaleMem. While ScaleMem

builds on a wealth of research, it is the first system that provides the

guarantees of remote DAX-based file memory mappings for applications.

Furthermore, ScaleMem is the only system that can support applications

that issue POSIX system calls as well as DAX-based memory mappings for

files without compromising on consistency and durability.

Distributed File Systems Distributed file systems modify the file system

component for allowing datasets to scale to multiple nodes. However, most

distributed file systems do not manage the virtual memory subsystem to

allow for memory mapping of distributed or remote files, and do not sup-

port applications that access data using memory-mapped files. Examples

of Distributed file systems are Assise [85], Orion [123], Octopus [124], Lus-

tre [125], Colossus/GFS [126] all of which do not offer memory mapping

over distributed files.

Some file systems like NFS [60] and Ceph [127] allow for clients to use

memory mapped files that lie in the server. These file systems offer memory

mapped interface by loading the file blocks in the DRAM page cache of the

client nodes. They rely on msync() in order to persist the dirty pages on

to files on the remote servers. NFS and Ceph do not offer DAX memory-

mappings, which directly map PM regions on to the user virtual addresses.

This leads to data loss when DAX-based memory mapped applications such

as PmemKV [17] which use instructions such as clwb and sfence to persist

their data rather than msync() operations. Furthermore, NFS and Ceph

end up using an unbounded memory for their page cache in the server and
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the client for storing the memory mapped pages.

Far Memory Systems Far Memory systems [128, 129, 92, 93] allow heap-

based applications to use the memory of remote machines using RDMA.

AIFM [128] and FaRM [129] require application modifications to use spe-

cific APIs in order to scale to the memory of remote nodes. Remote re-

gions [130] uses the memory-mapped API for accessing far memory, but

require application modifications for data consistency. Fastswap [92] and

Infiniswap [93] run unmodified heap-based applications and use the mem-

ory of remote nodes instead of local swap disks, by modifying the swap

subsystem to perform RDMA to remote memory.

ScaleMem focuses on scaling applications that use file-backed mmap()

instead of heap memory, especially when application data does not fit in the

PM of a single node. This forces ScaleMem to deal with unique challenges

in terms of unified management of file systems and memory management

when using DAX that are not faced by far memory systems.

Distributed Shared Memory systems There has been a large body

of work around distributed shared memory (DSM) [131, 132]. However,

without RDMA, networks were a critical bottleneck in traditional DSM

systems. Since the introduction of modern networks and protocols such as

RDMA over infiniband, there has been renewed interest for DSM systems.

Recent DSM systems include Grappa [133], GAM [134], Argo [135], etc.

All the these systems require applications to use specific APIs in order to

access the underlying DSM. For example, Grappa requires that applications

use particular keywords and delegate functions for executing on the node

that owns the data. GAM requires applications to use a subset of modified

memory-management instructions such as and in order to allocate from
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shared memory. Additionally, DSM systems, like far memory systems,

are used for heap-based memory applications, and do not use file-backed

memory mappings.

In contrast, ScaleMem does not require any modifications to the ap-

plications. ScaleMem is able to transparently scale the working set of

applications, that use file-backed memory mappings, to the PM capacity

of multiple nodes.

Distributed Shared Persistent Memory (HotPot) The closest sys-

tem to ScaleMem is HotPot [94], which uses Distributed Shared Persistent

Memory (DSPM) for increasing the total available memory capacity to ap-

plications. HotPot uses an intuitive API, similar to local memory-mapping,

but still requires application modifications for issuing commit points. Fur-

thermore, HotPot is focused on scaling out applications through replication

and in terms of compute, but requires that the entire application dataset

fits in the PM capacity of a single node.

ScaleMem, on the other hand, is focused on increasing the working

set sizes of applications, and does not provide replication or fault tolerance.

ScaleMem does not require any application modifications, and can use

the unmodified mmap() interface to applications. Furthermore, ScaleMem

supports POSIX system calls along with memory mappings, while HotPot

focuses purely on memory mapped applications that do not issue any other

system calls to access data.
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Chapter 9

Future Work

In this chapter, we outline directions in which our work could be extended

in the future. This fall into three main categories: reducing overheads

of performing memory management in user-space, building tiered mem-

ory systems that leverage other memory and storage media and providing

stronger guarantees for user data, such as availability and fault tolerance.

9.1 eBPF for memory management

We implemented the entire memory management layer in user-space in

ScaleMem. This allowed ScaleMem to perform application-specific

memory hot data tracking as well as prefetching. ScaleMem manages

memory in user-space by registering memory to userfaultfd, and then writ-

ing a page fault handler routine in user-space for handling page faults. The

main drawback of this approach is that page faults become expensive. Fig-

ure 9.1 shows a path of a page fault in a memory region registered with

userfaultfd. As we can see in the figure, every page fault has to incur

multiple context switches from user-space to kernel space.

eBPF is a method by which user-space code can be injected at arbitrary

points in the Linux kernel, without requiring any recompilation. Using

eBPF for handling page faults would allow user-space policies for tracking
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Figure 9.1: Userfaultfd path. This figure shows the path of a page fault
when userfaultfd is enabled. Page faults serviced through userfaultfd suffer
from high overheads due to multiple context switches between user space
and kernel.

hot data, while reducing the number of context switches in the page fault

routine. This would reduce the overheads of page faults.

ScaleMem suffers from a high number of page faults when the data

does not fit in the PM capacity of a single server. Each eviction of a

page results in removing its page table entries, causing a page fault on a

subsequent access to the page. Reducing the overheads of page faults by

using eBPF for memory management has the potential to have significant

performance gains.

Handling page faults in the kernel using eBPF also aids in RDMA

programming. Using RDMA in the kernel enables privileged features such

as registering memory regions for DMA when the data arrives over the

network. This saves CPU utilization during remote data handling, and

increases the performance.
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9.2 Leveraging other memory and storage technolo-

gies

The contributions made in this dissertation are in the context of PM used

as the only storage device. While we believe that the adoption of byte-

addressable persistent storage devices in the future is inevitable, we believe

that other cheaper forms of block storage such as HDDs and SSDs will stay

relevant. Additionally, there are newer memory technologies and intercon-

nects that are being proposed, such as Compute eXpress Link (CXL) or

byte-addressable SSDs, which can co-exist with other byte-addressable me-

dia. We believe that it is important to build tiered systems that can take

advantage of the different characteristics of the different technologies in a

single system.

In modern datacenters, memory is one of the costliest resources [136]

and consumes the most amount of power. Furthermore, memory is heavily

underutilized – it is always provisioned for the peak, which is bursty in

nature. Adding memory and storage tiering to distributed memory man-

agement systems such as ScaleMem will enable us to use cheaper forms

of memory for cold data, and buy lesser amounts of expensive DRAM, and

ensure high utilization. This has the potential to save millions of dollars,

along with reducing the carbon footprint of datacenters. SplitFS and

WineFS can also be extended to include SSDs and HDDs as their lower

tiers, similar to Strata [58], such that the hot data stays in PM while the

cold data is compacted and stored in a sequential format on block-based

secondary storage devices.

Adding multiple memory and storage technologies will make hot data

tracking vital for performance. Depending on the performance character-

153



istics and the density of the technology, the data can be kept such that

the hottest data lies in the best performing tier. We believe that this is

an exciting area of exploration in the future, which has the potential to

fundamentally impact memory management of datacenters.

9.3 Building systems that provide stronger guaran-

tees

ScaleMem allows applications to extent their working data set sizes to

multiple nodes, while providing the same load/store interface and guaran-

tees of visibility of data, thus, not requiring applications to be modified in

any way. However, ScaleMem suffers from unavailability of data due to

server or network failures.

We think that it is important to enable distributed DAX-based memory

management systems such as ScaleMem to provide reliability and avail-

ability of user data. Existing work in the context of far memory has been

proposed by Google in the Carbink system [137]. ScaleMem can use tech-

niques proposed by Carbink to enable replication of hot data, and erasure

coding for the cold data, and provide high fault tolerance and availability

of data, without compromising significantly on the performance.

9.4 Summary

In this chapter, we discussed how our dissertation work can be extended in

the future. First, we discussed about using eBPF for managing memory,

allowing use of DMA registration for RDMA along with per-application

policies for tracking hot data. Next, we discussed about designing a tiered

approach that uses multiple memory technologies for big data applications
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along with hot data tracking according to the tiered memory characteristics.

Finally, we discussed about providing stronger reliability guarantees for big

data applications while providing DAX guarantees to applications.
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Chapter 10

Lessons Learned and Conclusions

Today, data centric applications such as key-value stores, databases, graph

processing systems rely on low-latency and high throughput access to data,

along with strong guarantees for reliability of their data. This has led to

newer storage devices such as PM, that offer fine-grained byte-addressable

storage at nanosecond-scale latency. This shifts the bottlenecks from the

hardware storage devices, to the software, that manages the storage devices.

In this dissertation, we presented solutions that offer high performance

along with strong consistency as well as durability for a wide range of

applications running on PM.

We started by understanding the different ways in which applications

access PM. We then analyzed how the existing OS stack and PM file sys-

tems incur software overheads that limit the performance of the applica-

tions running on PM. Finally, we observed how the current systems are

incapable of running PM applications with large data sets that don’t fit in

a single server, while providing the same consistency and visibility guaran-

tees.

In this dissertation, we presented our solutions to the above problems.

We introduced SplitFS, a new PM file system that reduces the software

overheads for legacy POSIX applications. Then we presented WineFS,

a PM file system that is aimed at reducing software overheads for newer



PM applications. Finally, we introduced ScaleMem that enables PM

applications to scale in terms of capacity to the PM of multiple servers,

without compromising on guarantees.

In this chapter, we first summarize our solutions (§10.1). We then

describe the lessons we have learned in the course of this dissertation work

(§10.2). Finally, we conclude.

10.1 Summary

In this dissertation, we look at three different ways in which applications

interact with PM, analyze the software overheads incurred by current sys-

tems, and present our solutions. We summarize each class of applications,

along with our solutions.

10.1.1 Improving performance of legacy I/O inten-

sive applications

The first part of this dissertation consists of accelerating legacy applica-

tions, that are designed for HDDs and SSDs, and are run on PM. We

studied the way in which legacy I/O intensive applications interact with

PM. We then analyzed the overheads of these applications, and our anal-

ysis led to the conclusion that PM file systems suffer from severe software

overheads that slow down these applications. Specifically, we saw that the

overheads came from common data operations such as read() and write()

performing expensive operations such as allocations and context switches

in the critical path.

We presented SplitFS, a new file system for PM that reduces soft-

ware overheads significantly compared to state-of-the-art PM file systems.
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SplitFS presents a novel split of responsibilities between a user-space li-

brary file system and an existing kernel PM file system. The user-space

library file system handles data operations by intercepting POSIX calls,

memory-mapping the underlying file, and serving reads and overwrites us-

ing processor loads and stores. Metadata operations are handled by the ker-

nel file system ext4 DAX. By accelerating the data operations, SplitFS is

able to accelerate legacy I/O intensive applications by up-to 2× compared

to other PM file systems, while providing the same or stronger guarantees.

10.1.2 Improving performance of modern PM appli-

cations

The second part of this dissertation consists of improving the performance

of modern applications that are designed for byte addressable media such

as PM. We observed that new PM applications access PM in a different

manner, compared to legacy I/O intensive applications. Specifically, we saw

that the applications typically create one or a few large files, memory map

the files, and access data using loads and stores from user-space, without

entering the kernel for data accesses. We observed that the performance

of the applications depends on the number of page faults incurred by the

applications during run time. Huge pages help reduce page faults and

improve performance. However, getting hugepages on PM requires that

DAX file systems allocate file extents on aligned and contiguous hugepage

boundaries. We saw that existing PM file systems were unable to reliably

allocate file extents on hugepage boundaries, especially when aged, due to

free-space fragmentation.

We builtWineFS, a novel hugepage-aware PM file system that is aimed
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at accelerating moderm PM applications that memory-map files. WineFS

combines a new alignment-aware allocator that takes into account align-

ment of free-space, along with its contiguity, for allocating hugepage-aligned

extents for the memory-mapped files. WineFS uses a suitable on-PM lay-

out, and employs fragmentation-avoiding approaches to consistency and

concurrency to preserve the ability to use hugepages with age. WineFS is

able to reliably get hugepages, even when 90% of the partition is full and

aged, and is able to outperform the other PM file systems by up-to 2× on

memory-mapped applications.

10.1.3 Improving performance of big-data applications

The final part of this dissertation targets big-data applications, which are

PM applications with large data sets that may not fit in the PM of a

single server. In this age of data explosion, applications such as graph

processing systems, ML training frameworks and key-value stores typically

work with terabytes of data. Furthermore, these applications depend on

DAX for global visibility and cacheline-level flushing of data. We observed

that existing systems such as distributed file systems, far memory systems

and distributed shared memory systems fail to honor the properties of

DAX while supporting large data sets, which leads to data loss or requires

application modifications.

We introduced a new abstraction named distributed DAXmemory map-

pings (ddmap()), for PM which allows unmodified PM applications to cre-

ate DAX memory mappings, regardless of whether the mappings are in the

local or remote server. Furthermore, We built ScaleMem, which is a sys-

tem that implements the ddmap() abstraction. ScaleMem codesigns the
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file system and memory management layers to provide DAX guarantees to

applications with large data sets. ScaleMem provides applications with

the illusion of running on a server with a large amount of PM attached

to it, and manages application data underneath the hood across multiple

servers, without requiring any application modifications. By migrating hot

data to local server and reducing software overheads in the file system and

memory management layers, ScaleMem is able to outperform NFS by up

to 7× on read-heavy workloads while providing stronger guarantees of data

durability.

10.2 Lessons Learned

In this section, we present a list of general lessons we learned while working

on this dissertation.

10.2.1 Transitioning from block addressability to byte

addressability

While working on this dissertation, we realized that transitioning from

block addressable storage to byte addressable storage requires revisiting

fundamental designs in storage systems that are built for block devices.

We discuss policies that are crucial in building high-performance systems

for byte addressable storage.

Avoiding work in the critical path. In this dissertation, we exten-

sively studied the software overheads of existing systems on a wide variety

of applications. We observed that the root of the software overheads came

from performing expensive operations in the critical path of common op-

erations. For example, in SplitFS, we observed that current file systems
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performed expensive allocations and metadata management on every data

access. In WineFS, we observed that due to suboptimal placement of files,

data access incurred page faults which required expensive context switches

in the critical path. The contributions in this work include techniques that

avoid work in the critical path. We pre-allocate wherever possible, and use

a background thread to perform pre-allocation in the background. Simi-

larly, we pre-fault memory mappings, and use a cache to re-use memory

mappings as much as possible. We believe that this design principle will

be useful for other systems designed for fast storage media.

Tracking fine-grained data accesses. Modern applications such as key-

value stores, graph processing systems, or ML training frameworks typically

access small keys and values, in the range of tens to hundreds of bytes. How-

ever, existing software systems including the Linux kernel tracks data access

at the granularity of pages, which are 4KB in size. This results in multiple

problems, such as overestimation of hot data causing inefficient caching, or

increased write amplification in the case of crash consistency mechanisms

such as journaling or copy-on-write. We think that there should be a fun-

damental change in tracking data, allowing fine-grained tracking of data

in an efficient manner. This will greatly benefit applications that leverage

modern byte-addressable memory and storage technologies in the future.

10.2.2 Designing application-specific policies

There are a diverse range of applications, each of which have different ways

of accessing storage. Designing global policies for managing applications

leads to sub-optimal performance for all the applications.

In SplitFS, we provide different crash consistency guarantees, ac-
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cording to the durability and consistency requirements of the applica-

tions. The SplitFS user space library binds to applications, and provides

the application-specific guarantees with the help of operation logging. In

ScaleMem, we track the hot data of applications using different policies

according to the way the applications access data, by binding to the ap-

plications. We believe that such application-tailored policies will become

increasingly important with newer applications and hardware technologies,

along with the demands for high performance.

10.2.3 Using DRAM effectively

In block addressable storage media, due to high latency of storage, DRAM

is used as a write-back cache. However, with the introduction of storage

class memory such as PM with access latency similar to DRAM, data di-

rectly reach PM without involving the page cache. However, we believe

that DRAM still plays a crucial role in the presence of PM.

DRAM should be used to store temporary data, or data that can be re-

constructed on a crash. For example, in the case of WineFS, we designed

the entire free-space allocator in memory, using efficient in-memory data

structures such as red-black tree. This avoids unnecessary wear-out of PM,

as the allocator is accessed frequently, causing small random writes on the

media. The allocator can be re-constructed on a crash, by scanning the

PM partition, which can be done efficiently in parallel.

10.3 Closing Words

We are at a critical juncture of systems research, with newer hardware

technologies coming up due to the end of Moore’s law, along with high
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demands for performance in applications that generate and consume in-

creasing amount of data. This high demand for performance along with

innovations in hardware have caused the bottlenecks to shift in the software

stack. In this dissertation we present solutions that take into account the

characteristics of newer hardware technologies. With newer memory and

storage technologies coming up, this dissertation shows that by carefully

designing software, it is possible to build systems that achieve both high

performance as well as strong guarantees for applications, without placing

the burden on application developers.
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