
Memory Issues of Intelligent Agents

Laurent Orseau1 and Mark Ring2

1 AgroParisTech UMR 518 / INRA
16 rue Claude Bernard, 75005 Paris, France

laurent.orseau@agroparistech.fr

http://www.agroparistech.fr/mia/orseau/
2 IDSIA / University of Lugano / SUPSI

Galleria 2, 6928 Manno-Lugano, Switzerland
mark@idsia.ch

http://www.idsia.ch/~ring/

Abstract. Theoretical models of artificial general intelligence, such as
AIXI [3], typically consider an intelligent agent to have unlimited com-
putational resources, allowing it to keep a perfect memory of its entire
interaction history with its environment. In the real world, an agent’s
memory is part of the environment, which means that the latter can
modify the former. This paper develops a theoretical framework for ex-
amining the implications of such real-world memory on universal intel-
ligent agents. Within this framework we are able to show, for example,
that in certain environments optimality can be achieved only with truly
stochastic behaviors, and that guarantees about the trustworthiness of
memories are difficult to obtain even with infinite computational power.
To describe the probability of an agent’s memory state, we propose an
adaptation of the universal prior for the passive and the active case.

Keywords: Universal AI, AIXI, real-world assumptions, memory

1 Introduction

Until recently, most theoretical models of artificial general intelligence (AGI)
considered only agents that exist outside of their environments, interacting with
it through an unbreachable interface [3,14,18]. In this and previous work we
have begun developing formal models in which these assumptions are relaxed
and in which the AGI agent is forced, bit by bit, to inhabit the same universe
that we do. In our previous work, for example, we considered the theoretical
consequences of taking various universal intelligent agents such as AIXI [3] and
embedding their source code into their environment such that it can be modified
by the agents themselves [8] or even by the environment [13], as is the case in
the real world.

In the current paper we consider the theoretical consequences of a different
realistic assumption: that the memory of the agent can be modified by the
environment.3 We first introduce an initial formal framework for such agents

3 For clarity of purpose, we consider here the problem of memory modification in
isolation and assume that only the memory and not the agent’s code can be modified,
but see the companion paper [9].

http://www.agroparistech.fr/mia/orseau/
http://www.idsia.ch/~ring/

and then consider some of its implications, asking questions such as: under what
circumstances, if any, can the agent trust its own memory? What if, for example,
the true memory of the agent is erased and replaced with a plausible memory of
the past? Could an intelligent agent, even in principle, ever hope to detect such
an altered memory?

We show that if its memory can be modified, a deterministic agent can be
easily deceived and that even simple stochastic agents can in some cases perform
arbitrarily better than any deterministic agent. Finally, we propose a new defini-
tion of the probability of the current memory of an agent based on Solomonoff’s
universal prior [16]. We provide theorems with proofs whenever possible, and
statements and arguments when proofs would require more formalism.

2 Notation and agent framework

We (very) briefly summarize the definition of a universal agent, based on AIXI [3,4],
following Orseau & Ring [8,13].

The agent interacts with its environment by sending actions a ∈ A and
receiving observations o ∈ O. The interaction pair (at, ot) at a given step t is
denoted aot. The sequence of all actions up to time t is written a1:t, while the
sequence a1:t−1 is often written a≺t, and similarly for other sequences.

Environments q ∈ Q are assumed to be computable and deterministic; they
output an observation sequence given the action sequence of the agent: o1:t =
q(a1:t). Symbols such as a, o, etc. are also used as functions to extract the corre-
sponding part of a composed object when contextually unambiguous; for exam-
ple, o(q(a1:t)) = o1:t. This notation is also used for functions returning sequences:
if r1:t = r(o1:t) then r1:k = r(o1:t)1:k with k ≤ t, or ot = o(q(a1:t))t = o(q(a1:t)t).

An environment q is said to be consistent with some sequence of interac-
tion ao1:t iff o(ao1:t) = q(a(ao1:t)). The set of environments consistent with an
interaction history ao1:t is denoted Qt when unambiguous from the context.

Each environment q ∈ Q has a prior probability wq ∈ (0, 1) of being the
true environment; these values must be chosen such that

∑
q∈Q wq ≤ 1. The

probability of an observation sequence o1:t given a sequence of actions a1:t is
defined by ρ(o1:t | a1:t) :=

∑
q∈Qt

wq.

A universal agent has a horizon function γt ∈ [0, 1] such that
∑∞
t=1 γt < ∞

and a utility function u(ao1:t) ∈ [0, 1], and is defined by its value function:

V (ao≺t, at) :=
∑
ot

ρ(ot | ao≺tat)
[
γtu(ao1:t) + max

at+1

V (ao1:t, at+1)
]

(1)

which computes the expected utility when the agent behaves optimally given its
current knowledge, i.e., the interaction history ao1:t, which we call the memory
of the agent.4 We will refer to this memory at time t as a memory state mt.

4 Note that a universal agent is in general incomputable; i.e., it requires an infinite
amount of computation time and memory space.

The agent’s next action at is chosen by at = arg maxa∈A V (ao≺t, a).5 For a
given observation sequence, the sequence of actions chosen by the agent according
to its policy π ∈ Π is denoted a≺t = π(o≺t). Initially, the content of the memory
of the agent is λ, the empty string.

A reinforcement learning agent (RLA), e.g., AIXI [3], is one whose utility
value is a “reward” extracted as a function of the agent’s most recent observa-
tion: u(ao1:t) = rt := r(ot). A knowledge-seeking agent (KSA) [8,13,11], chooses
actions to maximize its knowledge of the environment (by reducing ρ(o1:t | a1:t)
through elimination of inconsistent environments) as quickly as possible; thus
its utility function is u(ao1:t) = −ρ(o1:t | a1:t). A prediction-seeking agent
(PSA) [8,13] tries to maximize the accuracy of its predictions: u(ao1:t) = 1
if ot = arg maxo ρ(o≺to | a1:t), and 0 otherwise.

3 The counterfeit memory problem

The first question we address is whether it is theoretically possible for an agent
of perfect intelligence (i.e., one with infinite computational power) to determine
whether its memory has been modified, or, speaking more broadly, whether
memories can ever be trusted. Such modifications of the memory by an external
source could be either accidental, e.g., in the case of amnesia resulting from a car
accident, or adversarial. Adversarial modifications generally assume the presence
of two agents, where one, to serve its own purposes, modifies the memory of the
other, as exemplified not just in science fiction [1,17], but also, for example,
through hypnosis or suggestion [7] or with genetic modification and drugs [2].

3.1 Definitions

We first consider universal agents unaware that their memory of the interaction
history ao≺t can be modified by the environment. Just as humans generally do
not suppose that their own memories may have been altered by someone else,
these agents act according to what they think they know.

To that end, we amend the framework described in Section 2: the memory mt

of the agent, which previously contained the true interaction history ao≺t, now
contains an interaction history that may have been altered by the environment:
mt = ȧo≺k (where the dot signifies possible alteration), possibly with k 6= t.

In this section, we consider only deterministic environments. For simplicity
and generality, we now consider that the output ot of the environment at some
time t is (interpreted as) an entire interaction history ȧo≺k that may have been
counterfeited, where k is not necessarily the current time step, i.e., mt+1 := ot
(and m1 = λ). We call the agent’s memory mt the visible interaction history
ȧo≺k as output by the last “true” observation ot−1, i.e., mt = ȧo≺k = ot−1.
The agent now computes the values of its actions in Equation (1) by using its
(possibly counterfeit) knowledge mt = ȧo≺k of the interaction history instead of
the true interaction history ao≺t.

5 Ties are broken lexicographically.

Therefore, o and ȯ have very different roles. The alphabet Ȯ of the observa-
tions written in the agent’s memory is fixed (e.g., {0, 1}), whereas the alphabet
of the true outputs ot ∈ O of the environment is O = Ȯk × Ȧk, which can
change from time step to time step. The set of possible actions Ȧ for the visible
interaction history is the set of actions A for the environment: Ȧ = A.

Definition 1. A visible interaction history mt is said to be true iff:

1. ∀t>0 |mt| = t−1: there are as many action-observation pairs in the memory
as there have been interaction steps between the agent and the environment,

2. ∀t > 0,∀j > t, (mj)≺t = mt: each memory (interpreted as a sequence) is
a prefix of the succeeding one; i.e., the previous interaction pairs are not
modified, and the memory grows by adding interaction pairs one at a time.

A true visible interaction history then is like the regular interaction history in
the regular non-modifiable memory framework.

Definition 2. A visible interaction history is counterfeit iff it is not true.

Theorem 1. Some visible interaction histories are provably counterfeit.

Proof. If the agent determines that any of the actions stored in the history are
not actions the agent would have taken, then the history is counterfeit. Let
mt = ȧo1:k be the interaction history written on the memory. The history is
provably counterfeit if ȧ1:k 6= π(ȯ≺k). ut

With Theorem 1 one might hope to prove that no environment can counterfeit
a sufficiently long interaction history of an agent that has sufficiently complex
behavior. But what follows shows that this is not possible.

Definition 3. An interaction history ȧo≺k is π-consistent iff ȧ1:k = π(ȯ≺k).

Definition 4. For two consecutive visible interaction histories mt = ḣ1 and
mt+1 = ḣ2, we say that there is a modification between ḣ1 and ḣ2 iff ḣ1 is not
a prefix of ḣ2.

The number of modifications during an interaction of the agent and its environ-
ment, is the number of times there is a modification between two consecutive
visible interaction histories.

Theorem 2. For an agent with policy π at the current time step t, with a π-
consistent visible interaction history ȧo≺k where k ∝ t, there can have been O(t)
modifications during interaction.

Proof. Choose some constant N > 2. Define an environment as follows: a) the
current memory of the agent contains ȧo≺k; by interacting with the agent for
N steps, grow the current visible history to ȧo≺k+N , where the observations
are chosen arbitrarily according to some algorithm (i.e., like a non-memory-
modifying environment); b) truncate the history to m = ȧo1:k+N/2, and replace

(counterfeit) the last observation ȯk+N/2 with a different observation ȯ 6= ȯk+N/2
to yield the visible history m = ȧo1:k+N/2−1ȧk+N/2ȯ; c) repeat from a). The
growing history will always look like a true visible interaction history to the
agent, since the visible actions are consistent with its policy, but a growing
number of interaction steps are forgotten by the agent. ut

Theorem 2 also shows that the environment may acquire more information
from the agent than the agent can detect.

3.2 Detecting modifications in watch-consistent histories

Mere truncation of memory is only one way of deceiving an agent through mem-
ory modification. A more effective way for the environment to influence the
agent’s behavior is to fabricate entire memories completely [2,7]. We now con-
sider whether various universal agents can ever trust their memories, turning
our attention to the case in which item 1 in Definition 1 is always satisfied: the
memory of the agent contains as many interaction pairs as there have been true
interactions since the first time step, which the agent can verify for example if
it has a trustworthy watch.

Definition 5. A visible interaction history mt = ȧo≺k is said to be watch con-
sistent iff k = t, i.e., the history has as many interaction pairs as there have
been actual interactions between the agent and the environment.

Statement 1 There exists an environment q that, when interacting with PSA
(Section 2), can make infinitely many modifications to the interaction history,
while keeping a πPSA-consistent and watch-consistent visible interaction history.

Arguments. In deterministic environments, there is a time step T after which a
PSA will exhibit computable behavior: Solomonoff induction converges to per-
fect prediction in less than K(q) prediction errors [6], where K is Kolmogorov
complexity, so if the agent’s behavior is constant (e.g., its output is always 1),
the agent will converge to perfect prediction.6

Let q0 and q1 be two environments that always output a true interaction
history mt = ȧo1:t in which ȯt = 0 (for q0) and ȯt = 1 (for q1). Let ḣ0t and ḣ1t be
their respective outputs at step t when interacting with PSA. Let T0 and T1 be
the number of steps that PSA interacts with q0 and q1 respectively before be-
coming entirely computable; and let T = max(T0, T1). Let q be the environment
that emulates q0 for T steps, then at step t = T + 1 outputs ḣ1t , at t = T + 2
ouputs ḣ0t , and thereafter switches back and forth between ḣ1t and ḣ0t at each
subsequent time step t. Hence the number of history modifications grows with
t. Since the number of steps leading to the first switch is a constant, and since
PSA’s behavior after T is computable, an environment q is guaranteed to exist
such that the agent’s history is always πPSA-consistent. ♦

6 A similar argument can use on-sequence convergence of ξAI to µAI [3, p.146].

Statement 2 There exists an environment q that, when interacting with RLA,
can make infinitely many modifications to the interaction history, while keeping
a πRLA-consistent and watch-consistent visible interaction history.

Arguments. RLA can be shown to stop exploring in some environments after
some time [10]. This means that it will settle on a computable behavior in these
environments. The same technique as for PSA then finishes the argument. ♦

In principle, RLA can be augmented with an adequate exploration strategy
so that it can asymptotically learn every environment.7 However, because RLA
must maximize the number of rewards for a continually increasing fraction of the
time [5], it must still have a computable strategy most of the time in some envi-
ronments. If those time steps where it has a computable strategy are predictable,
then the argument still holds.

It may seem that an agent such as RLA might also in some way encrypt
its history, and thus ensure that no environment could counterfeit it. However,
since the memory resides inside the environment, such an encryption technique
would only work (at best) in those environments that provide a means for the
agent to modify its own memory (either directly or indirectly), which is certainly
not the case in all environments (such as environment q0 in the Arguments for
Statement 1 above).

Statement 3 No environment interacting with KSA can make more than finitely
many modifications to the visible interaction history such that it remains πKSA-
consistent and watch consistent.

Arguments. First we show by contradiction that KSA’s actions cannot be pre-
dicted consistently. Let ao≺t be the current interaction history (for non-memory-
modifiable agents). Let aKSAt be the action chosen by KSA at time t. Let q1 and
q2 be two environments that output the same observation ot = oq1t = oq2t for
this action. But, considering that aKSAt is predictable, then for a different ac-

tion a′t 6= aKSAt , q2 outputs an observation o
′q2
t 6= o

′q1
t that is different from the

one output by the true environment q1. Since KSA does not choose a′t, it never
sees any difference between the observations output by the two environments,
i.e., the two environments are never separated by KSA. But this contradicts the
asymptotic convergence of this agent [11].

Now, counterfeiting the interaction history of KSA while keeping it πKSA-
consistent should require to be able to predict the actions this agent, which is
not feasible due to the non-predictability of KSA. ♦

A caveat to the above argument is that one would need to show that, given
a current visible interaction history ȧo≺t, the environment cannot apply a syn-
tactic transformation to this history to build a different, counterfeited visible
interaction history, e.g., like swapping all 0s and 1s (although this one is not
possible since the first action of the agent is deterministic and always the same).
7 At the expense of losing the Pareto optimality property with respect to the expected

number of rewards [5].

4 Deterministic vs. stochastic agents

In this section we show that for some memory-modifying environments, no agent
that chooses its actions deterministically can always perform as well as a sim-
ple agent that chooses its actions according to a stochastic policy. For these
purposes, and for the rest of the paper, we no longer need to assume that the
agent’s memory m contains a visible interaction history ȧo. The conclusions in
the next two sections apply to any representation of memory that is subject to
modification by the environment.

A stochastic policy π̃ ∈ Π̃ specifies the probability that the agent will choose
action a when its current memory state is m; i.e., π̃(a | m) = Prπ̃(at = a | mt =
m). Therefore,

∑
a∈A π̃(a | m) = 1. The actions are drawn from this distribution

stochastically, meaning that (a) there is no deterministic algorithm that com-
putes the action choices, and (b) if precisely the same agent and environment
are run twice, the actions chosen can be different between runs.

Theorem 3. There exists a simple memory-modifying environment q in which
any deterministic reinforcement-learning agent with policy π is arbitrarily worse
than a stochastic agent with a uniform stochastic policy π̃. That is, ∃c ∈ [0, 1] :
limn→∞

∑n
t=1(rπ̃t − rπt)/n > c, where rπ and rπ̃ are the sequence of rewards

generated by the interactions of π and π̃ with the environment q.

Proof. Define an environment q as follows: a) at t = 1, observe the action a1
of the agent and output observation o1 = o0 such that r(o0) = 0; o0 becomes
the next memory state of the agent, i.e., m2 = o0; b) at t = 2, observe action
a2, and again output observation o0, which again becomes the memory state at
the next time step, i.e., m3 = o0; c) for all t > 2 observe action at, if at = a2
(which is the case for deterministic agents), output mt+1 = o0, otherwise output
o1 such that r(o1) = 1. The average reward of the uniform stochastic policy π̃ in
environment q is 1/|A|, whereas for any deterministic policy π it is always 0. ut

Although very simple, this theorem may have important implications, for it
reveals that stochastic policies are fundamentally necessary in certain universes
(perhaps our own), a conclusion beyond the reach and scope of the traditional
RL setting for which AIXI is defined [3], and reminiscent of the necessity of
mixed strategies in game theory [12] for non-iterated games, and of results in
partially observable Markov decision processes [15].

5 Modification-aware agents

In section 3, the agent always chose its actions assuming that its history was
correct. In this section we consider agents designed to react optimally in the
case where their memories reside in and can be modified by the environment.
Such an agent recognizes the uncertainty of its past, including its own past
actions. It does not even know what time it is (how many interactions there
have been up to now). Since the environment can modify the agent’s memory in

arbitrary ways, the only control the agent has over its own memory is through
its ability to control the environment.

Because of Theorem 3, the optimal agent cannot be deterministic, and we
therefore must consider stochastic policies—a small but meaningful departure
from AIXI, which is deterministic.

For symmetry with the agent’s stochastic policy, we consider the environment
to also be stochastic.8 A stochastic memory-modifying environment ν is a semi-
measure (a probability distribution that can sum to less than 1) that gives a
probability ν(o≺t | a≺t) to a sequence of observations given a sequence of actions.
Here again, the observation ot is used by the agent as its next memory state, so
mt+1 = ot. We avoid writing the time index t of mt because the agent does not
have access to the value of t (only the environment does).

The optimal stochastic policy π̃∗ := arg maxπ̃∈Π V
π̃(λ) among the set of all

approximable stochastic policies Π̃ depends on the given utility function u, the
given horizon function γ, and the given universal prior ρ over a set of semi-
computable stochastic environments N :

V π̃(λ) :=
∑
ν

ρ(ν)V π̃ν(λ) (2)

V π̃ν(ao≺t) :=
∑
at

π̃(at | m = ot−1)
∑
ot

ν(ot | ao≺tat)
[
γtu(ot) + V π̃ν(ao1:t)

]
. (3)

This definition is not very informative, however, as it does not tell us how to
assign a probability to m. Intuitively, since all memory states of all sizes are
possible, and since the agent has no additional information, it seems reasonable
to estimate the probability of m as approximately 2−K(m), so that by Kraft’s
inequality [6] (considering the setM of memories is prefix-free), the probability
of the set of all states would be

∑
m∈M 2−K(m) ≤ 1 (which could be normalized

if necessary) as required for a semi-measure.
Beyond the need to estimate the probability of a particular memory state, it

is even more important to be able to assign a probability to each environment
depending on its likelihood of generating that memory state. Knowing this prob-
ability would allow the agent to choose actions appropriate to the environment
it is most likely interacting with. We now turn to the task of estimating this
probability, first considering the case of a passive agent that takes no actions,
then turning to the interactive case.

5.1 Sequence Prediction: the Passive Agent

Before considering the complex case of an agent interacting with its environment,
it is instructive to return for the moment to the case of sequence prediction, in
which environments are simply sequence generators (that do not take the agent’s
actions into account) and the agent must merely predict the generated sequence.

8 Although universal mixtures like ρ actually consider all stochastic environments
implicitly.

We can calculate the probability that the environment will generate a partic-
ular observation at some point in time, but if an environment can generate the
same output in several different ways and at possibly different time steps, each
with a different probability, what is the probability of a particular observation?

The agent has only its current memory state m = ot−1, and does not even
know the true time step t. The same memory state can appear multiple times
(possibly infinitely many times) in the course of the agent’s interactions. To
ensure convergence we include a discount rate (taken to be the same as the hori-
zon function), that assigns greater weight to earlier time steps. For computable

deterministic environments, we define the probability
∗
ρ(m) of a given memory

state m after some unknown sequence of previous memory states by:

∗
ρ(m) :=

∑
q

wq
1

Γ

∑
t :U(q)t=m

γt (4)

where U(q)t is the last memory state generated at time t by the environment q
on the reference machine U , Γ :=

∑∞
t=0 γt. For stochastic environments:

∗
ρ(m) :=

∑
ν

wν
∗
ν(m) ;

∗
ν(m) :=

1

Γ

∑
t

γt
∑

m′≺t∈Mt−1

ν(m′≺tm), (5)

whereMt−1 is the set of all sequences of memories of length t−1. This discount-
ing method ensures that (for a given environment ν) the sum of the probabilities
for all possible memory states is always less than Γ . Furthermore, it gives more
weight to the memory states that appear more often. There is also a preference
toward earlier steps, but this is necessary since a uniform weighting would not
be summable. One could use a different discounting and normalize the sum to 1;
for example, the discount 2−K(t) is the closest possible to a uniform weighting.

Critically, this probability can be computed without knowing how much time
has elapsed since the first interaction step.

The following examples illustrate the use of equation (5) (but considering deter-
ministic environments).

Example 1. For the environment νm1 that constantly outputs the same mem-
ory state m1, the probability of being in state m1 at some unknown time step

according to νm1 and using equation (5) is
∗
νm1(m1) = 1. Thus

∗
ρ(m1) ≥ wνm1 .

Example 2. Consider an environment νall that enumerates all possible memory
states in some order, without repetition. Let T be the time step at which νall

generates some particular memory state mT . Then the probability
∗
ν
all

(mT) that
νall assigns to mT is γT /Γ .

5.2 Including the agent’s Actions

The above analysis examined prediction only, where the environment is not
influenced by the agent’s actions. Introducing the agent’s actions is considerably

more complex and leads quickly to an infinite regression due to temporal self-
reference: to choose the best action at time t, the agent must simulate itself after
having chosen one action a and having received the new memory state mt+1.
But at this simulated t+ 1, the agent, not knowing what the previous memory
state was, needs to simulate itself from all possible previous states to reach
its current memory state. The infinite regression occurs as a result of knowing
neither the past nor the future, yet each one refers to the other. The calculation
is straightforward only when one or the other is known (as AIXI knows the past).

One way to address this dilemma is by considering all possible action se-
quences that the agent could have taken (by any policy) and normalizing by the
number of possible sequences of the same size. Updating (4), we get:

∗
ρ(m) :=

∑
q

wq
1

Γ

∑
t

1

|A|t
∑
a1:t |

q(a1:t)t=m

γt =
∑

t, a1:t, q |
q(a1:t)t=m

wq
γt

Γ |A|t
. (6)

Using the above probability of a particular memory state to define the optimal
policy at time t allows definition of equations similar to AIXI’s.

Examples. Let
∗
ρq(m) be the contribution of environment q in the probability of

memory m so that
∗
ρ(m) =

∑
q

∗
ρq(m). In this section, we take ρ = ξ, the universal

semi-measure [19,6,3], where wq = 2−K(q) (for the simplest program equivalent
to q). We consider a boolean action alphabet A = B, and three deterministic
environments: qcc, q

m
s , and qp.

The “copycat” environment is defined as qcc(a1:t)t := a1:t, i.e., the content of
the memory of the agent at the next step will be a1:t. The “static” environment
is defined as qms (a≺t)t := m, which always outputs memory state m. The “print
ones” environment is defined by qp(a1:t)t := 1t, i.e., the content of the memory
state at the next step will be a string of t ones.

Example 3. Suppose the current memory m1 is an incompressible random se-

quence of length L = |m1|. Then (omitting the normalizing Γ),
∗
ρcc(m1) =

wqcc
γL
|A|L = wqcc2

−LγL, and
∗
ρs(m1) = wqm1

s

∑
t γt
|A|L
|A|L ≈ 2−K(m1) ≈ 2−L, and

∗
ρp(m1) = 0.

Example 4. If the current memory m2 is a string of L ones, i.e., m2 = 1L, then
∗
ρcc(m2) = wqcc2

−LγL, and
∗
ρs(m2) = wqm2

s
≈ 2−K(qs) ≈ 2−K(L) and

∗
ρp(m2) =

wqpγL.

These two examples show that the copycat environment has less weight than
more complex environments and therefore has little impact on the probability
of a string. Furthermore, if γt = 2−K(t), then the two environments qms and qp
have the same weight for m2, such that the copycat environment has nearly as
much weight as a complex environment (which might make sense in that case).
Interestingly, this kind of discounting horizon, first proposed by Hutter (2004)
may also be the solution that allows exploration in AIXI without losing Pareto

optimality [10]. However, the time discounting of Eq. (6) and (2) could well be
chosen differently.

Note that, because of the additional time discounting, the more complex
the current memory, the less probable it seems to be. This time discounting
requirement could be removed if one considered only the first occurrence of a
memory state for a given environment. But it is not clear that this would truly
reflect the probability of a memory state in general.

6 Discussion and conclusion

In the real world, an AGI’s memory must reside within the world itself, yet ex-
isting formal frameworks of intelligence generally ignore that reality. This paper
has examined some of the theoretical consequences of explicitly modeling the
environment’s ability to modify the agent’s memory. Among these consequences
are the following.

First, even universal intelligent agents with infinite computational power are
incapable of recognizing certain kinds of memory modifications. This is partic-
ularly interesting in light of the conclusions of our earlier work which painted a
rather grim picture regarding the predictability and controllability of theoreti-
cally optimal intelligent agents [8,13], implying that along with giving an agent
a specific goal or reward function, memory modification might be a particularly
effective way of modifying the behavior of an AGI.

In some cases an agent can detect modification of its memory by verifying
that the historical record of its actions in memory match those the agent would
have taken. This technique can also potentially reveal modification of the ob-
servations stored in memory, if these would result in different action choices.
However, it seems in many cases the environment can still fool the agent. Of the
agents considered, the prediction-seeking agent and the reinforcement-learning
seem relatively easy to fool because their behavior is sometimes predictable. It
appears that even when augmented with an infallible sense of time, these agents
can still be supplied with an unlimited number of artificial memories. With the
same augmentation, however, it seems the knowledge-seeking agent cannot be
deceived more than a finite number of times.

Second, memory modification has profound theoretical ramifications regard-
ing the nature of determinism and AGI: deterministic policies become strictly
weaker than stochastic policies, as there are environments in which no determin-
istic policy is as good as even the simplest stochastic policy.

Third, explicitly designing an agent to be aware of the environment’s ac-
cess to its memory is a task filled with unexpected subtlety, seeming at first
to lead toward infinite regression as the agent ponders its previous and future
intentions. The dilemma is resolved by considering all possible action sequences,
but a remaining problem is how to assign a probability to a memory and to
the environments that might generate it. We suggested a mathematically pre-
cise solution based roughly like AIXI on Occam’s razor. This solution may be
the best hope for the apparently essential yet possibly intractable problem of
assigning probabilities to memory states. Yet it may be that the deepest insight

from this work is that there may in fact be no perfect, canonical way to assign
these probabilities, the implications of which could be quite profound.

There are also many interesting questions that we did not address. What if,
for example, the environment could also modify the agent’s code? (The agent
could no longer check that its previous actions were generated by itself, since
itself at a previous time step may have been different.) How can the agent verify
the consistency of its history if its policy is stochastic? And finally, do any of our
conclusions have ramifications for other forms of intelligence, such as our own?

Acknowledgements. Thanks to Stanislas Sochacki for valuable discussions.

References

1. Cunningham, L., Carruthers, S.: The Men in Black. Aircel Comics (1990)
2. Garner, A.R., Rowland, D.C., Hwang, S.Y., Baumgaertel, K., Roth, B.L., Kentros,

C., Mayford, M.: Generation of a Synthetic Memory Trace. Science 335(6075),
1513–1516 (2012)

3. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer (2005)

4. Hutter, M.: Universal Algorithmic Intelligence: A Mathematical Top→Down Ap-
proach. In: Artificial General Intelligence, pp. 227–290. Springer (2007)

5. Lattimore, T., Hutter, M.: Asymptotically optimal agents. Algorithmic Learning
Theory 6925, 368–382 (2011)

6. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer-Verlag, third edit edn. (2008)

7. Loftus, E.F.: Creating false memories. Scientific American 277(3), 70–75 (1997)
8. Orseau, L., Ring, M.: Self-Modification and Mortality in Artificial Agents. In: Ar-

tificial General Intelligence (AGI). pp. 1–10. LNAI, Springer (2011)
9. Orseau, L., Ring, M.: Space-Time Embedded Intelligence (2012), Artificial General

Intelligence (AGI)
10. Orseau, L.: Optimality Issues of Universal Greedy Agents with Static Priors. In:

Algorithmic Learning Theory (ALT). pp. 345–359. LNAI, Springer (2010)
11. Orseau, L.: Universal Knowledge-Seeking Agents. In: Algorithmic Learning Theory

(ALT). LNAI, vol. 6925, pp. 353–367. Springer (2011)
12. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. The MIT Press (1994)
13. Ring, M., Orseau, L.: Delusion, Survival, and Intelligent Agents. In: Artificial Gen-

eral Intelligence (AGI). pp. 11–20. LNAI, Springer (2011)
14. Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice-Hall,

3rd edn. (2010)
15. Singh, S.P., Jaakkola, T., Jordan, M.I.: Learning Without State-Estimation in

Partially Observable Markovian Decision Processes. In: ICML. pp. 284–292 (1994)
16. Solomonoff, R.J.: A Formal Theory of Inductive Inference. Part I. Information and

Control 7(1), 1–22 (1964)
17. Sonnenfeld, B.: Men In Black (1997)
18. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
19. Zvonkin, A K and Levin, L.A.: The complexity of finite objects and the develop-

ment of the concepts of information and randomness by means of the theory of
algorithms. Russian Mathematical Surveys 25(6), 83–124 (1970)

	Memory Issues of Intelligent Agents
	Introduction
	Notation and agent framework
	The counterfeit memory problem
	Definitions
	Detecting modifications in watch-consistent histories

	Deterministic vs. stochastic agents
	Modification-aware agents
	Sequence Prediction: the Passive Agent
	Including the agent's Actions
	Examples.

	Discussion and conclusion

