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Modification of the ext4 file system for Persistent Memory

Works with modern Linux kernels

Under active development by the ext4 community

Only PM file system that is widely used
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File systems suffer from high software overhead!

ext4-DAX, although widely used, suffers from highest 
software overhead and provides weak guarantees
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- Low software overhead
- Strong consistency guarantees
- Leverage the maturity and active 

development of ext4-DAX

�6

Goals



SplitFS
POSIX file system aimed at reducing software overhead for PM

�7�7



SplitFS
POSIX file system aimed at reducing software overhead for PM

SplitFS serves data operations from user space and metadata 
operations using the ext4-DAX kernel file system

�7�7



SplitFS
POSIX file system aimed at reducing software overhead for PM

SplitFS serves data operations from user space and metadata 
operations using the ext4-DAX kernel file system

Provides strong guarantees such as atomic and synchronous  
data operations

�7�7



SplitFS
POSIX file system aimed at reducing software overhead for PM

SplitFS serves data operations from user space and metadata 
operations using the ext4-DAX kernel file system

Reduces software overhead by up to 17x compared to ext4-DAX

https://github.com/utsaslab/splitfs

Provides strong guarantees such as atomic and synchronous  
data operations
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Improves application throughput by up to 2x compared to NOVA

https://github.com/utsaslab/splitfs
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SplitFS is targeted at POSIX applications which use read() / write() 
system calls in order to access their data on Persistent Memory. 

SplitFS does not optimize for the case when multiple processes 
concurrently access the same file
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Accelerate data operations from user space 
• Data operations are common and simple 

Use ext4-DAX for metadata operations 
• Metadata operations are rare and complex 
• POSIX has many complex corner-cases

High performance

Low complexity
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Log

U-Split

SplitFS accelerates common case data operations 
while leveraging the maturity of ext4-DAX for 

metadata operations

K-Split (ext4-DAX)

SplitFS uses logging and out of place updates for 
providing atomic and synchronous operations
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ext4-journal transaction

abc

In the common case, file appends do not 
pass through the kernel

relink()
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Mode Metadata 
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 Optimized logging is used in order to provide 
stronger guarantees in sync and strict modes
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SplitFS employs a per-application log in sync and strict mode, which 
logs every logical operation

In the common case 
• Each log entry fits in one cache line 
• Persisted using a single non-temporal store and sfence instruction

Optimized logging
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• All metadata operations are immediately visible 
to all other processes

Visibility

• Writes are visible to all other processes on 
subsequent fsync()

• Memory mapped files have the same visibility 
guarantees as that of ext4-DAX

When are updates from one application visible to 
another?
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SplitFS Techniques

Technique Benefit

SplitFS Architecture Low-overhead data operations, 
Correct metadata operations

Staging + Relink Optimized appends,  
No data copy

Optimized Logging + out-of-place writes Stronger guarantees
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Does SplitFS reduce software overhead compared 
to other file systems?

How does SplitFS perform on metadata intensive 
workloads?

How does SplitFS perform on data intensive 
workloads?
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Does SplitFS reduce software overhead compared 
to other file systems?

How does SplitFS perform on metadata intensive 
workloads?

How does SplitFS perform on data intensive 
workloads?
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• < 15% overhead for metadata intensive workloads
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Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

Write-heavy workloads optimized because of 
staging and relink
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SplitFS
SplitFS introduces a new architecture for building PM file systems 
that… 
reduces software overhead, 
provides strong guarantees, 
and leverages the widely-used ext4-DAX 
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SplitFS
SplitFS introduces a new architecture for building PM file systems 
that… 
reduces software overhead, 
provides strong guarantees, 
and leverages the widely-used ext4-DAX 

https://github.com/utsaslab/splitfs
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Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 1M operations. Key size = 16 bytes. Value size = 1K
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