
SplitFS: Reducing Software Overhead
in File Systems for Persistent Memory

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap*,
Taesoo Kim, Aasheesh Kolli, Vijay Chidambaram

* on the job market
�1

Persistent Memory (PM)

Non-volatile Fast

�2

PM file systems

�3

PM file
system

PM file systems
Application

File 1PM File 2 File n

�3

PM file
system

PM file systems
Application

File 1PM File 2 File n

read(), write(),
open(), close()POSIX API

�3

PM file
system

PM file systems
Application

File 1PM File 2 File n

read(), write(),
open(), close()POSIX API

ext4-DAX PMFS NOVA Strata

�3

ext4-DAX

700

�4

ext4-DAX

700

�4

Modification of the ext4 file system for Persistent Memory

Works with modern Linux kernels

Under active development by the ext4 community

Only PM file system that is widely used

Software Overhead in File Systems

700

• Append 4KB data to a file

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

Ti
m

e
(n

s)

�5

Software Overhead in File Systems

700

Ti
m

e
(n

s)

�5

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

700

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

Software Overhead in File Systems

700

Ti
m

e
(n

s)

�5

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

700

9002
(12x)

Software Overhead in File Systems

700

Ti
m

e
(n

s)

�5

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

700

9002
(12x)

software
overhead

Software Overhead in File Systems

700

Ti
m

e
(n

s)

�5

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

4150
(5x)

3021
(3x)

700

2450
(2.5x)

9002
(12x)

Software Overhead in File Systems

700

Ti
m

e
(n

s)

�5

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

4150
(5x)

3021
(3x)

700

2450
(2.5x)

9002
(12x)

File systems suffer from high software overhead!

Software Overhead in File Systems

700

Ti
m

e
(n

s)

�5

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

0

2000

4000

6000

8000

10000

device Strata NOVA PMFS ext4-DAX

4150
(5x)

3021
(3x)

700

2450
(2.5x)

9002
(12x)

File systems suffer from high software overhead!

ext4-DAX, although widely used, suffers from highest
software overhead and provides weak guarantees

�6

Goals

- Low software overhead

�6

Goals

- Low software overhead
- Strong consistency guarantees

�6

Goals

- Low software overhead
- Strong consistency guarantees
- Leverage the maturity and active

development of ext4-DAX

�6

Goals

SplitFS
POSIX file system aimed at reducing software overhead for PM

�7�7

SplitFS
POSIX file system aimed at reducing software overhead for PM

SplitFS serves data operations from user space and metadata
operations using the ext4-DAX kernel file system

�7�7

SplitFS
POSIX file system aimed at reducing software overhead for PM

SplitFS serves data operations from user space and metadata
operations using the ext4-DAX kernel file system

Provides strong guarantees such as atomic and synchronous
data operations

�7�7

SplitFS
POSIX file system aimed at reducing software overhead for PM

SplitFS serves data operations from user space and metadata
operations using the ext4-DAX kernel file system

Reduces software overhead by up to 17x compared to ext4-DAX

https://github.com/utsaslab/splitfs

Provides strong guarantees such as atomic and synchronous
data operations

�7�7

Improves application throughput by up to 2x compared to NOVA

https://github.com/utsaslab/splitfs

Outline

• Target usage scenario
• High-level design
• Handling data operations
• Consistency guarantees
• Evaluation

�8

Outline

• Target usage scenario
• High-level design
• Handling data operations
• Consistency guarantees
• Evaluation

�9

Target usage scenario

�10

Target usage scenario

�10

SplitFS is targeted at POSIX applications which use read() / write()
system calls in order to access their data on Persistent Memory.

Target usage scenario

�10

SplitFS is targeted at POSIX applications which use read() / write()
system calls in order to access their data on Persistent Memory.

SplitFS does not optimize for the case when multiple processes
concurrently access the same file

Outline

• Target usage scenario
• High-level design
• Handling data operations
• Consistency guarantees
• Evaluation

�11

High-level Design

�12

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

�12

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

�12

Data in kernel
Metadata in kernel

Data in user
Metadata in user

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

ext4-DAX,
PMFS [EuroSys 14],

NOVA [FAST 16]

�12

Data in kernel
Metadata in kernel

Data in user
Metadata in user

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

ext4-DAX,
PMFS [EuroSys 14],

NOVA [FAST 16]
Low performance

�12

Data in kernel
Metadata in kernel

Data in user
Metadata in user

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

ext4-DAX,
PMFS [EuroSys 14],

NOVA [FAST 16]

Strata [SOSP 17]

Low performance

�12

Data in kernel
Metadata in kernel

Data in user
Metadata in user

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

ext4-DAX,
PMFS [EuroSys 14],

NOVA [FAST 16]

Strata [SOSP 17]

Low performance High complexity

�12

Data in kernel
Metadata in kernel

Data in user
Metadata in user

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

ext4-DAX,
PMFS [EuroSys 14],

NOVA [FAST 16]

Strata [SOSP 17]

Low performance High complexity

�12

Data in kernel
Metadata in kernel

Data in user
Metadata in user

Aerie [EuroSys 14]

High complexity

Data in user
Metadata in user

Allocations in kernel

Low performance

High-level Design
SplitFS lies both in user space as well as in the kernel.
• Data operations are served from user space
• Metadata operations are served from ext4-DAX

ext4-DAX,
PMFS [EuroSys 14],

NOVA [FAST 16]

Strata [SOSP 17]

Low performance High complexity

SplitFS

Low complexity
High performance

Data in user
Metadata in kernel

�12

Data in kernel
Metadata in kernel

Data in user
Metadata in user

Aerie [EuroSys 14]

High complexity

Data in user
Metadata in user

Allocations in kernel

Low performance

High-level Design

�13

High performance

Low complexity

High-level Design

�13

Accelerate data operations from user space
• Data operations are common and simple

High performance

Low complexity

High-level Design

�13

Accelerate data operations from user space
• Data operations are common and simple

Use ext4-DAX for metadata operations
• Metadata operations are rare and complex
• POSIX has many complex corner-cases

High performance

Low complexity

High-level Design

user

kernel

Application

File 1 File 2 File 3PM

�14

U-Split

K-Split (ext4-DAX)

High-level Design

user

kernel

Application

File 1 File 2 File 3PM

read() write()

�14

U-Split

K-Split (ext4-DAX)

High-level Design

creat()
delete()

user

kernel

Application

File 1 File 2 File 3PM

read() write()

�14

U-Split

K-Split (ext4-DAX)

High-level Design

creat()
delete()

user

kernel

Application

File 1 File 2 File 3PM

read() write()

�14

Log

U-Split

K-Split (ext4-DAX)

High-level Design

creat()
delete()

user

kernel

Application

File 1 File 2 File 3PM

read() write()

�14

Log

U-Split

SplitFS accelerates common case data operations
while leveraging the maturity of ext4-DAX for

metadata operations

K-Split (ext4-DAX)

High-level Design

creat()
delete()

user

kernel

Application

File 1 File 2 File 3PM

read() write()

�14

Log

U-Split

SplitFS accelerates common case data operations
while leveraging the maturity of ext4-DAX for

metadata operations

K-Split (ext4-DAX)

SplitFS uses logging and out of place updates for
providing atomic and synchronous operations

Outline

• Target usage scenario
• High-level design
• Handling data operations

• Handling file reads and updates
• Handling file appends

• Consistency guarantees
• Evaluation

�15

K-Split
(ext4-DAX)

U-Split

Application

FilePM

User
Kernel

Handling reads and updates

�16

read / update

K-Split
(ext4-DAX)

U-Split

Application

FilePM

User
Kernel

Handling reads and updates

�16

read / update

K-Split
(ext4-DAX)

U-Split

Application

FilePM

mmap

perform mmap

User
Kernel

Handling reads and updates

�16

read / update

K-Split
(ext4-DAX)

U-Split

Application

FilePM

DAX-mmaps

mmap

perform mmap

User
Kernel

Handling reads and updates

�16

read / update

K-Split
(ext4-DAX)

U-Split

Application

FilePM

DAX-mmaps

User
Kernel

Handling reads and updates

�16

read / update

K-Split
(ext4-DAX)

U-Split

Application

FilePM

DAX-mmaps

User
KernelIn the common case, file reads and updates do

not pass through the kernel

Handling reads and updates

�16

Outline

• Target usage scenario
• High-level design
• Handling data operations

• Handling file reads and updates
• Handling file appends

• Consistency guarantees
• Evaluation

�17

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

Start

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Start

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Startstaging file mmap

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Startstaging file mmap
append (foo,“abc”)

abc

store

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Startstaging file mmap
append (foo,“abc”)

abc

read (foo)load

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Startstaging file mmap
append (foo,“abc”)

abc

read (foo)

fsync (foo)

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Startstaging file mmap
append (foo,“abc”)

abc

read (foo)

fsync (foo)relink()

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Startstaging file mmap
append (foo,“abc”)

abc

read (foo)

fsync (foo)foo staging

ext4-journal transaction

relink()

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Startstaging file mmap
append (foo,“abc”)

read (foo)

fsync (foo)foo staging

ext4-journal transaction

abc

relink()

foo

size = 10
foo inode

Persistent Memory

Handling appends

�18

user
kernel

Application

staging file

size = 100
staging file inode

Startstaging file mmap
append (foo,“abc”)

read (foo)

fsync (foo)foo staging

ext4-journal transaction

abc

In the common case, file appends do not
pass through the kernel

relink()

Outline

• Target usage scenario
• High-level design
• Handling data operations
• Consistency guarantees
• Evaluation

�19

Consistency Guarantees

Mode Metadata
Atomicity

Synchronous
Operations

Data
Atomicity File System

POSIX ext4-DAX,
SplitFS-POSIX

Sync PMFS,

SplitFS-Sync

Strict NOVA, Strata,

SplitFS-Strict

�20

Consistency Guarantees

Mode Metadata
Atomicity

Synchronous
Operations

Data
Atomicity File System

POSIX ext4-DAX,
SplitFS-POSIX

Sync PMFS,

SplitFS-Sync

Strict NOVA, Strata,

SplitFS-Strict

�20

Consistency Guarantees

Mode Metadata
Atomicity

Synchronous
Operations

Data
Atomicity File System

POSIX ext4-DAX,
SplitFS-POSIX

Sync PMFS,

SplitFS-Sync

Strict NOVA, Strata,

SplitFS-Strict

�20

Consistency Guarantees

Mode Metadata
Atomicity

Synchronous
Operations

Data
Atomicity File System

POSIX ext4-DAX,
SplitFS-POSIX

Sync PMFS,

SplitFS-Sync

Strict NOVA, Strata,

SplitFS-Strict

�20

Consistency Guarantees

Mode Metadata
Atomicity

Synchronous
Operations

Data
Atomicity File System

POSIX ext4-DAX,
SplitFS-POSIX

Sync PMFS,

SplitFS-Sync

Strict NOVA, Strata,

SplitFS-Strict

 Optimized logging is used in order to provide
stronger guarantees in sync and strict modes

�20

Optimized logging

�21

SplitFS employs a per-application log in sync and strict mode, which
logs every logical operation

Optimized logging

�21

SplitFS employs a per-application log in sync and strict mode, which
logs every logical operation

In the common case
• Each log entry fits in one cache line
• Persisted using a single non-temporal store and sfence instruction

Optimized logging

�21

Flexible SplitFS

K-Split
(ext4-DAX)

App 1

File 1PM

App 2 App 3

File 2 File 3 File 4

User
Kernel

�22

Flexible SplitFS

K-Split
(ext4-DAX)

App 1

File 1PM

App 2 App 3

U-Split-
POSIX

U-Split-
sync

U-Split-
strict

File 2 File 3 File 4

User
Kernel

�22

Flexible SplitFS

K-Split
(ext4-DAX)

App 1

File 1PM

App 2 App 3

U-Split-
POSIX

U-Split-
sync

U-Split-
strict

File 2 File 3 File 4

Data Data DataMeta Meta Meta

User
Kernel

�22

�23

Visibility

�23

Visibility

When are updates from one application visible to
another?

�23

• All metadata operations are immediately visible
to all other processes

Visibility

When are updates from one application visible to
another?

�23

• All metadata operations are immediately visible
to all other processes

Visibility

• Writes are visible to all other processes on
subsequent fsync()

When are updates from one application visible to
another?

�23

• All metadata operations are immediately visible
to all other processes

Visibility

• Writes are visible to all other processes on
subsequent fsync()

• Memory mapped files have the same visibility
guarantees as that of ext4-DAX

When are updates from one application visible to
another?

SplitFS Techniques

Technique Benefit

�24

SplitFS Techniques

Technique Benefit

SplitFS Architecture Low-overhead data operations,
Correct metadata operations

�24

SplitFS Techniques

Technique Benefit

SplitFS Architecture Low-overhead data operations,
Correct metadata operations

Staging + Relink Optimized appends,
No data copy

�24

SplitFS Techniques

Technique Benefit

SplitFS Architecture Low-overhead data operations,
Correct metadata operations

Staging + Relink Optimized appends,
No data copy

Optimized Logging + out-of-place writes Stronger guarantees

�24

Outline

• Target usage scenario
• High-level design
• Handling data operations
• Consistency guarantees
• Evaluation

�25

Evaluation

�26

Evaluation

Setup:
• 2-socket 96-core machine with 32 MB LLC
• 768 GB Intel Optane DC PMM, 378 GB DRAM

�26

Evaluation

Setup:
• 2-socket 96-core machine with 32 MB LLC
• 768 GB Intel Optane DC PMM, 378 GB DRAM

File systems compared:
• ext4-DAX, PMFS, NOVA, Strata

�26

Evaluation

Setup:
• 2-socket 96-core machine with 32 MB LLC
• 768 GB Intel Optane DC PMM, 378 GB DRAM

�26

File systems compared:
• ext4-DAX, PMFS, NOVA, Strata

Does SplitFS reduce software overhead compared
to other file systems?

How does SplitFS perform on metadata intensive
workloads?

How does SplitFS perform on data intensive
workloads?

�27

Does SplitFS reduce software overhead compared
to other file systems?

How does SplitFS perform on metadata intensive
workloads?

How does SplitFS perform on data intensive
workloads?

�27

• < 15% overhead for metadata intensive workloads

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

Software Overhead of SplitFS

0

2000

4000

6000

8000

10000

device SplitFS-strict Strata NOVA PMFS ext4-DAX

4150
(5x)

3021
(3x)

9002
(12x)

700

2450
(2.5x)

Ti
m

e
(n

s)

�28

• Append 4KB data to a file
• Time taken to copy user data to PM: ~700 ns

Software Overhead of SplitFS
Ti

m
e

(n
s)

�28

0

2000

4000

6000

8000

10000

device SplitFS-strict Strata NOVA PMFS ext4-DAX

1251
(0.8x)

4150
(5x)

3021
(3x)

700

2450
(2.5x)

9002
(12x)

Workloads

YCSB on LevelDB

Seq reads

Redis

Tar Git Rsync

Microbenchmarks

Data intensive

Metadata intensive

TPCC on SQLite

Rand reads

Seq writes

Rand writes
Appends

�29

Workloads

YCSB on LevelDB

Seq reads

Redis

Tar Git Rsync

Microbenchmarks

Data intensive

Metadata intensive

TPCC on SQLite

Rand reads

Seq writes

Rand writes
Appends

�29

YCSB on LevelDB

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

�30

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

13
.3

9
ko

ps
/s

32
.2

4
ko

ps
/s

13
9.

94
 k

op
s/

s

17
4.

85
 k

op
s/

s

19
1.

54
 k

op
s/

s

13
.5

9
ko

ps
/s

17
.7

5
ko

ps
/s

66
.5

4
ko

ps
/s

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

YCSB on LevelDB
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

�31

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

13
.3

9
ko

ps
/s

32
.2

4
ko

ps
/s

13
9.

94
 k

op
s/

s

17
4.

85
 k

op
s/

s

19
1.

54
 k

op
s/

s

13
.5

9
ko

ps
/s

17
.7

5
ko

ps
/s

66
.5

4
ko

ps
/s

YCSB on LevelDB
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

�32

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

Read-heavy workloads optimized because of
converting reads to loads

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

13
.3

9
ko

ps
/s

32
.2

4
ko

ps
/s

13
9.

94
 k

op
s/

s

17
4.

85
 k

op
s/

s

19
1.

54
 k

op
s/

s

13
.5

9
ko

ps
/s

17
.7

5
ko

ps
/s

66
.5

4
ko

ps
/s

YCSB on LevelDB
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

�32

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

13
.3

9
ko

ps
/s

32
.2

4
ko

ps
/s

13
9.

94
 k

op
s/

s

17
4.

85
 k

op
s/

s

19
1.

54
 k

op
s/

s

13
.5

9
ko

ps
/s

17
.7

5
ko

ps
/s

66
.5

4
ko

ps
/s

YCSB on LevelDB
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

�33

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 5M operations. Key size = 16 bytes. Value size = 1K

Write-heavy workloads optimized because of
staging and relink

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

NOVA
SplitFS-Strict

13
.3

9
ko

ps
/s

32
.2

4
ko

ps
/s

13
9.

94
 k

op
s/

s

17
4.

85
 k

op
s/

s

19
1.

54
 k

op
s/

s

13
.5

9
ko

ps
/s

17
.7

5
ko

ps
/s

66
.5

4
ko

ps
/s

YCSB on LevelDB
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

�33

SplitFS

�34

SplitFS
SplitFS introduces a new architecture for building PM file systems
that…
reduces software overhead,
provides strong guarantees,
and leverages the widely-used ext4-DAX

�34

SplitFS
SplitFS introduces a new architecture for building PM file systems
that…
reduces software overhead,
provides strong guarantees,
and leverages the widely-used ext4-DAX

https://github.com/utsaslab/splitfs
�34

https://github.com/utsaslab/splitfs

Backup Slides

�35

Load A - 100% writes
Run A - 50% reads, 50% writes
Run B - 95% reads, 5% writes
Run C - 100% reads

Run D - 95% reads (latest), 5% writes
Load E - 100% writes
Run E - 95% range queries, 5% writes
Run F - 50% reads, 50% read-modify-writes

Yahoo! Cloud Serving Benchmark - Industry standard macro-benchmark
Insert 5M keys. Run 1M operations. Key size = 16 bytes. Value size = 1K

YCSB on LevelDB
N

or
m

al
iz

ed
 th

ro
ug

hp
ut

�36

0

0.5

1

1.5

2

2.5

Load A Run A Run B Run C Run D Load E Run E Run F

Strata
SplitFS-Strict

