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Abstract

Current state-of-the-art approximate nearest neighbor search (ANNS) algorithms
generate indices that must be stored in main memory for fast high-recall search.
This makes them expensive and limits the size of the dataset. We present a
new graph-based indexing and search system called Disk ANN that can index,
store, and search a billion point database on a single workstation with just 64GB
RAM and an inexpensive solid-state drive (SSD). Contrary to current wisdom,
we demonstrate that the SSD-based indices built by Disk ANN can meet all three
desiderata for large-scale ANNS: high-recall, low query latency and high density
(points indexed per node). On the billion point SIFT1B bigann dataset, Disk ANN
serves > 5000 queries a second with < 3ms mean latency and 95%+ 1-recall@1
on a 16 core machine, where state-of-the-art billion-point ANNS algorithms with
similar memory footprint like FAISS [18]] and IVFOADC+G+P [8] plateau at
around 50% 1-recall@l. Alternately, in the high recall regime, Disk ANN can
index and serve 5 — 10x more points per node compared to state-of-the-art graph-
based methods such as HNSW [21]] and NSG [13]]. Finally, as part of our overall
DiskANN system, we introduce Vamana, a new graph-based ANNS index that is
more versatile than the existing graph indices even for in-memory indices.

1 Introduction

In the nearest neighbor search problem, we are given a dataset P of points in some space. The goal is
to design a data structure of small size, such that, for any query ¢ in the same metric space, and target
k, we can retrieve the k nearest neighbors of ¢ from the dataset P quickly. This is a fundamental
problem in algorithms research, and also a commonly used sub-routine in a diverse set of areas
such as computer vision, document retrieval and recommendation systems, to name a few. In these
applications, the actual entities — images, documents, user profiles — are embedded into a hundred
or thousand dimensional space such that a desired notion of the entities’ similarity is encoded as
distance between their embeddings.

Unfortunately, it is often impossible to retrieve the exact nearest neighbors without essentially
resorting to a linear scan of the data (see, e.g., [15,123]]) due to a phenomenon known as the curse of
dimensionality [10]. As a result, one resorts to finding the approximate nearest neighbors (ANN)
where the goal is to retrieve k neighbors which are close to being optimal. More formally, consider a
query g, and suppose the algorithm outputs a set X of k candidate near neighbors, and suppose G is
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the ground-truth set of the k closest neighbors to ¢ from among the points of the base dataset. Then,

we define the k-recall@k of this set X to be LZG‘ The goal of an ANN algorithm then is to maximize
recall while retrieving the results as quickly as possible, which results in the recall-vs-latency tradeoff.

There are numerous algorithms for this problem with diverse index construction methodologies
and a range of tradeoffs w.r.t indexing time, recall, and query time. For example, while k-d trees
generate compact indices that are fast to search in low dimensions, they are typically very slow when
dimension d exceeds about 20. On the other hand, Locality Sensitive Hashing based methods [2| 4]
provide near-optimal guarantees on the tradeoff between index size and search time in the worst case,
but they fail to exploit the distribution of the points and are outperformed by more recent graph-based
methods on real-world datasets. Recent work on data-dependent LSH schemes (e.g. [3]) is yet to be
proven at scale. As of this writing, the best algorithms in terms of search time vs recall on real-world
datasets are often graph-based algorithms such as HNSW [21]] and NSG [13]] where the indexing
algorithm constructs a navigable graph over the base points, and the search procedure is a best-first
traversal that starts at a chosen (or random) point, and walks along the edges of the graph, while
getting closer to the query at each step until it converges to a local minimum. A recent work of Li et
al. [20] has an excellent survey and comparison of ANN algorithms.

Many applications require fast and accurate search on billions of points in Euclidean metrics. Today,
there are essentially two high-level approaches to indexing large datasets.

The first approach is based on Inverted Index + Data Compression and includes methods such as
FAISS [18] and IVFOADC+G+P [8]. These methods cluster the dataset into M partitions, and
compare the query to only the points in a few, say, m << M partitions closest to the query.
Moreover, since the full-precision vectors cannot fit in main memory, the points are compressed
using a quantization scheme such as Product Quantization [17)]. While these schemes have a small
memory footprint — less than 64 GB for storing an index on billion points in 128 dimensions — and
can retrieve results in < 5 ms using GPUs or other hardware accelerators, their 1-recall@1 is rather
low (around 0.5) since the data compression is lossy. These methods report higher recall values for a
weaker notion of 1-recall@100 — the likelihood that the true nearest neighbor is present in a list of
100 output candidates. However, this measure may not be acceptable in many applications.

The second approach is to divide the dataset into disjoint shards, and build an in-memory index for
each shard. However, since these indices store both the index and the uncompressed data points,
they have a larger memory footprint than the first approach. For example, an NSG index for 100M
floating-point vectors in 128 dimensions would have a memory footprint of around 75GBEI Therefore,
serving an index over a billion points would need several machines to host the indices. Such a scheme
is reportedly [13] in use in Taobao, Alibaba’s e-commerce platform, where they divide their dataset
with 2 billion 128-dimensional points into 32 shards, and host the index for each shard on a different
machine. Queries are routed to all shards, and the results from all shards are aggregated. Using this
approach, they report 100-recall@100 values of 0.98 with a latency of ~ 5ms. Note that extending
this to web scale data with hundreds of billions of points would require thousands of machines.

The scalability of both these classes of algorithms is limited by the fact that they construct indices
meant to be served from main memory. Moving these indices to disks, even SSDs, would result in a
catastrophic rise of search latency and a corresponding drop in throughput. The current wisdom on
search requiring main memory is reflected in the blog post by FAISS [11]]: “Faiss supports searching
only from RAM, as disk databases are orders of magnitude slower. Yes, even with SSDs.”

Indeed, the search throughput of an SSD-resident index is limited by the number of random disk
accesses/query and latency is limited by the the number of round-trips (each round-trip can consist of
multiple reads) to the disk. An inexpensive retail-grade SSD requires a few hundred microseconds
to serve a random read and can service about ~ 300K random reads per second. On the other hand,
search applications (e.g. web search) with multi-stage pipelines require mean latencies of a few
milliseconds for nearest neighbor search. Therefore, the main challenges in designing a performant
SSD-resident index lie in reducing (a) the number of random SSD accesses to a few dozen, and (b)
the number of round trip requests to disk to under ten, preferably five. Naively mapping indices
generated by traditional in-memory ANNS algorithms to SSDs would generate several hundreds of
disk reads per query, which would result in unacceptable latencies.

The average degree of an NSG index can vary depending on the inherent structure of the dataset, here we
assume a degree of 50, which is reasonable for datasets with little inherent structure.



1.1 Our technical contribution

We present Disk ANN, an SSD-resident ANNS system based on our new graph-based indexing
algorithm called Vamana, that debunks current wisdom and establishes that even commodity SSDs
can effectively support large-scale ANNS. Some interesting aspects of our work are:

e DiskANN can index and serve a billion point dataset in 100s of dimensions on a workstation
with 64GB RAM, providing 95%+ 1-recall@1 with latencies of under 5 milliseconds.

e A new algorithm called Vamana which can generate graph indices with smaller diameter than
NSG and HNSW, allowing Disk ANN to minimize the number of sequential disk reads.

e The graphs generated by Vamana can be also be used in-memory, where their search performance
matches or exceeds state-of-the-art in-memory algorithms such as HNSW and NSG.

e Smaller Vamana indices for overlapping partitions of a large dataset can be easily merged into
one index that provides nearly the same search performance as a single-shot index constructed for
the entire dataset. This allows indexing of datasets that are otherwise too large to fit in memory.

e We show that Vamana can be combined with off-the-shelf vector compression schemes such as
product quantization to build the Disk ANN system. The graph index along with the full-precision
vectors of the dataset are stored on the disk, while compressed vectors are cached in memory.

1.2 Notation

For the remainder of the paper, we let P denote the dataset with |P| = n. We consider directed
graphs with vertices corresponding to points in P, and edges between them. With slight notation
overload, we refer to such graphs as G = (P, E) by letting P also denote the vertex set. Given a
point p € P in a directed graph, we let N, (p) to denote the set of out-edges incident on p. Finally,
we let x,, denote the vector data corresponding to p, and let d(p, ¢) = ||x, — X4|| denote the metric
distance between two points p and ¢. All experiments presented in this paper used Euclidean metric.

1.3 Paper Outline

Section [2] presents Vamana our new graph index construction algorithm and Section [3] explains
the overall system design of DiskANN. Section [] presents an empirical comparison Vamana
with HNSW and NSG for in-memory indices, and also demonstrates the search characteristics of
Disk ANN for billion point datasets on a commodity machine.

2 The Vamana Graph Construction Algorithm

We begin with a brief overview of graph-based ANNS algorithms before presenting the details of
Vamana, a specification which is given in Algorithm [3]

2.1 Relative Neighborhood Graphs and the GreedySearch algorithm

Most graph-based ANNS algorithms work in the following manner: during index construction, they
build a graph G = (P, E) based on the geometric properties of the dataset P. At search time, for a
query vector x4, search employs a natural greedy or best-first traversal, such as in Algorithm|I| on G.
Starting at some designated point s € P, they traverse the graph to get progressively closer to x,.

There has been much work on understanding how to construct sparse graphs for which the
GreedySearch(s, x4, k, L) converges quickly to the (approximate) nearest neighbors for any query.
A sufficient condition for this to happen, at least when the queries are close to the dataset points,
is the so-called sparse neighborhood graph (SNG), which was introduced in [SE In an SNG, the
out-neighbors of each point p are determined as follows: initialize a set S = P \ {p}. As long as
S # (), add a directed edge from p to p*, where p* is the closest point to p from S, and remove from
S all points p such that d(p, p’) > d(p*,p’). It is then easy to see that GreedySearch(s,xp,1,1)
starting at any s € P would converge to p for all base points p € P.

While this construction is ideal in principle, it is infeasible to construct such graphs for even
moderately sized datasets, as the running time is O(n?). Building on this intuition, there have
been a series of works that design more practical algorithms that generate good approximations of
SNGs [21} [13]]. However, since they all essentially try to approximate the SNG property, there is very

little flexibility in controlling the diameter and the density of the graphs output by these algorithms.

3This notion itself was inspired by a related property known as the Relative Neighborhood Graph (RNG)
property, first defined in the 1960s [16].



Algorithm 1: GreedySearch(s,x,, k, L)

Data: Graph G with start node s, query X, result
size k, search list size L > k
Result: Result set £ containing k-approx NNs, and

Algorithm 2: RobustPrune(p, V, a, R)

Data: Graph G, point p € P, candidate set ),
distance threshold o > 1, degree bound R
Result: G is modified by setting at most R new

a set V containing all the visited nodes out-neighbors for p
begin begin
initialize sets L+ {s} and V + 0 V = (VU Nout(p)) \ {p}
while K\V#(Z) do Nout(p) <_®
let px <— argminyecp\y ||Xp — Xg|| while V # () do
update £ < LU Nous(p®) and p* « argmingcy d(p,p’)

vV« Vu{p} Nout(p) ¢ Nout(p) U {p"}
if |£| > L then if |Nout(p)| = R then
L update £ to retain closest L L break
points to X4 for p' €V do

return [closest k points from L; V]

L if a-d(p*,p") <d(p,p’) then

L remove p’ from V

2.2 The Robust Pruning Procedure

As mentioned earlier, graphs which satisfy the SNG property are all good candidates for the
GreedySearch search procedure. However, it is possible that the diameter of the graphs can be quite
large. For example, if the points are linearly arranged on the real line in one dimension, the O(n)
diamater line graph, where each point connects to its two neighbors (one at the end), is the one that
satisfies the SNG property. Searching such graphs stored in disks would incur many sequential reads
to the disk at to fetch the neighbors of the vertices visited on the search path in Algorithm T}

To overcome this, we would like to ensure that the distance to the query decreases by a multiplicative
factor of o > 1 at every node along the search path, instead of merely decreasing as in the SNG
property. Consider the directed graph where the out-neighbors of every point p are determined by the
RobustPrune(p, V, o, R) procedure in Algorithm 2} Note that if the out-neighbors of every p € P
are determined by RobustPrune(p, P \ {p}, a,n — 1), then GreedySearch(s, p, 1, 1), starting at
any s, would converge to p € P in logarithmically many steps, if a > 1. However, this would result

in a running time of 6(712) for index construction. Hence, building on the ideas of [21,[13]], Vamana
invokes RobustPrune(p, V, «, R) for a carefully selected V with far fewer than n — 1 nodes, to
improve index construction time.

2.3 The Vamana Indexing Algorithm

Vamana constructs a directed graph G in an iterative manner. The graph G is initialized so that each
vertex has IR randomly chosen out-neighbors. Note that while the graph is well connected when
R > log n, random connections do not ensure convergence of the GreedySearch algorithm to good
results. Next, we let s denote the medoid of the dataset P, which will be the starting node for the
search algorithm. The algorithm then iterates through all the points in p € P in a random order, and
in each step, updates the graph to make it more suitable for GreedySearch(s,x,, 1, L) to converge to
p. Indeed, in the iteration corresponding to point p, Vamana first runs GreedySearch(s, x,, 1, L) on
the current graph G, and sets V,, to the set of all points visited by GreedySearch(s, x,, 1, L). Then,
the algorithm updates G by running RobustPrune(p, V,, a, R) to determine p’s new out-neighbors.
Then, Vamana updates the graph G by adding backward edges (p’, p) for all p’ € Noyi(p). This
ensures that there are connections between the vertices visited on the search path and p, thereby
ensuring that the updated graph will be better suited for GreedySearch(s, x,, 1, L) to converge to p.

However, adding backward edges of the form (p’, p) might lead to a degree violation of p’, and
so whenever any vertex p’ has an out-degree which exceeds the degree threshold of R, the graph
is modified by running RobustPrune(p’, Nout (p'), ar, R) where Nyt (p') is the set of existing out-
neighbors of p’. As the algorithm proceeds, the graph becomes consistently better and faster for
GreedySearch. Our overall algorithm makes two passes over the dataset, the first pass with o = 1,
and the second with a user-defined oo > 1. We observed that a second pass results in better graphs,
and that running both passes with the user-defined o makes the indexing algorithm slower as the first
pass computes a graph with higher average degree which takes longer.



Algorithm 3: Vamana Indexing algorithm

Data: Database P with n points where i-th point has coords x;, parameters «, L, R
Result: Directed graph G over P with out-degree <=R
begin
initialize G to a random R-regular directed graph
let s denote the medoid of dataset P
let o denote a random permutation of 1..n
for 1<i:<n do
let [£;V] < GreedySearch(s,X,(;), 1, L)
run RobustPrune(o (i), V, a,R) to update out-neighbors of o(7)
for all points j in Nou(o(2)) do

if |Nout(j) U{c(i)}| >R then

| run RobustPrune(j, Nout(j) U {0 (i)}, a,R) to update out-neighbors of j

else
L update Nout(j) < Nout(j) U o (i)

Figure 1: Progression of the graph generated by the Vamana indexing algorithm described in
Algorithm 3]on a database with 200 points in 2 dimensions. Notice that the algorithm goes through
the first pass with o = 1, followed by the second pass where it introduces long range edges.

2.4 Comparison of Vamana with HNSW [21] and NSG [13]

Atahigh level, Vamana is rather similar to HNSW and NSG, two very popular ANNS algorithms. All
three algorithms iterate over the dataset P, and use the results of the GreedySearch(s, x,, 1, L) and
RobustPrune(p, V, a, R) to determine p’s neighbors. However, there are some important differences
between these algorithms. Most crucially, both HNSW and NSG have no tunable parameter o and
implicitly use o« = 1. This is the main factor which lets Vamana achieve a better trade-off between
graph degree and diameter. Next, while HNSW sets the candidate set V for the pruning procedure
to be the final result-set of L candidates output by GreedySearch(s,p, 1, L), Vamana and NSG
let V be the entire set of vertices visited by GreedySearch(s, p, 1, L). Intuitively, this feature helps
Vamana and NSG add long-range edges, while HNSW, by virtue of adding only local edges to
nearby points, has an additional step of constructing a hierarchy of graphs over a nested sequence of
samples of the dataset. The next difference pertains to the initial graph: while NSG sets the starting
graph to be an approximate K -nearest neighbor graph over the dataset, which is a time and memory
intensive step, HNSW and Vamana have simpler initializations, with the former beginning with an
empty graph and Vamana beginning with a random graph. We have observed that starting with a
random graph results in better quality graphs than beginning with the empty graph. Finally, Vamana
makes two passes over the dataset, whereas both HNSW and NSG make only one pass, motivated by
our observation that the second pass improves the graph quality.



3 DiskANN: Constructing SSD-Resident Indices

We now present the design of the Disk ANN overall in two parts. In the first part, we explain the
index construction algorithm, and in the second part, we explain the search algorithm.

3.1 The DiskANN Index Design

The high-level idea is simple: run Vamana on a dataset P and store the resulting graph on an SSD.
At search time, whenever Algorithm|[I|requires the out-neighbors of a point p, we simply fetch this
information from the SSD. However, note that just storing the vector data for a billion points in 100
dimensions would far exceed the RAM on a workstation! This raises two questions: how do we build
a graph over a billion points, and how do we do distance comparisons between the query point and
points in our candidate list at search time in Algorithm/[I] if we cannot even store the vector data?

One way to address the first question would be to partition the data into multiple smaller shards using
clustering techniques like k-means, build a separate index for each shard, and route the query only to
a few shards at search time. However, such an approach would suffer from increased search latency
and reduced throughput since the query needs to be routed to several shards.

Our idea is simple in hindsight: instead of routing the query to multiple shards at search time, what
if we send each base point to multiple nearby centers to obtain overlapping clusters? Indeed, we
first partition a billion point dataset into k clusters (with £ = 40, say) using k-means, and then assign
each base point to the ¢-closest centers (typically £ = 2 suffices). We then build Vamana indices
for the points assigned to each of the clusters (which would now only have about NV % points and
thus can be indexed in-memory), and finally merge all the different graphs into a single graph by
taking a simple union of edges. Empirically, it turns out that the overlapping nature of the different
clusters provides sufficient connectivity for the GreedySearch algorithm to succeed even if the query’s
nearest neighbors are actually split between multiple shards. We would like to remark that there
have been earlier works [9, [22] which construct indices for large datasets by merging several smaller,
overlapping indices. However, their ideas for constructing the overlapping clusters are different, and
a more detailed comparison of these different techniques needs to be done.

Our next and natural idea to address the second question is to store compressed vectors X, for every
database point p € P in main memory, along with storing the graph on the SSD. We use a popular
compression scheme known as Product Quantization|17]'} which encodes the data and query points
into short codes (e.g., 32 bytes per data point) that can be used to efficiently obtain approximate
distances d(x,, x,) at query time in Algorithm We would like to remark that Vamana uses full-
precision coordinates when building the graph index, and hence is able to efficiently guide the search
towards the right region of the graph, although we use only the compressed data at search time.

3.2 DiskANN Index Layout

We store the compressed vectors of all the data points in memory, and store the graph along with the
full-precision vectors on the SSD. On the disk, for each point ¢, we store its full precision vector x;
followed by the identities of its < R neighbors. If the degree of a node is smaller than R, we pad
with zeros, so that computing the offset within the disk of the data corresponding to any point 7 is a
simple calculation, and does not require storing the offsets in memory. We will explain the need to
store full-precision coordinates in the following section.

3.3 DiskANN Beam Search

A natural way to search for neighbors of a given query x, would be to run Algorithm|] fetching the
neighborhood information Ny (p*) from the SSD as needed. Distance calculations to guide the best
vertices (and neighborhoods) to read from disk can be done using the compressed vectors. While
reasonable, this requires many rountrips to SSD (which take few hundred microseconds) resulting in
higher latencies. To reduce the number of round triprs to SSD (to fetch neighborhoods sequentially)
without increasing compute (distance calculations) excessively, we fetch the neighborhoods of a
small number, W (say 4, 8), of the closest points in £ \ V in one shot, and update L to be the top L
candidates in £ along with all the neighbors retrieved in this step. Note that fetching a small number
of random sectors from an SSD takes almost the same time as one sector. We refer to this modified
search algorithm as BeamSearch. If W = 1, this search resembles normal greedy search. Note that if
W is too large, say 16 or more, then both compute and SSD bandwidth could be wasted.

* Although more complex compression methods like [14} 19} 18] can deliver better quality approximations,
we found simple product quantization sufficient for our purposes.
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Figure 3: Latency (microseconds) vs recall plots comparing HNSW, NSG and Vamana.

Although NAND-flash based SSDs can serve 500K+ random reads per second, extracting mimaxmum
read throughput requires saturating all I/O request queues. However, operating at peak throughput
with backlogged queues results in disk read latencies of over a millisecond. Therefore, it is necessary
to operate the SSD at a lower load factor to obtain low search latency. We have found that operating
at low beam widths (e.g., W = 2,4, 8) can strike a good balance between latency and throughput.
In this setting, the load factor on the SSD is between 30 — 40% and each thread running our search
algorithm spends between 40 — 50% of the query processing time in I/O.

3.4 DiskANN Caching Frequently Visited Vertices

To further reduce the number of disk accesses per query, we cache the data associated with a subset
of vertices in DRAM, either based on a known query distribution, or simply by caching all vertices
that are C' = 3 or 4 hops from the starting point s. Since the number of nodes in the index graph at
distance C' grows exponentially with C, larger values of C' incur excessively large memory footprint.

3.5 DiskANN Implicit Re-Ranking Using Full-Precision Vectors

Since Product Quantization is a lossy compression method, there is a discrepancy between the closest
k candidates to the query computed using PQ-based approximate distances and using the actual
distances. To bridge this gap, we use full-precision coordinates stored for each point next to its
neighborhood on the disk. In fact, when we retrieve the neighborhood of a point during search, we
also retrieve the full coordinates of the point without incurring extra disk reads. This is because,
reading 4 K B-aligned disk address into memory is no more expensive than reading 5125, and the
neighborhood of a vertex (4 * 128 bytes long for degree 128 graphs) and full-precision coordinates can
be stored on the same disk sector. Hence, as BeamSearch loads neighborhoods of the search frontier,
it can also cache full-precision coordinates of all the nodes visited during the search process, using
no extra reads to the SSD. This allows us to return the top k candidates based on the full precision
vectors. Independent of our work, the idea of fetching and re-ranking full-precision coordinates
stored on the SSD is also used in [24]], but the algorithm fetches all the vectors to re-rank in one shot,
which would result in hundreds of random disk accesses all in one shot, in turn adversely affecting
throughput and latency. We provide a more detailed explanation in Section 3] In our case, full
precision coordinates essentially piggyback on the cost of expanding the neighborhoods.

4 Evaluation

We now compare Vamana with other relevant algorithms for approximate nearest neighbor search.
First, for in-memory search, we compare our algorithm with NSG [13]] and HNSW [21]], which
offer best-in-class latency vs recall on most public benchmark datasets. Next, for large billion
point datasets, we compare Disk ANN with compression based techniques such as FAISS [[18] and
IVF-OADC+G+P [8].



We use the following two machines for all experiments.

e z340: a bare-metal mid-range workstation with dual Xeon E5-2620v4s (16 cores), 64GB
DDR4 RAM, and two Samsung 960 EVO 1TB SSDs in RAID-0 configuration.

e M64-32ms: a virtual machine with dual Xeon E7-8890v3s (32-vCPUs) with 1792GB DDR3
RAM that we use to build a one-shot in-memory index for billion point datasets.

4.1 Comparison of HNSW, NSG and Vamana for In-Memory Search Performance

We compared Vamana with HNSW and NSG on three commonly used public benchmarks: SIFT1M
(128-dimensions) and GIST1M (960-dimensions), both of which are million point datasets of image
descriptors [1]], and DEEP1IM (96-dimensions), a random one million size sample of DEEP1B, a
machine-learned set of one billion vectors [6]. For all three algorithms, we did a parameter sweep and
selected near-optimal choice of parameters for the best recall vs latency trade-off. All HNSW indices
were constructed using M = 128, e fc = 512, while Vamana indicesused R = 70, L = 75, « = 1.2.
For NSG on SIFTIM and GIST1M, we use the parameters listed on their repositoryE] due to their
excellent performance, and used R = 60, L = 70, C' = 500 for DEEP1M. Moreover, since the main
focus of this work is on the SSD-based search, we did not implement our own in-mmeory search
algorithm to test Vamana. Instead, we simply used the implementation of the optimized search
algorithm on the NSG repository, on the indices generated by Vamana. From Figure 3| we can see
one clear trend — NSG and Vamana out-perform HNSW in all instances, and on the 960-dimensional
GIST1IM dataset, Vamana outperforms both NSG and HNSW. Moreover, the indexing time of
Vamana was better than both HNSW and NSG in all three experiments. For example, when indexing
DEEP1M on z840, the total index construction times were 129s, 219s, and 480s for Vamana, HNSW
and NSCﬂ respectively. From these experiments, we conclude that Vamana matches, and sometimes
outperforms, the current best ANNS methods on both hundred and thousand-dimensional datasets
obtained from different sources.

4.2 Comparison of HNSW, NSG and Vamana for Number of Hops

Vamana is more suitable for SSD-based serving than other graph-based algorithms as it makes 2 — 3
times fewer hops for search to converge on large datasets compared to HNSW and NSG. By hops, we
refer to the number of rounds of disk reads on the critical path of the search. In BeamSearch, it maps
to the number of times the search frontier is expanded by making W parallel disk reads. The number
of hops is important as it directly affects search latency. For HNSW, we assume nodes in all levels
excluding the base level are cached in DRAM and only count the number of hops on base-level graph.
For NSG and Vamana indices, we assume that the first 3 BFS levels around the navigating node(s)
can be cached in DRAM. We compare the number of hops required to achieve a target 5-recall@5 of
98% by varying the maximum graph degrees in Figurec). We notice a stagnation trend for both
HNSW and NSG, while Vamana shows a reduction in number of hops with increasing max degree
and . Using large values of R and o result in fewer hops due to their ability to add more long-range
edges. We thus infer that Vamana with o > 1 makes better use of the high capacity offered by SSDs
than other graph-based methods.

4.3 Comparison on Billion-Scale Datasets: One-Shot Vamana vs Merged Vamana

For our next set of experiments, we focus our evaluations on the 10° point ANN_SIFT1B [[1] bigann
dataset of SIFT image descriptors of 128 uint8s. To demonstrate the effectiveness of the merged-
Vamana scheme described in Section [3] we built two indices using our Vamana. The first is a single
index with L = 50, R = 128, o = 1.2 on the full billion-point dataset. This procedure takes about 2
days on M64-32ms with a peak memory usage at ~1100GB, and generates an index with an average
degree of 113.9. The second is the merged index, which is constructed as follows: (1) partition the
dataset into k = 40 shards using k-means clustering, (2) send each point in the dataset to the ¢ = 2
closest shards, (3) build indices for each shard with L = 50, R = 64, « = 1.2, and (4) merge the
edge sets of all the graphs. The result is a 348GB index with an average degree of 92.1. The indices
were built on 2840 and took about 5 days with memory usage remaining under 64GB for the entire
process. Sharding and merging are fast and can be done on the same machine from the disk.

We compare 1-recall@1 vs latency with the 10,000 query bigann dataset for both configurations in
Figure a). From this experiment we conclude the following. (a) The single index outperforms the
merged index, which traverses more links to reach the same neighborhood, thus increasing search
latency. This could possibly be because the in- and out-edges of each node in the merged index are

Shttps://github.com/ZJULearning/nsg
SSince NSG needs a starting k-nearest neighbor graph, we also include the time taken by EFANNA [12]].



limited to about % = 5% of all points. (b) The merged index is still a very good choice for billion-
scale k-ANN indexing and serving single-node, easily outperforming the existing state-of-the-art
methods and requires no more than 20% extra latency for a target recall when compared to the single
index. The single index, on the other hand, achieves a new state-of-the-art 1-recall@1 of 98.68% with
<5 milliseconds latency. The merged index is also a good choice for the DEEP1B dataset. Figure[2(b)
shows the recall vs latency curve of the merged Disk ANN index for the DEEP1B dataset built using
k = 40 shards and ¢ = 2 on the z840 machine.

4.4 Comparison on Billion-Scale Datasets: Disk ANN vs IVF-based Methods

Our final comparisons are with FAISS[18]] and IVFOADC+G+P[7], two recent approaches to con-
structing billion point indices on a single node. Both methods utilize Inverted Indexing and Product
Quantization-based compression schemes to develop indices with low-memory footprint that can
serve queries with high-throughput and good 1-recall@100. We compare DiskANN with only IV-
FOADC+G+P since [[7]] demonstrates superior recall for IVFOADC+G+P over FAISS, and moreover,
billion-scale indexing using FAISS requires GPUs that might not be available in some platforms.

IVFOADC+G+P uses HNSW as a routing layer to obtain a small set of clusters that are further refined
using a novel grouping and pruning strategy. Using their open-source code, we build indices with 16
and 32-byte OPQ code-books on the SIFT1B base set. IVFOADC+G+P-16 and IVFOADC+G+P-32
curves in [2(a) represent the two configurations. While IVFOADC+G+P-16 plateaus at 1-recall@1
of 37.04%, the larger IVFOADC+G+P-32 indices reach 1-recall@1 at 62.74%. With the same
memory footprint as IVFOADC+G+P-32, DiskANN saturates at a perfect 1-recall@1 of 100%,
while providing 1-recall@1 of above 95% in under 3.5ms. Thus DiskANN, while matching the
memory footprint of compression-based methods, can achieve significantly higher recall at the
same latency. Compression-based methods provide low recall due to loss of precision from lossy
compression of coordinates which results in slightly inaccurate distance calculations.

Zoom[24] is a compression-based method, similar to IVFOADC+G+P, that identifies the approximate
nearest K’ > K candidates using the compressed vectors, and re-ranks them by fetching the full-
precision coordinates from the disk to output the final set of K candidates. However, Zoom suffers
from two drawbacks: (a) it fetches all the K’ (often close to hundred even if K = 1) full-precision
vectors using simultaneous random disk reads, which would affect latency and throughput, and
(b) it requires expensive k-means clustering using hundreds of thousands of centroids to build the
HNSW-based routing layer. For example, the clustering step described in [24] utilizes 200K centroids
on 10M base set, and might not scale easily to billion-point datasets.

5 Conclusion

We presented and evaluated a new graph-based indexing algorithm called Vamana for ANNS
whose indices are comparable to the current state-of-the-art methods for in-memory search in high-
recall regimes. In addition, we demonstrated the construction of a high-quality SSD-resident index
DiskANN on a billion point dataset using only 64GB of main memory. We detailed and motivated
the algorithmic improvements that enabled us to serve these indices using inexpensive retail-grade
SSDs with latencies of few milliseconds. By combining the high-recall, low-latency properties of
graph-based methods with the memory efficiency and scalability properties of compression-based
methods, we established the new state-of-the-art for indexing and serving billion point datasets.
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