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Abstract—Autonomous agents that learn from reward on high-
dimensional visual observations must learn to simplify the raw
observations in both space (i.e., dimensionality reduction) and
time (i.e., prediction), so that reinforcement learning becomes
tractable and effective. Training the spatial and temporal models
requires an appropriate sampling scheme, which cannot be hard-
coded if the algorithm is to be general. Intrinsic rewards are
associated with samples that best improve the agent’s model of
the world. Yet the dynamic nature of an intrinsic reward signal
presents a major obstacle to successfully realizing an efficient
curiosity-drive. TD-based incremental reinforcement learning
approaches fail to adapt quickly enough to effectively exploit
the curiosity signal. In this paper, a novel artificial curiosity
system with planning is implemented, based on developmental
or continual learning principles. Least-squares policy iteration
is used with an agent’s internal forward model, to efficiently
assign values for maximizing combined external and intrinsic
reward. The properties of this system are illustrated in a high-
dimensional, noisy, visual environment that requires the agent
to explore. With no useful external value information early on,
the self-generated intrinsic values lead to actions that improve
both its spatial (perceptual) and temporal (cognitive) models.
Curiosity also leads it to learn how it could act to maximize
external reward.

I. INTRODUCTION

This paper is concerned with the holistic problem faced by
an autonomous reinforcement learning (RL) agent, in which
it is not only a problem to find externally valuable places
(where external drive, such as hunger, can be satisfied), but
also to arrange experience leading to valuable observations,
which improve its internal model of the world.

A core challenge in extending RL to real-world develop-
mental agents lies in uncovering how an agent might select
actions to autonomously build an effective perceptual mapping
— a simplifier of its sensory experience — through its
interactions with the environment. This mapping is necessary
since RL is generally intractable on an agent’s raw input. De-
velopmental agents with hand-coded non-adaptive perceptual
maps are limited, and suited to specific environments only.
Instead, an adaptive system must build a perceptual layer
using observations particular to its environment. We propose
that a major purpose of exploration for an agent is to learn
where it can find and how to reliably get to certain sensory
inputs, which are expected to improve its perception of the
world. It remains an open challenge to show, in a practical
computational sense, how autonomous agents can shape their
own interactions with the environment to best improve their

perceptual ability, while at the same time learning the value-
based information for RL.

In the context of classical RL, the problem of designing
or learning what is analogous to a perceptual mapping — a
value function approximation — has been well-studied [21],
[15], [10], but mainly in the context of continuous but low-
dimensional state spaces. The issues related to handling an
agent’s raw, real-world, high-dimensional observations have
not been addressed until recently. There are still few works
where unsupervised learning (UL) methods have been com-
bined with RL [2], [9], [4]. These recent approaches deal with
the UL separately from the RL, by alternating the following
two steps: (1) improving the UL layer on a set of observations,
modifying its encoding of observations, and (2) developing the
RL on top of the encoded information. It is assumed that the
implicit feedback inherent in the process leads to both useable
code and an optimal policy. But there is no reason in general
to expect such a result.

A major issue with the integration of UL and RL for
autonomous agents is exactly how to deal with the mutual
dependence of these layers, which poses a bootstrapping
problem. For the UL to produce a useful code, the agent’s
policy needs to provide it with informative observations, while
the RL must use the current code as a basis for the policy
to find these observations. Exploration methods based on
randomness cannot address this problem, since they are are
not scalable to larger environments. Indeed, exploration itself
is a skill that must be learned, as the solution to how best
explore depends on both the environment and the learning
capabilities of the agent.

The system in this paper is based on Schmidhuber and col-
laborators’ comprehensive theory of artificial curiosity [18],
developed since the early 1990’s. Our goal is to utilize a
curiosity signal to both (1) shape the sampling of the en-
vironment leading to perceptual layer on which tabular RL
methods are tractable, and to (2) make exploration efficient
so that optimal, or negligibly sub-optimal policies are quickly
discovered.

This paper explores an application of curiosity to develop-
mental agents for the purpose of actively learning effective
perceptual (encoding raw observations) and cognitive (pre-
diction) systems from vision-based observations. Neto [22]
combined a growing Kohonen-type network to build a model
of observations, and used error from the mature network as
curiosity signal to detect novel visual data, but the curiosity



was not used for actually building the model itself. We
will show the advantage of models built through artificial
curiosity, with respect to how well they enable an agent to
potentially achieve external rewards, over models built through
random exploration or externally-focused exploration. Further,
we examine the critical role that planning capabilities [17], [3],
[5] play, due to the non-stationary intrinsic reward signal, in
curious agents.

The rest of this paper is organized as follows. We discuss
the context of this work with respect to the field (focused
on computer science) in Section II. Our system and methods
are presented in Section III. The algorithm is presented as
modules in Algorithms 1, 2, 3, and 4. Experiments and results
are shown in Section IV. Section V concludes the paper.

II. BACKGROUND

The classical RL framework has an agent interacting with
an environment. With each observation the agent takes an
action to produce the next observation, and the agent also
receives a reward signal. The agent’s goal is to act so that
it maximizes the reward it receives during its lifetime. Real-
world RL situates an agent, which manifests itself as a robot
or android, in situations that are proto-typical for humans,
an requires the handling of raw (high-dimensional, noisy)
observations in a continuous environment.

A. Developmental Systems

We use the term, developmental system, to describe a system
that can accomplish the goals of real-world RL both au-
tonomously and without prior knowledge of the environment.
That is, the system is expected to adapt successfully, ab ovo, to
any environment in which it finds itself. This process involves
a continual building of increasingly complicated skills on top
of already developed skills, with no final stage of development
in mind. This open-ended, incremental development of a
reinforcement-learning agent was first specifically addressed
by Ring [14], who termed it continual learning. It is a very
general RL problem that invokes another significant challenge
of artificial intelligence research—how does an agent go
about exploring its environment so that its knowledge of the
environment is sufficient to solve the RL task?

Here is considered a (memory-less) developmental agent’s
mapping from observation to action in two layers: a perceptual
map, and a value map. At each step, the agent receives a sen-
sory observation from a discrete high-dimensional space and
maps it to an internal representation. The perceptual activation
is then mapped, via a value function, to a distribution over
the agent’s actions. An action is taken by sampling from the
distribution.

B. Methods for Exploration

In small low-dimensional environments, where there are
both few states and actions, guided exploration is not needed.
Sampling of the important parts of these small environments
is easily achieved by the most basic of exploration methods—
random selection of actions (e.g., e-greedy).

In tabular settings, where there is a priori knowledge of
the environment, fancier methods are available. For example,
by keeping track of visits to state-action pairs their associated
values can be learned as a function that includes a factor which
is inversely proportional to the number of times the pair has
occurred. Since the extent of the environment (i.e., how many
states) is known beforehand, this method can drive the agent to
places where it has relatively little experience. A method that
suits certain non-stationary environments is Dyna-Q+ [20],
which assigns interest to state-actions pairs in proportion to
the time elapsed since last taken.

Real-world settings require different exploration methods
since the agent does not have pre-wired, distinct knowledge
of the states it will encounter. One way to get the agent to
explore in a systematic and non-uniform way is by broadening
the reward signal so that the agent is drawn to things it
finds interesting. The reward signal is modified to contain two
distinct components: an intrinsic or internal component and
an extrinsic or external component. The external component is
the reward signal in the classical RL sense, while the intrinsic
component is a reward signal that is based on some measure of
interestingness and is used as a motivational system to speed
learning.

The intuitive notion of interestingness [16] can be summa-
rized as the ‘potential for the discovery of novel patterns.” A
sound quantitative measure of interestingness must assign low
values to patterns the observer already knows, and patterns the
observer cannot learn; and high values to patterns the observer
does not yet know, but can still discover. A developmental
system equipped with a subjective notion of interestingness,
a measure based on the internal state of the agent, can be
used to drive the agent’s exploration of the environment in an
informed, systematic fashion when used as an intrinsic reward
signal.

In this paper, we use the framework of artificial curios-
ity [18] to generate the intrinsic reward signal. Artificial
curiosity is based on compression progress, a measure of
interestingness. Compression progress relies on a learning
compressor, e.g., a recurrent neural network, to measure how
the length of the compressed history of observations changes
when a better compressor of the history is learned. Artificial
curiosity then is the drive to go to the parts of the environment
where the most compression progress is expected to be made.
Implicitly, implementing artificial curiosity requires a module
to predict (which implies learning to predict) how much
compression progress will be made for each of its actions with
respect to current state of the agent. We shall refer to this as
the cognitive map and discuss it further in Section III.

C. Critical Issues

As discussed by Oudeyer et al. [13] integrating an intrinsic
motivation system with a developmental system requires some
care. Here we overview some of the critical issues that arise.

1) Suitable Sensory Representations: In real-world settings,
where we turn to developmental systems, the °‘states’ or
perceptual layer must be learned. RL takes the form of learning



value-functions on the learned internal representation of the
world. It is possible to learn the perceptual map completely
based on value-based feedback from the RL component. There
are many works [12], [7] that develop perceptual systems in
this way. However, there are good reasons to utilize an unsu-
pervised learning approach. The value-based information can
be sparse, hidden, or unreliable and lessening the reliance on
information such as TD-error can often speed the development
of the perceptual layer.

That said, if the two layers are learned independently,
without the sharing of error signals, there is no way to
guarantee that the perceptual map is suitable for the value map.
For example, even in a Markovian environment the perceptual
system could very well learn a representation that produces
a non-Markovian problem for the RL algorithm. We leave
this issue for another study, choosing in this paper a method
for learning a perceptual map that is well-suited to the test-
environment.

2) RL and Intrinsic Reward: Unlike the external reward
the intrinsic reward is inherently non-stationary. This causes
problem with classical RL methods that assume a stationary,
noise-free reward signal. Consider here, without loss of gen-
erality, an environment with no external reward. Given the
internal state of the agent it is possible to formalize the goal
of maximizing intrinsic reward as a reinforcement learning
problem. The policy that results from such a calculation is only
(approximately) correct for a single action, after which, since
additional knowledge of the environment has been gained,
it most-likely changes. Further, many learning methods, e.g.,
incremental TD-learning, can also produce behaviors that fail
to maximize future expected discounted intrinsic reward.

Another potentially serious over-simplification results when
the RL task is reduced to maximizing the expected intrinsic
reward at the next time step, rather than using the expected
future discounted reward [19]. Though seemingly innocuous,
this simplification can undermine the intrinsic reward signal.
For example, in any given state the agent will always prefer the
actions that are interesting to those which are uninteresting,
even in cases where all the interesting actions always lead
to uninteresting places (the so-called ‘57-ways-to-end-it-all’
phenomenon).

III. ARTIFICIAL CURIOSITY FOR AUTONOMOUS
DEVELOPMENTAL AGENTS

The developmental agent here is composed of three
parts [23]: (1) the sensory or perceptual map, for encoding raw
observations, (2) the cognitive map, used to predict subsequent
states in the encoded space, and (3) the value system, which
assigns values to the immediately available actions. The values
are derived from both the external and the intrinsic rewards,
allowing the agent to collect external reward while gaining
experiences that will improve its perceptual and cognitive
systems. A graphical depiction of the overall architecture is
shown in Figure 1, and is described in the caption.

A. Perceptual System

The observation space O is huge, it has many elements
and is high-dimensional. Each observation is mapped to an
internal, self-generated state s € S. The number of internal
states n is kept small to make prediction and value learning
practical. To each state s there is an associated prototype vector
ps € RM where M is the dimension of the observation space.

Growing Collection of Internal States: This internal state
collection & is built and modified in an on-line fashion with
a method based on adaptive vector quantization (VQ). A new
state is generated when no existing state prototype is similar
enough to the current observation [1]. When the agent receives
an observation o’ the closest prototype ps is identified (using
the function dist). If errP" = dist(o’, ps) is greater than a
fixed value ~ a new state s’ is adjoined to the set S with the
prototype vector pys = o’ associated to it. The internal state
is then set to s'.

Prototype Adaptation: If o’ is within x of p, then s is
set as the current internal state, and the point p, is moved
towards o’ along the line connecting the points in a Hebbian-
like update:

ps « (1 —nf")ps + 1270, (1)

where nP" is a dynamic learning rate (based on Lobe Com-
ponent Analysis [24]). Each internal state s has an associated
age hg, which is simply the number of times that the state was
set as the current state. To achieve a balance between memory
and plasticity the learning rate 72" is given as a function
of the age hg, e.g., n"2°" = 1/hs. As a result units with less
experience can be made to adapt more quickly than those with
more. To maintain lifetime plasticity the learning rate is kept
away from 0 (e.g., if 1/hs < w > 0 then nP°" = w).

Adding states allows the system to adapt to its environment
as the number of states does not have to be determined be-
forehand. Some difficulties with on-line training are mitigated,
namely when an observation arrives that no existing prototype
is similar enough to, a new state is simply created, instead of
potentially corrupting an existing state.

B. Cognitive System

The cognitive system updates transition probabilities be-
tween the internal states (stored within C*t%t€)_ It also updates
predictions of immediate external and intrinsic rewards. With
respect to the transitions, it is desired that

ST~ Pr{s(t + 1) = §'|s(t) = s, a(t) = a}.

s,a,s’

The transition probabilities from state s under action a can
be represented by a vector c3’¢*® where the i-th entry in the
vector represents the probability of transitioning to the i-th
internal state, given some index on the internal states. These
probabilities for all next states can be updated at once, in

Hebbian form, similar to Equation 1:

e (L=mgid)es™ +ny', 0

s,a s,a
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System Architecture. The agent’s decision making is limited to a value-maximizing forward pass from observation to action, therefore

this system can only handle Markovian environments. Not only must it learn its values, but also self-generated (internal) states and a predictive
model of internal state transitions and expected rewards. There are three parts to the system. The perceptual system controls state generation
and adaptation of internal states to better fit the observations. It is improved by reducing observation reconstruction error. The cognitive
system controls the adaptation of a model of expected next state and expected rewards. It is improved by reducing prediction error. The
value system assigns expected future discounted rewards to internal state-actions so the agent can take actions that lead to better actual
rewards in the future. The values are based on external and intrinsic rewards. The intrinsic rewards (expected learning progress) are high for
a state-action if the observed recent errors (reconstruction and predictive) associated with the next (outcome) state are higher than normal
(expected) error. These intrinsic rewards are not stable, unlike traditional external rewards, since the perceptual and cognitive systems reflect
the accuracy of the model. LSPI is used to compensate for the quickly changing values, since it is able to adapt the values of all the
state-actions without having to re-visit them. The intrinsic values in a practical sense allow the agent to select actions that direct its sampling
so that its perceptual and cognitive systems can make quick improvement.

where y’ is a vector whose entries are identically 0 except
for at the entry corresponding to the current state s’ where it
is 1. The 1earn1ng rate g% is similar to n£°", but using the
state-action “‘age”.

The cognitive error, err®®? = dist(c3's*,y’), is currently

based only on the state model (though it would be straightfor-
ward to extend to both state and reward).

Expected external reward expectations are kept in C°®t,
This is updated as an expectation of actual rewards received
after (s, a), so that 5% ~ E{r®**|s(t) = s,a(t) = a}.

Expected Intrinsic Reward: Intrinsic reward expectations
are kept in C*. The perceptual and cognitive errors are the
basis for generating the intrinsic reward signals. However, we
cannot simply use the prediction errors of the model or the
reconstruction errors of the perceptual map as the intrinsic
reward signal—a measure of interestingness should not assign
high values to noise, which would be the result of a signal
proportional to the prediction or reconstruction errors. Instead
we use a measure of the expected learning progress, which is
calculated using the expected reducible error.

To measure intrinsic reward, each internal state-action pair is
associated with two error predictors, £, long and ¢ (ffff”. These
are calculated using a weighted comblnatlon of the sensory
reconstruction errors: errt®t = errPe” + qerrc®d. The first,
5“’”9, keeps an error average with a long memory, while the
second, &5 short keeps an error average with a short memory.

The first is a measure of the baseline or irreducible error, while
the second corresponds to the recent average error. They are
calculated as follows:

flong _ (1 o nlong)glong 4 nlonge,rrtot
short short sho’r‘t short ot
s,a (]- -1n ) + n )

where the constant 1'°™9 induces a slower forgetting rate than
nshert . Finally, the expected intrinsic reward is the difference
of the two averages:

int

ey < g(

short __

s,a long)7

s,a

3)

with g enforcing zero as the lower bound. See Figure 2.

This formulation allows for continual adaptation of the
system, which is important since sudden changes, e.g., the
addition of a new internal state, to the underlying system may
alter the error encountered in the future. Accordingly, flong
must adapt to this “new normal”.

Initial Values when a State is Created: Since the cognitive
updates are incremental, the initial values given, when a state
is created, can heavily influence the behavior of the agent.
An optimistic initialization (OI) of these values is a beneficial
addition to a curious system. It can be used to encourage the
agent to try things it has yet to try by assigning high intrinsic
value to new state-action pairs. This is leads to the so-called
frontier exploration behavior. More explicitly, this behavior
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Fig. 2. Illustration of expected learning progress for a particular state-
action pair. Top: The errors (e.g., reconstruction, prediction) after
taking this state-action. The x-axis is the number of times this state-
action was visited. Middle: The long term and short term averages for
the error associated with this pair. An “optimistic” initialization puts
the initial long average at zero and the short average high. Bottom: the
expected learning progress, which corresponds to expected intrinsic
reward. At about 90 visits, the error spikes and the intrinsic reward
drives the agent to visit the state more often, since it assumes it can
make learning progress (reduce this error). If the new error cannot be
reduced, the long-term error increases, reflecting the new baseline.

can be achieved by setting cf{f;j and fﬁfﬁfj” to high values,
and Ef{’ﬁjg to 0, for all 7 whenever a new internal state is added
to the perceptual layer.

The complexity of behavior that a curious system exhibits
cannot be captured solely by OI. The OI helps to generate
important new samples for the development of the sensory
system, in particular the perceptual layer. However, as the
model matures OI plays an increasingly incidental role—the
expected errors correspond more to the true expected learning
progress as calculated by cognitive system. Curiosity then
drives the agent to select the actions that will contribute the
most useful samples to refine the model. Overall, this can
be viewed as novelty detection followed by a preferential
sampling where the novelty occurred.

C. Value System

The internal values (Q-values) are the basis for decision
making. The potential action with highest value is most likely
to lead to highest reward down the road. Assuming values can
be tractably represented by a table on S means that a separate
Q-value can be kept and updated for each state-action pair.
The policy is then given by 7(0o) = argmax, g, .. Let r be
the combined reward signals. Then, the Q-value for pair {s,a}
is ¢s,0 ~ E{> pe oV ritnsa|s(t) = so,a(t) = ao}, which is
the expected total discounted reward by taking action a in state
s and then following the current policy thereafter.

Both external and intrinsic rewards are used to define
the Q-values. This combination is important for balancing
exploration and exploitation, even during development. Real-
world agents cannot learn everything about their environments,
and their exploration must be mediated by a pull to achieve

Algorithm 1: AGENT(n!o"9 nshort pval y w w. a, B, 7,7)

1 {n,s,a} + 1

0 < SENSE(sysstate)
NEWINTERNALSTATE (0)
//Do until end of life

w N

//Birth

4fort< ItTdo
5 sysstate <— ENVIRONMENT(sysstate, a)
6 (o/, 7¢*%) < SENSE(sysstate)
7
//Classify as internal state
8 s' «— argmin; dist(o’, p;)
//Take value maximizing action
9 a' < argmax; s ;
10
11 if £ > 1 then
12 PERCEPTUALADAPTATION()
13 COGNITIVEADAPTATION()
14 VALUEADAPTATION()
15 end
16 00,5+« 5 a+da
17 end

Algorithm 2: PERCEPTUALADAPTATION

1 errPe” « dist(o’, ps)
2 if errP?” < k then
//Update internal state
ps < (1 - 77) py + 1P o
hg < hs +1

//Reconstruction error

3

4 //State ages
5 else

6 n<n+1

7 NEWINTERNALSTATE (0')

8 errPe” <« 0

9

//new state is perfect match
end

external goals. On the other hand, agents that are concerned
only with external reward might not learn enough about the
environment to maximize the collection of external reward.
An e-greedy approach for exploration through random action
selection is not informed. Informed exploration is exploitative
in the sense of maximizing the future expected discounted of
a combined reward signal, i.e., by taking the action associated
with the largest Q-value. This approach succeeds since these
values are both informed (due to the learned model of intrinsic
rewards) and appropriately biased (via optimistic initializa-
tion).

Planning through LSPI [8]: Every 7 steps, the system
enters a planning phase. The Q-values are adapted using LSPI
and the tabular model of the transitions and the expected
rewards. Without a model, LSPI requires collecting data in the
form of {s,a,r,s’'}. But if a forward state model and model of
expected reward are available, then no data collected is needed.
Within each iteration the system samples every known state-



Algorithm 3: COGNITIVEADAPTATION

1y’ < VECTORIZE(s")

2 erro9 dzst(csmte, y) //model error
3 errtot « errP" + a err®9  // {s,a} total error
//Update internal state f.model for LSPI

4 state — (1 _ ncog) Cstate ,r]cog y/
//Update expected reward model for LSPI
5 ea:t — (1 cog) ngj + ncog rea:t
6 ’I]coq — nc"q + 1
//Update recent error avg.
7 é-.short — (1 nbhmt) gshort + nshort TTtot
//Update long term error baseline
8 glong — (1_nlong) géegg + nlong errt"t
model for LSPI

//Update expected int.
9 znt — g( short flong )

rew.

Algorithm 4: VALUEADAPTATION

1 rint « g(errtot flong ) //{s,a} actual int.
//SARSA updates

2 qizzt — (1 val) qezt + nval (,7 qemt/ + ,remt)

3 q;'rg — (1 Ual) qznr‘ + ,,71)al (’Y qznt + Tlnt)
//LSPI updates every T steps

4 if cnt = 0 then

5 Q¢*t + LSPI-MODEL (Cstate,

6 | Q™ « LSPI-MODEL (C5tote,

7 ent <= T

8

9

rew.

™, Q" )
C'Lnt’ ant’ ')/)

else
‘ cnt < cent — 1
10 end
11 Q « COMBINEVALUESYSTEMS (Q¢*t, Q™™, B)

action pair once, and uses only the three most likely transitions
to build the linear system. Sparsifying the transition models
reduces the potential computational burden and succeeds for
low-branching factors. LSPI iterates until the policy converges.

SARSA for immediate value adaptation/correction: LSPI
does not need to be carried-out after each interaction with the
environment. It is possible to continue to update the model
though temporal difference (TD) learning. Since the model is
updated, so too should the expected learning progress asso-
ciated with the newly visited state-action pairs. We therefore
use use a simple SARSA update after each action is taken to
update the external and internal values systems.

The off-line LSPI calculations and the on-line SARSA
updates complement each other. As the agent interacts with
the environment, and the model is refined the intrinsic reward
signals tend to drop off. This simple SARSA update is
computationally cheap and essentially provides the agent with
a dynamic plan while the system awaits its next planning cycle.
As a result plans need to be computed less frequently.

Please see Algorithms 1 - 4 for a concise description of
the system. For details of LSPI, refer to Lagoudakis and Parr,

2003 [8], specifically the LSPI-Model algorithm.

IV. EXPERIMENTS AND RESULTS
A. Vision-Based Markovian Explorer

The system was evaluated in an environment type recently
introduced by Lange and Reidmiller [9], in which an agent’s
observations are high-dimensional, noisy images, each of
which shows the agent itself and its world (imagine a camera
overhead pointed at at a mobile robot in a maze below).
A sample observation, 45 x 45 pixels (2025 dimensions), is
shown in Figure 3(a). There is slight (0.1 variance) gaussian
noise on each pixel. In this particular environment, the agent
always starts in the upper left. There are four actions, each
of which moves it 5 pixels in one direction (up, down, left,
or right in the image — orientation does not matter). When it
reaches a gray square (“goal state”), it gets positive external
reward and teleports back to the starting position in the upper
left. Other transitions lead to slight punishment.

This environment was chosen for several reasons: (1) Due to
high-dimensionality and noise, direct RL is intractable on the
visual observations. An encoding of the images is needed'.
(2) Before finding a goal, external value information is not
available to guide the agent’s policy. One method to aid data
collection for UL4+RL systems is via teleportation, in which
the agent is transitioned to a nearly random position after some
time (e.g., 20 steps of following its current policy or taking
random actions). But we wish for the agent to explore in an
informed way, thus the teleportation we used does not assist
exploration (since it moves the agent back to the beginning);
rather it must be overcome. (3) Finding the lower right goal
will influence the agent to keep going there. It must value
potential intrinsic reward more than external reward in order
to explore the upper right region. (4) The places where the
agent expects to learn something are changing as the agent
learns and are not always near its current position, as a result
planning becomes useful.

B. Setup

Agents used the following general setup: the distance func-
tion dist was the normalized inner product (n.i.p.) subtracted
from one, thus the perceptual and cognitive errors were both
bounded from O to 1, and o = 1 allowed both to be weighted
equally. The error averaging rates were n'°"¢ = 0.1 and
pshert — (0.2. Optimistic initialization was enabled: initial
long-term errors were v = 1. Internal states were created when
1—n.i.p. distance was greater than x = 0.05. The learning
rate lower bound was w = 0.05. The TD-learning rate was
nvelue — (.25, Discount factor v was set to 0.9. For agents
using LSPI, the number of steps between planning phases
7 = 20. The external and intrinsic policies were combined
through weighted addition of L1-normalized Q-value vectors
per state (first shifted positive).

'Of course, some useful encoding scheme could be completely hand-
designed for any particular environment, including this one. For a developmen-
tal agent the schemes for all possible environments cannot be hand-designed
into the program, rather an appropriate one must be learned.
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Fig. 3. Model building in “duck-world”. (a). Example high-
dimensional observation image (> 2000 dimensional), with the agent
as the square in the upper left and positive external rewards at squares
in the upper and lower right. Interior walls are the same color as the
agent. (b). Average path cost from all possible starting points. (c).
Average distance from the predicted next observation to the actual
over all possible position-actions. (d). Effectiveness of planning in
curious model-building.
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Fig. 4. Snapshots of external and intrinsic state values for a sample
intrinsically motivated agent after 2500 steps, superimposed on an
observation image, where white indicates high value. At this point,
external values are stable (both goals have been found), and the
intrinsic ones are changing. After it gains experience in the high
value area, some other region becomes interesting, which could be
far from its current position.

We compared three types of agents: random, external-
random, and intrinsically-biased. The random agents simply
always performed random actions. The external-random agents
were random until any goal was found, then shifted to pulling
from the external policy with 25% chance of a random action.
The intrinsically-motivated agents placed a 0.8 weight on in-
trinsic policy and 0.2 on the external. Among the intrinsically-
motivated agents, we tested the effect of LSPI vs. TD. To show
the effect of planning, we compared agents using both LSPI
and the TD-based SARSA, LSPI without SARSA, or SARSA
without LSPI. In the TD agents, lines 5 and 6 were disabled
in Alg. 4. In the LSPI agents, lines 2 and 3 disabled. In the
LSPI+TD agents, nothing was disabled.

We measured performance of each agent’s external policy
as it gained experience. A “testing phase” was done every
250 steps, with learning frozen during the tests. In the test
phase, an agent used its external policy only, and, starting
in each possible non-goal position, got up to 30 steps to
reach any goal. Second, to measure the success of model-
building, we measured agents’ error between predicted and
actual next observation, over every position with every pos-
sible action. Predicted observation state-action pairs uses the
state prediction probabilities as weights in a linear combination
of prototype vectors of possible next states.

C. Results

Results are shown in Figure 3(b)-(d). First, the intrinsically-
motivated agents always found the second goal position very
early-on. The upper right goal is not likely to be found through
an exploration policy based on randomness, and an externally-
biased explorer remains attracted to the easy to find lower
right square. The intrinsically motivated agent sees the benefits
associated with the intrinsic reward signal as worth the cost
in steps to reach the interesting regions. It is worth noting
that this type of agent incurs more model errors early-on,
compared to the others, since it is rewarded more for reaching
newer regions. The LSPI-based intrinsic system is able to,



eventually, model the entire environment better than the other
systems. Lastly, this system explores more efficiently, and is
aided by the addition of TD-learning. TD-learning alone is not
as effective of a method.

This system is meant to be practical for use on exploring
robots, but a potential concern is that LSPI updating is too
costly for real-world applications. The system runs quickly
enough to watch it explore visually on a machine with an
Intel Core i7 CPU (2.8GHz) and 8 GB RAM, with only small
delays noticeable during the planning phase once it has grown
to include roughly more than 400 internal state-actions.

V. CONCLUSIONS

We have presented a novel developmental system, which
deals with high-dimensional noisy visual observations, and
is driven to improve and adapt its perceptual and cognitive
capabilities through artificial curiosity. It is intrinsically guided
to improve how well it perceives and predicts in its world.
It therefore explores its environment in an informed sense,
avoiding a reliance on random action selection. Furthermore,
we showed the importance of planning in curiosity-driven
exploration, necessary due to the nonstationary intrinsic reward
landscape. Systems that explore based on random actions, one-
step look-aheads, or even TD-based intrinsic value updates
are not fully equipped to deal with the challenges of the
developmental RL problem.

Future directions: we will further explore this system in
other environments. The agent should probably not re-plan at
fixed intervals, but instead in response to some event (i.e.,
when surprised, such as when an expected reward is gone).
Regarding scalability, a system completely based on VQ will
not deal with real vision problems, e.g., requiring attention.
Future work looks to first pre-process the visual information
using the deep autoencoder networks currently in fashion [11].
The system should be scaled up to include an internal memory
as well. A possibility is that the code from the smallest output
layer of a deep network is then passed, rather than to the VQ
perceptual map used in this paper, to the recently introduced
TNT system [6]. The recurrent connection allows the TNT
to discern underlying-states that VQ cannot, and is easily
used in any system that already uses VQ. The reconstruction
error from the autoencoder and the learning updates inside
the TNT will form the basis for the curiosity signal. Another
direction is to explore incorporation of top-down aspects (i.e.,
for adaptation of k).
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