
SplitFS: Reducing Software Overhead

in File Systems for Persistent Memory

Rohan Kadekodi
University of Texas at Austin

Se Kwon Lee
University of Texas at Austin

Sanidhya Kashyap
Georgia Institute of Technology

Taesoo Kim
Georgia Institute of Technology

Aasheesh Kolli
Pennsylvania State University and

VMware Research

Vijay Chidambaram
University of Texas at Austin and

VMware Research

Abstract

We present SplitFS, a file system for persistent memory (PM)
that reduces software overhead significantly compared to
state-of-the-art PM file systems. SplitFS presents a novel
split of responsibilities between a user-space library file sys-
tem and an existing kernel PM file system. The user-space
library file system handles data operations by intercepting
POSIX calls, memory-mapping the underlying file, and serv-
ing the read and overwrites using processor loads and stores.
Metadata operations are handled by the kernel PM file sys-
tem (ext4 DAX). SplitFS introduces a new primitive termed
relink to efficiently support file appends and atomic data op-
erations. SplitFS provides three consistency modes, which
different applications can choose from, without interfering
with each other. SplitFS reduces software overhead by up-to
4× compared to the NOVA PM file system, and 17× com-
pared to ext4 DAX. On a number of micro-benchmarks and
applications such as the LevelDB key-value store running
the YCSB benchmark, SplitFS increases application perfor-
mance by up to 2× compared to ext4 DAX and NOVA while
providing similar consistency guarantees.

CCS Concepts • Information systems → Storage class

memory; • Hardware → Non-volatile memory; • Soft-
ware and its engineering→ File systemsmanagement;

Keywords Persistent Memory, File Systems, Crash Consis-
tency, Direct Access

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00
https://doi.org/10.1145/3341301.3359631

ACM Reference Format:

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing
Software Overhead in File Systems for Persistent Memory . In
SOSP ’19: Symposium on Operating Systems Principles, October 27–30,
2019, Huntsville, ON, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3341301.3359631

1 Introduction

Persistent Memory (PM) is a new memory technology that
was recently introduced by Intel [17]. PM will be placed on
the memory bus like DRAM and will be accessed via proces-
sor loads and stores. PM has a unique performance profile:
compared to DRAM, loads have 2–3.7× higher latency and
1/3rd bandwidth, while stores have the same latency but
1/6th bandwidth [18]. A single machine can be equipped
with up to 6 TB of PM. Given its large capacity and low la-
tency, an important use case for PM will be acting as storage.
Traditional file systems add large overheads to each file-

system operation, especially on the write path. The overhead
comes from performing expensive operations on the criti-
cal path, including allocation, logging, and updating mul-
tiple complex structures. The systems community has pro-
posed different architectures to reduce overhead. BPFS [7],
PMFS [24], and NOVA [33] redesign the in-kernel file system
from scratch to reduce overhead for file-system operations.
Aerie [28] advocates a user-space library file system coupled
with a slim kernel component that does coarse-grained allo-
cations. Strata [19] proposes keeping the file system entirely
in user-space, dividing the system between a user-space li-
brary file system and a user-space metadata server. Aerie
and Strata both seek to reduce overhead by not involving
the kernel for most file-system operations.
Despite these efforts, file-system data operations, espe-

cially writes, have significant overhead. For example, con-
sider the common operation of appending 4K blocks to a file
(total 128 MB). It takes 671 ns to write a 4 KB to PM; thus,
if performing the append operation took a total of 675 ns ,

Rohan Kadekodi and Se Kwon Lee are supported by SOSP 2019 student
travel scholarships from the National Science Foundation.

494

https://doi.org/10.1145/3341301.3359631
https://doi.org/10.1145/3341301.3359631
https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#replicated

File system Append
Time (ns)

Overhead
(ns)

Overhead
(%)

ext4 DAX 9002 8331 1241%
PMFS 4150 3479 518%
NOVA-Strict 3021 2350 350%

SplitFS-Strict 1251 580 86%
SplitFS-POSIX 1160 488 73%

Table 1. Software Overhead. The table shows the software
overhead of various PMfile systems for appending a 4K block.
It takes 671 ns to write 4KB to PM. Strict and POSIX indicate
the guarantees offered by the file systems (§3.2).

the software overhead would be 4 ns . Table 1 shows the soft-
ware overhead on the append operation on various PM file
systems. We observe that there is still significant overhead
(3.5 − 12.4×) for file appends.

This paper presents SplitFS, a PM file system that seeks
to reduce software overhead via a novel split architecture: a
user-space library file system handles data operations while
a kernel PM file system (ext4 DAX) handles metadata opera-
tions. We refer to all file system operations that modify file
metadata as metadata operations. Such operations include
open(), close(), and even file appends (since the file size
is changed). The novelty of SplitFS lies in how responsibili-
ties are divided between the user-space and kernel compo-
nents, and the semantics provided to applications. Unlike
prior work like Aerie, which used the kernel only for coarse-
grained operations, or Strata, where all operations are in
user-space, SplitFS routes all metadata operations to the
kernel. While FLEX [32] invokes the kernel at a fine gran-
ularity like SplitFS, it does not provide strong semantics
such as synchronous, atomic operations to applications. At
a high level, the SplitFS architecture is based on the belief
that if we can accelerate common-case data operations, it
is worth paying a cost on the comparatively rarer metadata
operations. This is in contrast with in-kernel file systems like
NOVA which extensively modify the file system to optimize
the metadata operations.

SplitFS transparently reduces software overhead for reads
and overwrites by intercepting POSIX calls, memory map-
ping the underlying file, and serving reads and overwrites via
processor loads and stores. SplitFS optimizes file appends
by introducing a new primitive named relink that minimizes
both data copying and trapping into the kernel. The appli-
cation does not have to be rewritten in any way to benefit
from SplitFS. SplitFS reduces software overhead by up-to
4× compared to NOVA and 17× compared to ext4 DAX.

Apart from lowering software overhead, the split architec-
ture leads to several benefits. First, instead of re-implementing
file-system functionality, SplitFS can take advantage of the

mature, well-tested code in ext4 DAX for metadata opera-
tions. Second, the user-space library file system in SplitFS
allows each application to run with one of three consistency
modes (POSIX, sync, strict). We observe that not all appli-
cations require the same guarantees; for example, SQLite
does not require the strong guarantees provided by NOVA-
strict, and gets 2.5× higher throughput on ext4 DAX and
SplitFS-POSIX than on NOVA-strict owing to their weaker
guarantees. Applications running with different consistency
modes do not interfere with each other on SplitFS.
SplitFS introduces the relink primitive to optimize file

appends and atomic data operations. Relink logically and
atomically moves a contiguous extent from one file to an-
other, without any physical data movement. Relink is built
on top of the swap_extents ioctl in ext4 DAX, and uses
ext4 journaling to ensure the source and destination files are
modified atomically. Both file appends and data overwrites
in strict mode are redirected to a temporary PM file we term
the staging file. On fsync(), the data from the staging file
is relinked into the original file. Relink provides atomic data
operations without paging faults or data copying.

SplitFS also introduces an optimized logging protocol. In
strict mode, all data and metadata operations in SplitFS are
atomic and synchronous. SplitFS achieves this by logging
each operation. In the common case, SplitFS will write a sin-
gle cache line worth of data (64B), followed by one memory
fence (e.g., sfence in x86 systems), for each operation; in
contrast, NOVAwrites at least two cache lines and issues two
fences. As a result of these optimizations, SplitFS logging is
4× faster than NOVA in the critical path. Thanks to relink
and optimized logging, atomic data operations in SplitFS
are 2–6× faster than in NOVA-strict, providing strong guar-
antees at low software overhead.

We evaluate SplitFS using a number ofmicro-benchmarks,
three utilities (git, tar, rsync), two key-value stores (Redis,
LevelDB), and an embedded database (SQLite). Our evalu-
ation on Intel DC Persistent Memory shows that SplitFS,
though it is built on ext4 DAX, outperforms ext4 DAX by
up-to 2× onmany workloads. SplitFS outperforms NOVA by
10%–2× (when providing the same consistency guarantees)
on LevelDB, Redis, and SQLite when running benchmarks
like YCSB and TPCC. SplitFS also reduces total amount of
write IO by 2× compared to Strata on certain workloads. On
metadata-heavy workloads such as git and tar, SplitFS suf-
fers a modest drop in performance (less than 15%) compared
to NOVA and ext4 DAX.

SplitFS is built on top of ext4 DAX; this is both a strength
and a weakness. Since SplitFS routes all metadata operations
through ext4 DAX, it suffers from the high software overhead
and high write IO for metadata operations. Despite these
limitations, we believe SplitFS presents a useful new point in
the spectrum of PM file-system designs. ext4 DAX is a robust
file system under active development; its performance will
improve with every Linux kernel version. SplitFS provides

495

Property DRAM Intel PM

Sequential read latency (ns) 81 169 (2.08×)
Random read latency (ns) 81 305 (3.76×)
Store + flush + fence (ns) 86 91 (1.05×)

Read bandwidth (GB/s) 120 39.4 (0.33×)
Write bandwidth (GB/s) 80 13.9 (0.17×)

Table 2. PM Performance. The table shows performance
characteristics of DRAM, PM and the ratio of PM/DRAM, as
reported by Izraelevitz et al. [18].

the best features of ext4 DAX while making up for its lack
of performance and strong consistency guarantees.

This paper makes the following contributions:

• A new architecture for PM file systems with a novel
split of responsibilities between a user-space library
file system and a kernel file system.

• The novel relink primitive that can be used to provide
efficient appends and atomic data operations.

• The design and implementation of SplitFS, based on
the split architecture. We have made SplitFS publicly
available at https://github.com/utsaslab/splitfs.

• Experimental evidence demonstrating that SplitFS
outperforms state-of-the-art in-kernel and in-user-space
PM file systems, on a range of workloads.

2 Background

This section provides background on persistent memory
(PM), PM file systems, Direct Access, and memory mapping.

2.1 Persistent Memory

Persistent memory is a new memory technology that offers
durability and performance close to that of DRAM. PM can
be attached on the memory bus similar to DRAM, and would
be accessed via processor loads and stores. PM offers 8-byte
atomic stores and they become persistent as soon as they
reach the PM controller [16]. There are two ways to ensure
that stores become persistent: (i) using non-temporal store
instructions (e.g., movnt in x86) to bypass the cache hierar-
chy and reach the PM controller or (ii) using a combination
of regular temporal store instructions and cache line flush
instructions (e.g., clflush or clwb in x86).
Intel DC Persistent Memory is the first PM product that

was made commercially available in April 2019. Table 2 lists
the performance characteristics of PM revealed in a report
by Izraelevitz et al. [18]. Compared to DRAM, PM has 3.7×
higher latency for random reads, 2× higher latency for se-
quential reads, 1/3rd read bandwidth, and close to 1/6th
write bandwidth. Finally, PMs are expected to exhibit limited
write endurance (about 107 write cycles [25]).

2.2 Direct Access (DAX) and Memory Mapping

The Linux ext4 file system introduced a new mode called
Direct Access (DAX) to help users access PM [21]. DAX file
systems eschew the use of page caches and rely on memory
mapping to provide low-latency access to PM.

A memory map operation (performed via the mmap() sys-
tem call) in ext4 DAX maps one or more pages in the process
virtual address space to extents on PM. For example, consider
virtual addresses 4K to 8K-1 are mapped to bytes 0 to 4K-1
on file foo on ext4 DAX. Bytes 0 to 4K-1 in foo then corre-
spond to bytes 10*4K to 11*4K -1 on PM. A store instruction
to virtual address 5000 would then translate to a store to
byte 40964 on PM. Thus, PM can be accessed via processor
loads and stores without the interference of software; the
virtual memory subsystem is in charge of translating virtual
addresses into corresponding physical addresses on PM.
While DAX and mmap() provide low-latency access to

PM, they do not provide other features such as naming or
atomicity for operations. The application is forced to impose
its own structure and semantics on the raw bytes offered
by mmap(). As a result, PM file systems still provide useful
features to applications and end users.

2.3 PM File Systems

Apart from ext4 DAX, researchers have developed a num-
ber of other PM file systems such as SCMFS [31], BPFS [7],
Aerie [28], PMFS [24], NOVA [33], and Strata [19]. Only ext4
DAX, PMFS (now deprecated), NOVA, and Strata are publicly
available and supported by modern Linux 4.x kernels.

These file systems make trade-offs between software over-
head, amount of write IO, and operation guarantees. NOVA
provides strong guarantees such as atomicity for file-system
operations. PMFS provides slightly weaker guarantees (data
operations are not atomic), but as a result obtains better per-
formance on some workloads. Strata is a cross-media file
system which uses PM as one of its layers. Strata writes all
data to per-process private log, then coalesces the data and
copies it to a shared area for public access. For workloads
dominated by operations such as appends, Strata cannot coa-
lesce the data effectively, and has to write data twice: once to
the private log, and once to the shared area. This increases
the PMwear-out by up to 2×. All these file systems still suffer
from significant overhead for write operations (Table 1).

3 SplitFS: Design and Implementation

We present the goals of SplitFS, its three modes and their
guarantees. We present an overview of the design, describe
how different operations are handled, and discuss how SplitFS
provides atomic operations at low overhead. We describe the
implementation of SplitFS, and discuss its various tuning
parameters. Finally, we discuss how the design of SplitFS
affects security.

496

https://github.com/utsaslab/splitfs

Mode Sync.
Data
Ops

Atomic
Data
Ops

Sync.
Metadata
Ops

Atomic
Metadata
Ops

Equivalent to

POSIX ✗ ✗ ✗ ✓ ext4-DAX

sync ✓ ✗ ✓ ✓ Nova-Relaxed,
PMFS

strict ✓ ✓ ✓ ✓ NOVA-Strict,
Strata

Table 3. SplitFS modes. The table shows the three modes
of SplitFS, the guarantees provided by each mode, and list
current file systems which provide the same guarantees.

3.1 Goals

Low software overhead. SplitFS aims to reduce software
overhead for data operations, especially writes and appends.
Transparency. SplitFS does not require the application to
be modified in any way to obtain lower software overhead
and increased performance.
Minimal data copying and write IO. SplitFS aims to re-
duce the number of writes made to PM. SplitFS aims to
avoid copying data within the file system whenever possible.
This both helps performance and reduces wear-out on PM.
Minimizing writes is especially important when providing
strong guarantees like atomic operations.
Low implementation complexity. SplitFS aims to re-use
existing software like ext4 DAX as much as possible, and
reduce the amount of new code that must be written and
maintained for SplitFS.
Flexible guarantees. SplitFS aims to provide applications
with a choice of crash-consistency guarantees to choose from.
This is in contrast with PM file systems today, which provide
all running applications with the same set of guarantees.

3.2 SplitFS Modes and Guarantees

SplitFS provides three different modes: POSIX, sync, and
strict. Each mode provides a different set of guarantees. Con-
current applications can use different modes at the same time
as they run on SplitFS. Across all modes, SplitFS ensures
the file system retains its integrity across crashes.
Table 3 presents the three modes provided by SplitFS.

Across all modes, appends are atomic in SplitFS; if a series
of appends is followed by fsync(), the file will be atomically
appended on fsync().
POSIX mode. In POSIX mode, SplitFS provides metadata
consistency [6], similar to ext4 DAX. The file system will
recover to a consistent state after a crash with respect to its
metadata. In this mode, overwrites are performed in-place
and are synchronous. Note that appends are not synchronous,
and require an fsync() to be persisted. However, SplitFS

Technique Benefit

Split architecture Low-overhead data operations,
correct metadata operations

Collection of memory-mmaps Low-overhead data operations in
the presence of updates and ap-
pends

Relink + Staging Optimized appends, atomic data
operations, low write amplifica-
tion

Optimized operation logging Atomic operations, low write am-
plification

Table 4. Techniques. The table lists each main technique
used in SplitFS along with the benefit it provides. The tech-
niques work together to enable SplitFS to provide strong
guarantees at low software overhead.

in the POSIX mode guarantees atomic appends, a property
not provided by ext4 DAX. This mode slightly differs from
the standard POSIX semantics: when a file is accessed or
modified, the file metadata will not immediately reflect that.
Sync mode. SplitFS ensures that on top of POSIX mode
guarantees, operations are also guaranteed to be synchro-
nous. An operation may be considered complete and persis-
tent once the corresponding call returns and applications do
not need a subsequent fsync(). Operations are not atomic
in this mode; a crash may leave a data operation partially
completed. No additional crash recovery needs to be per-
formed by SplitFS in this mode. This mode provides similar
guarantees to PMFS as well as NOVA without data and meta-
data checksuming and with in-place updates; we term this
NOVA configuration NOVA-Relaxed.
Strict mode. SplitFS ensures that on top of sync mode
guarantees, each operation is also atomic. This is a useful
guarantee for applications; editors can allow atomic changes
to the file when the user saves the file, and databases can
remove logging and directly update the database. This mode
does not provide atomicity across system calls though; so it
cannot be used to update two files atomically together. This
mode provides similar guarantees to a NOVA configuration
we term NOVA-Strict: NOVA with copy-on-write updates,
but without checksums enabled.
Visibility. Apart from appends, all SplitFS operations be-
come immediately visible to all other processes on the sys-
tem. On fsync(), appends are persisted and become visible
to the rest of the system. SplitFS is unique in its visibility
guarantees, and takes the middle ground between ext4 DAX
and NOVA where all operations are immediately visible, and
Strata where new files and data updates are only visible to

497

U-Splitmmaps

POSIX Application

close()

fsync()
read() write()

[append]

PM Device

File on PM Staging File

K-Split

User space
Kernel space

open()
write()

Op log

U-Splitmmaps

POSIX Application

close()

fsync()
read() write()

[append]
open()

write()

File on PM Staging File Op log

Figure 1. SplitFS Overview. The figure provides an
overview of how SplitFS works. Read and write opera-
tions are transformed into loads and stores on the memory-
mapped file. Append operations are staged in a staging file
and relinked on fsync(). Other metadata POSIX calls like
open(), close(), etc. are passed through to the in-kernel
PM file system. Note that loads and stores do not incur the
overhead of trapping into the kernel.

other processes after the digest operation. Immediate visibil-
ity of changes to data and metadata combined with atomic,
synchronous guarantees removes the need for leases to coor-
dinate sharing; applications can share access to files as they
would on any other POSIX file system.

3.3 Overview

We now provide an overview of the design of SplitFS, and
how it uses various techniques to provide the outlined guar-
antees. Table 4 lists the different techniques and the benefit
each technique provides.
Split architecture. As shown in Figure 1, SplitFS comprises
of two major components, a user-space library linked to the
application called U-Split and a kernel file system called K-
Split. SplitFS services all data operations (e.g., read() and
write() calls) directly in user-space and routes metadata
operations (e.g., fsync(), open(), etc.) to the kernel file sys-
tem underneath. File system crash-consistency is guaranteed
at all times. This approach is similar to Exokernel [12] where
only the control operations are handled by the kernel and
data operations are handled in user-space.
Collection ofmmaps. Reads and overwrites are handled by
mmap()-ing the surrounding 2MB part of the file, and serving
reads via memcpy and writes via non-temporal stores (movnt
instructions). A single logical file may have data present in
multiple physical files; for example, appends are first sent
to a staging file, and thus the file data is spread over the
original file and the staging file. SplitFS uses a collection of
memory-maps to handle this situation. Each file is associated
with a number of open mmap() calls over multiple physical
files, and reads and over-writes are routed appropriately.

Staging fileTarget file

Physical blocks

Logical blocks

1

2

3

Init state: Staging file
has a mmap() region

of 2 pre-allocated
physical block

available for appends

An append to the
target file is routed

to the staging file block.
Later reads to the

appended region are
also routed to the block

Physical blocks

Logical blocks

Physical blocks

Logical blocks

1

On fsync, the newly
written block in the

staging file is logically
linked to the target file,

while retaining its
mmap() region and

physical block

2

2

Staging
1

Staging
2

Target
2

Staging
2

2

Staging
2

Figure 2. relink steps. This figure provides an overview
of the steps involved while performing a relink operation.
First, appends to a target file are routed to pre-allocated
blocks in the staging file and subsequently on an fsync(),
they are relinked into the target file while retaining existing
memory-mapped regions.

Staging. SplitFS uses temporary files called staging files for
both appends and atomic data operations. Appends are first
routed to a staging file, and are later relinked on fsync().
Similarly, file overwrites in strict mode are also first sent to
staging files and later relinked to their appropriate files.
Relink. On an fsync(), all the staged appends of a file
must be moved to the target file; in strict mode, overwrites
have to be moved as well. One way to move the staged
appends to the target file is to allocate new blocks and then
copy appended data to them. However, this approach leads
to write amplification and high overhead. To avoid these
unnecessary data copies, we developed a new primitive called
relink. Relink logically moves PM blocks from the staging
file to the target file without incurring any copies.

Relink has the following signature: relink(file1, offset1,

file2, offset2, size). Relink atomically moves data from
offset1 of file1 to offset2 of file2. If file2 already
has data at offset2, existing data blocks are de-allocated.
Atomicity is ensured by wrapping the changes in a ext4 jour-
nal transaction. Relink is a metadata operation, and does
not involve copying data when the involved offsets and
size are block aligned. When offset1 or offset2 happens
to be in the middle of a block, SplitFS copies the partial
data for that block to file2, and performs a metadata-only
relink for the rest of the data. Given that SplitFS is targeted
at POSIX applications, block writes and appends are often
block-aligned by the applications. Figure 2 illustrates the
different steps involved in the relink operation.
Optimized logging. In strictmode, SplitFS guarantees atom-
icity for all operations. To provide atomicity, we employ an
Operation Log and use logical redo logging to record the

498

intent of each operation. Each U-Split instance has its own
operation log that is pre-allocated, mmap-ed by U-Split, and
written using non-temporal store instructions. We use the
necessary memory fence instructions to ensure that log en-
tries persist in the correct order. To reduce the overheads
from logging, we ensure that in the common case, per opera-
tion, we write one cache line (64B) worth of data to PM and
use a single memory fence (sfence in x86) instruction in the
process. Operation log entries do not contain the file data
associated with the operation (e.g., data being appended to a
file), instead they contain a logical pointer to the staging file
where the data is being held.

We employ a number of techniques to optimize logging.
First, to distinguish between valid and invalid or torn log
entries, we incorporate a 4B transactional checksum [23]
within the 64B log entry. The use of checksum reduces the
number of fence instructions necessary to persist and val-
idate a log entry from two to one. Second, we maintain a
tail for the log in DRAM and concurrent threads use the tail
as a synchronization variable. They use compare-and-swap
to atomically advance the tail and write to their respective
log entries concurrently. Third, during the initialization of
the operation log file, we zero it out. So, during crash re-
covery, we identify all non-zero 64B aligned log entries as
being potentially valid and then use the checksum to identify
any torn entries. The rest are valid entries and are replayed.
Replaying log entries is idempotent, so replaying them mul-
tiple times on crashes is safe. We employ a 128MB operation
log file and if it becomes full, we checkpoint the state of
the application by calling relink() on all the open files that
have data in staging files. We then zero out the log and reuse
it. Finally, we designed our logging mechanism such that
all common case operations (write(), open(), etc.) can be
logged using a single 64B log entry while some uncommon
operations, like rename(), require multiple log entries.
Our logging protocol works well with the SplitFS archi-

tecture. The tail of each U-Split log is maintained only in
DRAM as it is not required for crash recovery. Valid log en-
tries are instead identified using checksums. In contrast, file
systems such as NOVA have a log per inode that resides on
PM, whose tail is updated after each operation via expensive
clflush and sfence operations.
Providing Atomic Operations. In strict mode, SplitFS
provides synchronous, atomic operations. Atomicity is pro-
vided in an efficient manner by the combination of staging
files, relink, and optimized logging. Atomicity for data oper-
ations like overwrites is achieved by redirecting them also to
a staging file, similar to how appends are performed. SplitFS
logs these writes and appends to record where the latest data
resides in the event of a crash. On fsync(), SplitFS relinks
the data from the staging file to the target file atomically.
Once again, the data is written exactly once, though SplitFS
provides the strong guarantee of atomic data operations.

Relink allows SplitFS to implement a form of localized copy-
on-write. Due to the staging files being pre-allocated, locality
is preserved to an extent. SplitFS logs metadata operations
to ensure they are atomic and synchronous. Optimized log-
ging ensures that for most operations exactly one cache line
is written and one sfence is issued for logging.

3.4 Handling Reads, Overwrites, and Appends

Reads. Reads consult the collection of mmaps to determine
where the most recent data for this offset is, since the data
could have been overwritten or appended (and thus in a
staging file). If a valid memory mapped region for the offsets
being read exists in U-Split, the read is serviced from the
corresponding region. If such a region does not exist, then
the 2 MB region surrounding the read offset is first memory
mapped, added to the the collection of mmaps, and then the
read operation is serviced using processor loads.
Overwrites. Similar to reads, if the target offset is already
memory mapped, then U-Split services the overwrite using
non-temporal store instructions. If the target offset is not
memorymapped, then the 2MB region surrounding the offset
is first memory mmaped, added to the collection of mmaps,
and then the overwrite is serviced. However, in strict mode,
to guarantee atomicity, overwrites are first redirected to a
staging file (even if the offset is memory mapped), then the
operation is logged, and finally relinked on a subsequent
fsync() or close().
Appends. SplitFS redirects all appends to a staging file, and
performs a relink on a subsequent fsync() or close(). As
with overwrites, appends are performed with non-temporal
writes and in strict mode, SplitFS also logs details of the
append operation to ensure atomicity.

3.5 Implementation

We implement SplitFS as a combination of a user-space
library file system (9K lines of C code) and a small patch
to ext4 DAX to add the relink system call (500 lines of C
code). SplitFS supports 35 common POSIX calls, such as
pwrite(), pread64(), fread(), readv(), ftruncate64(),
openat(), etc; we found that supporting this set of calls
is sufficient to support a variety of applications and micro-
benchmarks. Since PM file systems PMFS and NOVA are
supported by Linux kernel version 4.13, we modified 4.13
to support SplitFS. We now present other details of our
implementation.
Intercepting POSIX calls. SplitFS uses LD_PRELOAD to in-
tercept POSIX calls and either serve from user-space or route
them to the kernel after performing some book-keeping tasks.
Since SplitFS intercepts calls at the POSIX level in glibc
rather than at the system call level, SplitFS has to intercept
several variants of common system calls like write().
Relink. We implement relink by leveraging an ioctl pro-
vided by ext4 DAX. The EXT4_IOC_MOVE_EXT ioctl swaps

499

extents between a source file and a destination file, and uses
journaling to perform this atomically. The ioctl also de-
allocates blocks in the target file if they are replaced by blocks
from the source file. By default, the ioctl also flushes the
swapped data in the target file; we modify the ioctl to only
touch metadata, without copying, moving, or persisting of
data. We also ensure that after the swap has happened, exist-
ing memory mappings of both source and destination files
are valid; this is vital to SplitFS performance as it avoids
page faults. The ioctl requires blocks to be allocated at
both source and destination files. To satisfy this requirement,
when handling appends via relink, we allocate blocks at
the destination file, swap extents from the staging file, and
then de-allocate the blocks. This allows us to perform relink
without using up extra space, and reduces implementation
complexity at the cost of temporary allocation of data.
Handling file open and close. On file open, SplitFS per-
forms stat() on the file and caches its attributes in user-
space to help handle later calls. When a file is closed, we do
not clear its cached information.When the file is unlinked, all
cached metadata is cleared, and if the file has been memory-
mapped, it is un-mapped. The cached attributes are used to
check file permissions on every subsequent file operation
(e.g., read()) intercepted by U-Split.
Handling fork. Since SplitFS uses a user-space library file
system, special care needs to be taken to handle fork()
and execve() correctly. When fork() is called, SplitFS is
copied into the address space of the new process (as part of
copying the address space of the parent process), so that the
new process can continue to access SplitFS.
Handling execve. execve() overwrites the address space,
but open file descriptors are expected to work after the call
completes. To handle this, SplitFS does the following: be-
fore executing execve(), SplitFS copies its in-memory data
about open files to a sharedmemory file on /dev/shm; the file
name is the process ID. After executing execve(), SplitFS
checks the shared memory device and copies information
from the file if it exists.
Handling dup. When a file descriptor is duplicated, the
file offset is changed whenever operations are performed
on either file descriptor. SplitFS handles by maintaining a
single offset per open file, and using pointers to this file in the
file descriptor maintained by SplitFS. Thus, if two threads
dup a file descriptor and change the offset from either thread,
SplitFS ensures both threads see the changes.
Staging files. SplitFS pre-allocates staging files at startup,
creating 10 files each 160 MB in size. Whenever a staging file
is completely utilized, a background thread wakes up and
creates and pre-allocates a new staging file. This avoids the
overhead of creating staging files in the critical path.
Cache of memory-mappings. SplitFS caches all memory-
mappings its creates in its collection of memory mappings.

A memory-mapping is only discarded on unlink(). This re-
duces the cost of setting up memory mappings in the critical
path on read or write.
Multi-thread access. SplitFS uses a lock-free queue for
managing the staging files. It uses fine-grained reader-writer
locks to protect its in-memory metadata about open files,
inodes, and memory-mappings.

3.6 Tunable Parameters

SplitFS provides a number of tunable parameters that can be
set by application developers and users for each U-Split in-
stance. These parameters affect the performance of SplitFS.
mmap() size. SplitFS supports a configurable size of mmap()
for handling overwrites and reads. Currently, SplitFS sup-
ports mmap() sizes ranging from 2MB to 512MB. The default
size is 2 MB, allowing SplitFS to employ huge pages while
pre-populating the mappings.
Number of staging files at startup. There are ten staging
files at startup by default; when a staging file is used up,
SplitFS creates another staging file in the background. We
experimentally found that having ten staging files provides
a good balance between application performance and the
initialization cost and space usage of staging files.
Size of the operation log. The default size of the operation
log is 128MB for each U-Split instance. Since all log entries
consist of a single cacheline in the common case, SplitFS can
support up to 2M operations without clearing the log and
re-initializing it. This helps applications with small bursts to
achieve good performance while getting strong semantics.

3.7 Security

SplitFS does not expose any new security vulnerabilities as
compared to an in-kernel file system. All metadata operations
are passed through to the kernel which performs security
checks. SplitFS does not allow a user to open, read, or write
a file to which they previously did not have permissions. The
U-Split instances are isolated from each other in separate
processes; therefore applications cannot access the data of
other applications while running on SplitFS. Each U-Split
instance only stores book-keeping information in DRAM
for the files that the application already has access to. An
application that uses SplitFS may corrupt its own files, just
as in an in-kernel file system.

4 Discussion

We reflect on our experiences building SplitFS, describe
problems we encountered, how we solved them, and surpris-
ing insights that we discovered.
Page faults lead to significant cost. SplitFSmemorymaps
files before accessing them, and uses MAP_POPULATE to pre-
fault all pages so that later reads and writes do not incur
page-fault latency. As a result, we find that a significant por-
tion of the time for open() is consumed by page faults. While

500

the latency of device IO usually dominates page fault cost in
storage systems based on solid state drives or magnetic hard
drives, the low latency of persistent memory highlights the
cost of page faults.
Huge pages are fragile. A natural way of minimizing page
faults is to use 2 MB huge pages. However, we found huge
pages fragile and hard to use. Setting up a huge-page map-
ping in the Linux kernel requires a number of conditions.
First, the virtual address must be 2 MB aligned. Second,
the physical address on PM must be 2 MB aligned. As a
result, fragmentation in either the virtual address space or
the physical PM prevents huge pages from being created. For
most workloads, after a few thousand files were created and
deleted, fragmenting PM, we found it impossible to create
any new huge pages. Our collection-of-mappings technique
sidesteps this problem by creating huge pages at the begin-
ning of the workload, and reusing them to serve reads and
writes. Without huge pages, we observed read performance
dropping by 50% in many workloads. We believe this is a
fundamental problem that must be tackled since huge pages
are crucial for accessing large quantities of PM.
Avoiding work in the critical path is important. Finally,
we found that a general design technique that proved crucial
for SplitFS is simplifying the critical path. We pre-allocate
wherever possible, and use a background thread to perform
pre-allocation in the background. Similarly, we pre-fault
memory mappings, and use a cache to re-use memory map-
pings as much as possible. SplitFS rarely performs heavy-
weight work in the critical path of a data operation. Similarly,
even in strict mode, SplitFS optimizes logging, trading off
shorter recovery time for a simple, low overhead logging
protocol. We believe this design principle will be useful for
other systems designed for PM.
Stagingwrites in DRAM. An alternate design that we tried
was staging writes in DRAM instead of on PM. While DRAM
staging files incur less allocation costs than PM staging files,
we found that the cost of copying data from DRAM to PM on
fsync() overshadowed the benefit of staging data in DRAM.
In general, DRAM buffering is less useful in PM systems
because PM and DRAM performances are similar.
Legacy applications need to be rewritten to take max-

imum advantage of PM. We observe that the applications
we evaluate such as LevelDB spent a significant portion of
their time (60 − 80%) performing POSIX calls on current
PM file systems. SplitFS is able to reduce this percentage
down to 46-50%, but further reduction in software overhead
will have negligible impact on application runtime since the
majority of the time is spent on application code. Applica-
tions would need to be rewritten from scratch to use libraries
like libpmem that exclusively operate on data structures in
mmap() to take further advantage of PM.

Application Description

TPC-C [9] on SQLite [26] Online transaction processing
YCSB [8] on LevelDB [15] Data retreival & maintenance
Set in Redis [1] In-memory data structure store
Git Popular version control software
Tar Linux utility for data compression
Rsync Linux utility for data copy

Table 5. Applications used in evaluation. The table pro-
vides a brief description of the real-world applications we
use to evaluate PM file systems.

5 Evaluation

In this section, we use a number of microbenchmarks and
applications to evaluate SplitFS in relation to state-of-the-
art PM filesystems like ext4 DAX, NOVA, and PMFS. While
comparing these different file systems, we seek to answer
the following questions:

• How does SplitFS affect the performance of different
system calls as compared to ext4 DAX? (§5.4)

• How do the different techniques employed in SplitFS
contribute to overall performance? (§5.5)

• How does SplitFS compare to other file systems for
different PM access patterns? (§5.6)

• Does SplitFS reduce file-system software overhead as
compared to other PM file systems? (§5.7)

• How does SplitFS compare to other file systems for
real-world applications? (§5.8 & §5.9)

• What are the compute and storage overheads incurred
when using SplitFS? (§5.10)

We first briefly describe our experimental methodology
(§5.1 & §5.2) before addressing each of the above questions.

5.1 Experimental Setup

We evaluate the performance of SplitFS against other PM
file systems on Intel Optane DC Persistent Memory Module
(PMM). The experiments are performed on a 2-socket, 96-
core machine with 768 GB PMM, 375 GB DRAM, and 32 MB
Last Level Cache (LLC). We run all evaluated file systems on
the 4.13 version of the Linux kernel (Ubuntu 16.04). We run
each experiment multiple times and report the mean. In all
cases, the standard deviation was less than five percent of
the mean, and the experiments could be reliably repeated.

5.2 Workloads

We used two key-value stores (Redis, LevelDB), an embedded
database (SQLite), and three utilities (tar, git, rsync) to evalu-
ate the performance of SplitFS. Table 5 lists the applications
and their characteristics.

501

TPC-C on SQLite. TPC-C is an online transaction process-
ing benchmark. It has five different types of transactions
each with different ratios of reads and writes. We run SQLite
v3.23.1 with SplitFS, and measured the performance of TPC-
C on SQLite in the Write-Ahead-Logging (WAL) mode.
YCSBonLevelDB. The YahooCloud Serving Benchmark [8]
has six different key-value store benchmarks, each with dif-
ferent read/write ratios. We run the YCSB workloads on the
LevelDB key-value stores. We set the sstable size to 64 MB
as recommended in Facebook’s tuning guide [13].
Redis. We set 1M key-value pairs in Redis [1], an in-memory
key-value store. We ran Redis in the Append-Only-File mode,
where it logs updates to the database in a file and performs
fsync() on the file every second.
Utilities. We also evaluated the performance of SplitFS for
tar, git, and rsync. With git, we measured the time taken
for git add and git commit of all files in the Linux kernel
ten times. With rsync, we copy a 7 GB dataset of 1200 files
with characteristics similar to backup datasets [30] from one
PM location to another. With tar, we compressed the Linux
kernel 4.18 along with the files from the backup dataset.

5.3 Correctness and recovery

Correctness. First, to validate the functional correctness of
SplitFS we run various micro-benchmarks and real-world
applications and compare the resulting file-system state to
the ones obtained with ext4 DAX. We observe that the file-
system states obtained with ext4 DAX and SplitFS are equiv-
alent, validating how SplitFS handles POSIX calls in its user-
space library file system.
Recovery times. Crash recovery in POSIX and sync modes
of SplitFS do not require anything beyond allowing the
underlying ext4 DAX file system to recover. In strict mode
however, all valid log entries in the operation log need to
be replayed on top of ext4 DAX recovery. This additional
log replay time depends on the number and type of valid log
entries in the log. To estimate the additional time needed
for recovery, we crash our real-world workloads at random
points in their execution and measure the log replay time. In
our crash experiments, the maximum number of log entries
to be replayed was 18,000 and that took about 3 seconds
on emulated PM (emulation details in §5.8). In a worst-case
micro-benchmark where we perform cache-line sized writes
and crash with 2M (128MB of data) valid log entries, we
observed a log replay time of 6 seconds on emulated PM.

5.4 SplitFS system call overheads

The central premise of SplitFS is that it is a good trade-off
to accelerate data operations at the expense of metadata
operations. Since data operations are more prevelant, this
optimization improves overall application performance. To
validate this premise, we construct a micro-benchmark simi-
lar to FileBench Varmail [27] that issues a variety of data and

System call Strict Sync POSIX ext4 DAX

open 2.09 2.08 1.82 1.54
close 0.78 0.69 0.69 0.34
append 3.14 3.09 2.84 11.05
fsync 6.85 6.80 6.80 28.98
read 4.57 4.53 4.53 5.04
unlink 14.60 13.56 14.33 8.60

Table 6. SplitFS system call overheads. The table com-
pares the latency (in us) of different system calls for various
modes of SplitFS and ext4 DAX.

metadata operations. The micro-benchmark first creates and
appends 16KB to a file (as four appends, each followed by an
fsync()), closes it, opens it again, read the whole file as one
read call, closes it, then opens and closes the file once more,
and finally deletes the file. The multiple open and close calls
were introduced to account for the fact that their latency
varies over time. Opening a file for the first time takes longer
than opening a file that we recently closed, due to file meta-
data caching inside U-Split. Table 6 shows the latencies we
observed for different system calls and they are reported for
all the three modes provided by SplitFS and for ext4 DAX
on which SplitFS was built.

We make three observations based on these results. First,
data operations on SplitFS are significantly faster than on
ext4 DAX. Writes especially are 3–4× faster. Second, meta-
data operations (e.g., open(), close(), etc.) are slower on
SplitFS than on ext4 DAX, as SplitFS has to setup its own
data structures in addition to performing the operation on
ext4 DAX. In SplitFS, unlink() is an expensive operation
because the file mappings that are created for serving reads
and overwrites need to be unmapped in the unlink() wrap-
per. Third, as the consistency guarantees provided by SplitFS
get stronger, the syscall latency generally increases. This in-
crease can be attributed to more work SplitFS has to do
(e.g., logging in strict mode) for each system call to provide
stronger guarantees. Overall, SplitFS achieves its objective
of accelerating data operations albeit at the expense of meta-
data operations.

5.5 SplitFS performance breakdown

Weexamine how the various techniques employed by SplitFS
contribute to overall performance.We use twowrite-intensive
microbenchmarks: sequential 4KB overwrites and 4KB ap-
pends. An fsync() is issued every ten operations. Figure 3
shows how individual techniques introduced one after the
other improve performance.
Sequential overwrites. SplitFS increases sequential over-
write performance by more than 2× compared to ext4 DAX

502

Figure 3. SplitFS techniques contributions. This figure
shows the contributions of different techniques to overall
performance. We compare the relative merits of these tech-
niques using two write intensive microbenchmarks; sequen-
tial overwrites and appends.

since overwrites are served from user-space via processor
stores. However, further optimizations like handling appends
using staging files and relink have negligible impact on this
workload as it does not issue any file append operations.
Appends. The split architecture does not accelerate appends
since without staging files or relink all appends go to ext4
DAX as they are metadata operations. Just introducing stag-
ing files to buffer appends improves performance by about
2×. In this setting, even though appends are serviced in user-
space, overall performance is bogged down by expensive
data copy operations on fsync(). Introducing the relink
primitive to this setting eliminates data copies and increases
application throughput by 5×.

5.6 Performance on different IO patterns

To understand the relative merits of different PM file sys-
tems, we compare their performance on microbenchmarks
performing different file IO patterns: sequential reads, ran-
dom reads, sequential writes, random writes, and appends.
Each benchmark reads/writes an entire 128MB file in 4KB
operations. We compare file systems providing the same
guarantees: SplitFS-POSIX with ext4 DAX, SplitFS-sync
with PMFS, and SplitFS-strict with Nova-strict and Strata.
Figure 4 captures the performance of these file systems for
the different micro-benchmarks.
POSIX mode. SplitFS is able to reduce the execution times
of ext4 DAX by at least 27% and as much as 7.85× (sequen-
tial reads and appends respectively). Read-heavy workloads
present fewer improvement opportunities for SplitFS as
file read paths in the kernel are optimized in modern PM
file systems. However, write paths are much more complex
and longer, especially for appends. So, servicing a write in

Figure 4. Performance on different IO patterns. This
figure compares SplitFS with the state-of-the-art PM file
systems in their respective modes using micrbenchmarks
that perform five different kinds of file access patters. The
y-axis is throughput normalized to ext4 DAX in POSIX mode,
PMFS in sync mode, and NOVA-Strict in Strict mode (higher
is better). The absolute throughput numbers in Mops/s are
given over the baseline in each group.

user-space has a higher payoff than servicing a read, an
observation we already made in Table 6.
Sync mode. Compared to PMFS, SplitFS improves the per-
formance for write workloads (by as much as 2.89×) and
increases performance for read workloads (by as much as
56%). Similar to ext4 DAX, SplitFS’s ability to not incur
expensive write system calls translates to its superior per-
formance for the write workloads.
Strict mode. NOVA, Strata, and SplitFS in this mode pro-
vide atomicity guarantees to all operations and perform the
necessary logging. As can be expected, the overheads of log-
ging result in reduced performance compared to file systems
in other modes. Overall, SplitFS improves the performance
over NOVA by up to 5.8× on the random writes workload.
This improvement stems from SplitFS’s superior logging
which incurs half the number of log writes and fence opera-
tions than NOVA.

5.7 Reducing software overhead

The central premise of SplitFS is that it is possible to accel-
erate applications by reducing file system software overhead.
We define file-system software overhead as the time taken
to service a file-system call minus the time spent actually
accessing data on the PM device. For example, if a system
call takes 100 µs to be serviced, of which only 25 µs were
spent read or writing to PM, then we say that the software
overhead is 75 µs. To provide another example, for append-
ing 4 KB (which takes 10 µs to write to PM), if file system A
writes 10 metadata items (incurring 100 µs) while file system

503

Figure 5. Software overhead in applications. This figure
shows the relative file system software overhead incurred by
different applications with various file systems as compared
SplitFS providing the same level of consistency guarantees
(lower is better). The numbers shown indicate the absolute
time taken to run the workload for the baseline file system.

B writes two metadata items (incurring 20 µs), file-system
B will have lower overhead. In addition to avoiding kernel
traps of system calls, the different techniques discussed in
§3 help SplitFS reduce its software overhead. Minimizing
software overhead allows applications to fully leverage PMs.
Figure 5 highlights the relative software overheads in-

curred by different file systems compared to SplitFS provid-
ing the same level of guarantees. We present results for three
write-heavy workloads, LevelDB running YCSB Load A and
Run A, and SQLite running TPCC. ext4 DAX and NOVA (in
relaxed mode) suffer the highest relative software overheads,
up to 3.6× and 7.4× respectively. NOVA-Relaxed incurs the
highest software overhead for TPCC because it has to up-
date the per-inode logical log entries on overwrites before
updating the data in-place. On the other hand, SplitFS-sync
can directly perform in-place data updates, and thus has sig-
nificantly lower software overhead. PMFS suffers the lowest
relative software overhead, capping off at 1.9× for YCSB Load
A and Run A. Overall, SplitFS incurs the lowest software
overhead.

5.8 Performance on data-intensive workloads

Figure 6 summarizes the performance of various applications
on different file systems. The performance metric we use for
these data intensive workloads (LevelDB with YCSB, Redis
with 100% writes, and SQLite with TPCC) is throughput mea-
sured in KOps/s. For each mode of consistency guarantee
(POSIX, sync, and strict), we compare SplitFS to state-of-the-
art PM file systems. We report the absolute performance for
the baseline file system in each category and relative through-
put for SplitFS. Despite our best efforts, we were not able
to run Strata on these large applications; other researchers

Workload Strata SplitFS

Load A 29.1 kops/s 1.73×
Run A 55.2 kops/s 1.76×
Run B 76.8 kops/s 2.16×
Run C 94.3 kops/s 2.14×
Run D 113.1 kops/s 2.25×
Load E 29.1 kops/s 1.72×
Run E 8.1 kops/s 2.03×
Run F 73.3 kops/s 2.25×

Table 7. SplitFS vs. Strata. This table compares the perfor-
mance of Strata and SplitFS strict running YCSB on LevelDB.
We present the raw throughput numbers for Strata and nor-
malized SplitFS strict throughput w.r.t Strata. This is the
biggest workload that we could run reliably on Strata.

have also reported problems in evaluating Strata [32]. We
evaluated Strata with a smaller-scale YCSB workload using
a 20GB private log.

Overall, SplitFS outperforms other PM file systems (when
providing similar consistency guarantees) on all data-intensive
workloads by as much as 2.70×. We next present a break-
down of these numbers for different guarantees.
POSIX mode. SplitFS outperforms ext4 DAX in all work-
loads. Write-heavy workloads like RunA (2×), LoadA (89%),
LoadE (91%), Redis (27%), etc. benefit the most with SplitFS.
SplitFS speeds up writes and appends the most, so write-
heavy workloads benefit the most from SplitFS. SplitFS
outperforms ext4 DAX on read-dominated workloads, but
the margin of improvement is lower.
Sync and strict mode. SplitFS outperforms sync-mode
file systems PMFS and NOVA (relaxed) and strict-mode file
system NOVA (strict) for all the data intensive workloads.
Once again, its the write-heavy workloads that show the
biggest boost in performance. For example, SplitFS in sync
mode outperforms NOVA (relaxed) and PMFS by 2× and 30%
on RunA and in strict mode outperforms NOVA (strict) by
2×. Ready-heavy workloads on the other hand do not show
much improvement in performance.
Comparison with Strata. We were able to reliably evalu-
ate Strata (employing a 20 GB private log) using LevelDB
running smaller-scale YCSB workloads (1M records, and 1M
ops for workloads A–D and F, 500K ops for workload E). We
were unable to run Strata on Intel DC Persistent Memory.
Hence, we use DRAM to emulate PM. We employ the same
PM emulation framework used by Strata. We inject a delay
of 220ns on every read() system call, to emulate the access
latencies of the PM hardware. We do not add this fixed 220ns
delay for writes, because writes do not go straight to PM

504

Figure 6. Real application performance. This figure shows the performance of both data intensive applications (YCSB,
Redis, and TPCC) and metadata instensive utilities (git, tar, and rsync) with different file systems, providing three different
consistency guarantees, POSIX, sync, and strict. Overall, SplitFS beats all other file systems on all data intensive applications
(in their respective modes) while incurring minor performance degradation on metadata heavy workloads. For throughput
workloads, higher is better. For latency workloads, lower is better. The numbers indicate the absolute throughput in Kops/s or
latency in seconds for the base file system.

in the critical path, but only to the memory controller. We
add bandwidth-modeling delays for reads as well as writes
to emulate a memory device with 1/3rd the bandwidth of
DRAM, an expected characteristic of PMs [18]. While this
emulation approach is far from perfect, we observe that the
resulting memory access characteristics are inline with the
expected behavior of PMs [19]. SplitFS outperforms Strata
on all workloads, by 1.72×–2.25× as shown in Table 7.

5.9 Performance on metadata-heavy workloads

Fig 6 compares the performance of SplitFS with other PM
file systems (we only show the best performing PM file sys-
tem) on metadata-heavy workloads like git, tar, and rsync.

These metadata-heavy workloads do not present many op-
portunities for SplitFS to service system calls in userspace
and in turn slow metadata operations down due to the addi-
tional bookkeeping performed by SplitFS. These workloads
represent the worst case scenarios for SplitFS. The maxi-
mum overhead experienced by SplitFS is 13%.

5.10 Resource Consumption

SplitFS consumes memory for its file-related metadata (e.g.,,
to keep track of open file descriptors, staging files used). It
also additionally consumes CPU time to execute background
threads that help with metadata management and to move
some expensive tasks off the application’s critical path.

505

Memory usage. SplitFS using a maximum of 100MB to
maintain its own metadata to help track different files, the
mappings between file offsets and mmap()-ed regions, etc.
In strict mode, SplitFS additionally uses 40MB to maintain
data structures to provide atomicity guarantees.
CPU utilization. SplitFS uses a background thread to han-
dle various deferred tasks (e.g.,, stage file allocation, file clo-
sures). This thread utilizes one physical thread of the ma-
chine, occasionally increasing CPU consumption by 100%.

6 Related Work

SplitFS builds on a large body of work on PM file systems
and building low-latency storage systems. We briefly de-
scribe the work that is closest to SplitFS.
Aerie. Aerie [28] was one of the first systems to advocate
for accessing PM from user-space. Aerie proposed a split
architecture similar to SplitFS, with a user-space library file
system and a kernel component. Aerie used a user-space
metadata server to hand out leases, and only used the kernel
component for coarse-grained activities like allocation. In
contrast, SplitFS does not use leases (instead making most
operations immediately visible) and uses ext4 DAX as its ker-
nel component, passing all metadata operations to the kernel.
Aerie proposed eliminating the POSIX interface, and aimed
to provide applications flexibility in interfaces. In contrast,
SplitFS aims to efficiently support the POSIX interface.
Strata. The Strata [19] cross-device file system is similar to
Aerie and SplitFS in many respects. There are two main
differences from SplitFS. First, Strata writes all data to a
process-private log, coalesces the data, and then writes it to
a shared space. In contrast, only appends are private (and
only until fsync) in SplitFS; all metadata operations and
overwrites are immediately visible to all processes in SplitFS.
SplitFS does not need to copy data between a private space
and a shared space; it instead relinks data into the target file.
Finally, since Strata is implemented entirely in user-space,
the authors had to re-implement a lot of VFS functionality
in their user-space library. SplitFS instead depends on the
mature codebase of ext4 DAX for all metadata operations.
Quill and FLEX. Quill [11] and File Emulation with DAX
(FLEX) [32] both share with SplitFS the core technique of
transparently transforming read and overwrite POSIX calls
into processor loads and stores. However, while Quill and
FLEX do not provide strong semantics, SplitFS can provide
applications with synchronous, atomic operations if required.
SplitFS also differs in its handling of appends. Quill calls into
the kernel for every operation, and FLEX optimizes appends
by pre-allocating data beyond what the application asks for.
In contrast, SplitFS elegantly handles this problem using
staging files and the relink primitive. While Quill appends
are slower than ext4 DAX, SplitFS appends are faster than

ext4 DAX appends. At the time of writing this paper, FLEX
has not been made open-source, so we could not evaluate it.
PM file systems. Several file systems such as SCMFS [31],
BPFS [7], and NOVA [33] have been developed specifically
for PM. While each file system tries to reduce software over-
head, they are unable to avoid the cost of trapping into
the kernel. The relink primitive from SplitFS is similar to
the short-circuit paging presented in BPFS. However, while
short-circuit paging relies on an atomic 8-byte write, SplitFS
relies on ext4’s journaling mechanism to make relink atomic.
Kernel By-Pass. Several projects have advocated direct
user-space access to networking [29], storage [5, 10, 14, 20],
and other hardware features [3, 4, 22]. These projects typi-
cally follow the philosophy of separating the control path
and data path, as in Exokernel [12] and Nemesis [2]. SplitFS
follows this philosophy, but differs in the abstraction pro-
vided by the kernel component; SplitFS uses a PMfile system
as its kernel component to handle all metadata operations,
instead of limiting it to lower-level decisions like allocation.

7 Conclusion

We present SplitFS, a PM file system built using the split ar-
chitecture. SplitFS handles data operations entirely in user-
space, and routes metadata operations through the ext4 DAX
PM file system. SplitFS provides three modes with varying
guarantees, and allows applications running at the same time
to use different modes. SplitFS only requires adding a single
system call to the ext4 DAX file system. Evaluating SplitFS
with micro-benchmarks and real applications, we show that
it outperforms state-of-the-art PM file systems like NOVA on
many workloads. The design of SplitFS allows users to ben-
efit from the maturity and constant development of the ext4
DAX file system, while getting the performance and strong
guarantees of state-of-the-art PM file systems. SplitFS is
publicly available at https://github.com/utsaslab/splitfs.

Acknowledgments

Wewould like to thank our shepherd, Keith Smith, the anony-
mous reviewers, and members of the LASR group and the
Systems and Storage Lab for their feedback and guidance.
We would like to thank Intel and ETRI IITP/KEIT[2014-3-
00035] for providing access to Optane DC Persistent Memory
for conducting experiments for the paper. This work was
supported by NSF CAREER grant 1751277 and generous do-
nations from VMware, Google and Facebook. Any opinions,
findings, and conclusions, or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of other institutions.

506

https://github.com/utsaslab/splitfs

References

[1] 2019. Redis: In-memory data structure store. https://redis.io.
[2] Paul R. Barham. 1997. A fresh approach to file system quality of

service. In Proceedings of 7th International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV’97).
IEEE, 113–122.

[3] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access
to Privileged CPU Features. In 10th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2012, Hollywood, CA,
USA, October 8-10, 2012. 335–348. https://www.usenix.org/conference/
osdi12/technical-sessions/presentation/belay

[4] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. 49–65. https://www.
usenix.org/conference/osdi14/technical-sessions/presentation/belay

[5] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De,
Joel Coburn, and Steven Swanson. 2012. Providing safe, user space
access to fast, solid state disks. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2012, London, UK, March 3-7, 2012. 387–400.
https://doi.org/10.1145/2150976.2151017

[6] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2012. Consistency Without Ordering. In
Proceedings of the 10th USENIX Symposium on File and Storage Tech-
nologies (FAST ’12). San Jose, California, 101–116.

[7] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (SOSP
’09). 133–146.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 143–154.

[9] Transaction Processing Performance Council. 2001. TPC benchmark
C, Standard Specification Version 5.

[10] Matt DeBergalis, Peter F. Corbett, Steven Kleiman, Arthur Lent, Dave
Noveck, Thomas Talpey, and Mark Wittle. 2003. The Direct Access
File System. In Proceedings of the FAST ’03 Conference on File and
Storage Technologies, March 31 - April 2, 2003, Cathedral Hill Hotel, San
Francisco, California, USA. http://www.usenix.org/events/fast03/tech/
debergalis.html

[11] Louis Alex Eisner, Todor Mollov, and Steven J. Swanson. 2013. Quill:
Exploiting fast non-volatile memory by transparently bypassing the file
system. Department of Computer Science and Engineering, University
of California, San Diego.

[12] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. 1995. Ex-
okernel: An Operating System Architecture for Application-Level Re-
source Management. In Proceedings of the Fifteenth ACM Symposium
on Operating System Principles, SOSP 1995, Copper Mountain Resort,
Colorado, USA, December 3-6, 1995. 251–266. https://doi.org/10.1145/
224056.224076

[13] Facebook. 2017. RocksDB Tuning Guide. https://github.com/facebook/
rocksdb/wiki/RocksDB-Tuning-Guide.

[14] Garth A. Gibson, David Nagle, Khalil Amiri, Fay W. Chang, Eugene M.
Feinberg, Howard Gobioff, Chen Lee, Berend Ozceri, Erik Riedel, David
Rochberg, and Jim Zelenka. 1997. File Server Scaling with Network-
Attached Secure Disks. In Proceedings of the 1997 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, Seattle, Washington, USA, June 15-18, 1997. 272–284. https:
//doi.org/10.1145/258612.258696

[15] Google. 2019. LevelDB. https://github.com/google/leveldb.
[16] Intel Corporation. 2019. Platform brief Intel Xeon Proces-

sor C5500/C3500 Series and Intel 3420 Chipset. https://www.
intel.com/content/www/us/en/intelligent-systems/picket-post/
embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.
html.

[17] Intel Corporation. 2019. Revolutionary Memory Technology. http:
//www.intel.com/content/www/us/en/architecture-and-technology/
non-volatile-memory.html.

[18] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subra-
manya R. Dulloor, Jishen Zhao, and Steven Swanson. 2019. Ba-
sic Performance Measurements of the Intel Optane DC Persistent
Memory Module. CoRR abs/1903.05714 (2019). arXiv:1903.05714
http://arxiv.org/abs/1903.05714

[19] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas E. Anderson. 2017. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017. ACM, 460–477. https:
//doi.org/10.1145/3132747.3132770

[20] Edward K. Lee and Chandramohan A. Thekkath. 1996. Petal: Dis-
tributed Virtual Disks. In ASPLOS-VII Proceedings - Seventh Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Cambridge, Massachusetts, USA, October 1-5,
1996. 84–92. https://doi.org/10.1145/237090.237157

[21] Linux. 2019. Direct Access for files. https://www.kernel.org/doc/
Documentation/filesystems/dax.txt.

[22] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas E. Anderson, and Timothy Roscoe. 2014. Ar-
rakis: The Operating System is the Control Plane. In 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI ’14,
Broomfield, CO, USA, October 6-8, 2014. 1–16. https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/peter

[23] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2005. IRON file systems. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles 2005, SOSP 2005, Brighton,
UK, October 23-26, 2005. 206–220. https://doi.org/10.1145/1095810.
1095830

[24] Dulloor Subramanya Rao, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
software for persistent memory. In Ninth Eurosys Conference 2014,
EuroSys 2014, Amsterdam, The Netherlands, April 13-16, 2014. 15:1–
15:15. https://doi.org/10.1145/2592798.2592814

[25] Storage Review. 2019. Intel Optane DC Persistent Memory Module
(PMM). https://www.storagereview.com/intel_optane_dc_persistent_
memory_module_pmm.

[26] SQLite. 2019. SQLite transactional SQL database engine. http://www.
sqlite.org/.

[27] Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A
flexible framework for file system benchmarking. login: The USENIX
Magazine 41, 1 (2016), 6–12.

[28] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. 2014. Aerie: Flexible File-system Interfaces to Storage-class
Memory. In Proceedings of the Ninth European Conference on Computer
Systems (EuroSys ’14).

[29] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels.
1995. U-Net: A User-Level Network Interface for Parallel and Dis-
tributed Computing. In Proceedings of the Fifteenth ACM Symposium
on Operating System Principles, SOSP 1995, Copper Mountain Resort,
Colorado, USA, December 3-6, 1995. 40–53. https://doi.org/10.1145/
224056.224061

507

https://redis.io
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://doi.org/10.1145/2150976.2151017
http://www.usenix.org/events/fast03/tech/debergalis.html
http://www.usenix.org/events/fast03/tech/debergalis.html
https://doi.org/10.1145/224056.224076
https://doi.org/10.1145/224056.224076
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://doi.org/10.1145/258612.258696
https://doi.org/10.1145/258612.258696
https://github.com/google/leveldb
https://www.intel.com/content/www/us/en/intelligent-systems/picket-post/embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.html
https://www.intel.com/content/www/us/en/intelligent-systems/picket-post/embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.html
https://www.intel.com/content/www/us/en/intelligent-systems/picket-post/embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.html
https://www.intel.com/content/www/us/en/intelligent-systems/picket-post/embedded-intel-xeon-c5500-processor-series-with-intel-3420-chipset.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/3132747.3132770
https://doi.org/10.1145/237090.237157
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://doi.org/10.1145/1095810.1095830
https://doi.org/10.1145/1095810.1095830
https://doi.org/10.1145/2592798.2592814
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm
https://www.storagereview.com/intel_optane_dc_persistent_memory_module_pmm
http://www.sqlite.org/
http://www.sqlite.org/
https://doi.org/10.1145/224056.224061
https://doi.org/10.1145/224056.224061

[30] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane,
Stephen Smaldone, Mark Chamness, and Windsor Hsu. 2012.
Characteristics of backup workloads in production systems. In
Proceedings of the 10th USENIX conference on File and Stor-
age Technologies, FAST 2012, San Jose, CA, USA, February 14-
17, 2012. 33–48. https://www.usenix.org/conference/fast12/
characteristics-backup-workloads-production-systems

[31] XiaoJian Wu, Sheng Qiu, and A. L. Narasimha Reddy. 2013. SCMFS:
A File System for Storage Class Memory and its Extensions. TOS 9, 3
(2013), 7:1–7:23. https://doi.org/10.1145/2501620.2501621

[32] Jian Xu, Juno Kim, AmirsamanMemaripour, and Steven Swanson. 2019.
Finding and Fixing Performance Pathologies in Persistent Memory
Software Stacks. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17, 2019.
427–439. https://doi.org/10.1145/3297858.3304077

[33] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies, FAST 2016, Santa Clara,
CA, USA, February 22-25, 2016. 323–338. https://www.usenix.org/
conference/fast16/technical-sessions/presentation/xu

508

https://www.usenix.org/conference/fast12/characteristics-backup-workloads-production-systems
https://www.usenix.org/conference/fast12/characteristics-backup-workloads-production-systems
https://doi.org/10.1145/2501620.2501621
https://doi.org/10.1145/3297858.3304077
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	2.2 Direct Access (DAX) and Memory Mapping
	2.3 PM File Systems

	3 SplitFS: Design and Implementation
	3.1 Goals
	3.2 SplitFS Modes and Guarantees
	3.3 Overview
	3.4 Handling Reads, Overwrites, and Appends
	3.5 Implementation
	3.6 Tunable Parameters
	3.7 Security

	4 Discussion
	5 Evaluation
	5.1 Experimental Setup
	5.2 Workloads
	5.3 Correctness and recovery
	5.4 SplitFS system call overheads
	5.5 SplitFS performance breakdown
	5.6 Performance on different IO patterns
	5.7 Reducing software overhead
	5.8 Performance on data-intensive workloads
	5.9 Performance on metadata-heavy workloads
	5.10 Resource Consumption

	6 Related Work
	7 Conclusion
	References

