Robotic Control through Neuroevolution
Reza Mahjourian, Risto Miikkulainen
Computer Science Department, University of Texas at Austin

Abstract
Traditional industrial robotics is primarily focused on optimal path control. In contrast, modern robotic tasks increasingly require greater degrees of adaptability and flexibility to deal with variations in the robot’s environment. Moreover, new robotic tasks can be specified without precise models or target behaviors. Neuroevolution of robotic controllers is a promising approach to such tasks: Neural networks represent nonlinear control naturally and evolutionary computation creates robust and flexible solutions. This poster presents early results from experiments using a neuroevolution method called NEAT to evolve a low-level controller for joints on the Atlas humanoid robot. Results show that the choice of neural network architecture can make a difference on controller performance.

Industrial Robotics vs New Robotics
Industrial robotics focuses on:
- Optimal path control
- Precise task specification
- Precise body models

New robotics offers:
- Adaptability
- Flexibility
- Handling imperfect sensors
- Handling imperfect actuators
- Robustness

Flexible Manufacturing
Need for robust control despite variations in the environment

Artificial Neural Networks
- Robust against noise
- Can function with incomplete inputs
- Nonlinear control
- Good choice for robotic control

Simulation Task
- Controlling 6 joints in one arm
- Objective is to move all joints to requested angles and maintain their positions

NEAT
Neuroevolution of Augmenting Topologies:
- No need to design a particular architecture
- Start with minimal topologies
- Can find topologies with right level of complexity

Initial Network Architecture
With neuroevolution, there is no need for training the neural network. Instead, neuroevolution discovers a set of values for the weights by trying out random mutations and observing how they affect performance. All is needed for neuroevolution to work is a measure of performance to evaluate the neural networks and select those which do better to produce the next generation through mutation and crossover operations.

Experiment Results

Future Work
- Evolve continuous-time recurrent neural networks: Since they model dynamical systems they may generate smoother movements
- Use controller designs where the network output controls the joints indirectly through predefined actions. e.g. accelerate/decelerate joint
- Evolve controllers for complex multi-step behaviors: Most robotic tasks require a sequence of steps to be taken, e.g. approaching a drill, picking it up, moving it to a bin, and letting go.