
Space-Time Embedded Intelligence

Laurent Orseau1 and Mark Ring2

1 AgroParisTech UMR 518 / INRA
16 rue Claude Bernard, 75005 Paris, France

laurent.orseau@agroparistech.fr

http://www.agroparistech.fr/mia/orseau/

2 IDSIA / University of Lugano / SUPSI
Galleria 2, 6928 Manno-Lugano, Switzerland

mark@idsia.ch

http://www.markring.com

Abstract. This paper presents the first formal measure of intelligence
for agents fully embedded within their environment. Whereas previous
measures such as Legg’s universal intelligence measure and Russell’s
bounded optimality provide theoretical insights into agents that interact
with an external world, ours describes an intelligence that is computed
by, can be modified by, and is subject to the time and space constraints
of the environment with which it interacts. Our measure merges and goes
beyond Legg’s and Russell’s, leading to a new, more realistic definition
of artificial intelligence that we call Space-Time Embedded Intelligence.

Keywords: Intelligence measure, AIXI, bounded optimality, real-world
assumptions.

1 Introduction

Artificial General Intelligence (AGI) is the field whose goal is to understand,
design and build programs or machines that are or can become at least as intel-
ligent as humans. We believe that this goal cannot be achieved without a formal,
sound and practical theory of artificial intelligence. In the end we seek an equa-
tion of practical intelligence, the solution to which could be implemented on a
computer and give rise to an artificial agent of genuine general intelligence.

Theoretical AGI may have begun with Solomono↵ [12], who gave us the
means for assigning a probability to any (stochastic) computable sequence. Hut-
ter [3] used this universal probability distribution to define the optimally ra-
tional reinforcement-learning agent AIXI, the first formal and sound definition
of universal artificial intelligence. Legg [4] turned AIXI inside-out to give the
first universal measure of intelligence (rationality) of computable agents. None
of this work, however, could be considered a practical theory of AI, because none
of it takes into account the constraints of the real world, most importantly the
limitation of computational resources.

Russell [10] introduced bounded optimality, which explicitly incorporates the
constraints of real-world computer architectures and which can be easily ex-
tended to use Solomono↵’s universal prior (see also Goertzel [2] for related ideas).

http://www.agroparistech.fr/mia/orseau/
 In Joscha Bach, Ben Goertzel, and Matthew Iklé, editors, Artificial General Intelligence,
volume 7716 of Lecture Notes in Computer Science, pages 209–218. Springer, 2012.

http://www.markring.com

However, in every case this previous work has adopted the traditional agent
framework, in which the agent and environment interact as separate entities:
the computation of the agent is in principle performed externally to that of the
environment. Although quite successful as a working hypothesis, this framework,
reminiscent of dualism in the theory of mind [9], can be problematic in the real
world: for example, an agent that does not recognize that its computing device
or memory might be altered by an external source may tend toward highly risky
behaviors.

In previous work [5,8] we began examining the theoretical consequences of
integrating an intelligent agent into its environment by, for example, allowing the
environment to modify the agent’s source code. And in a companion paper [6],
we consider agents whose memory is integrated into and can be altered by the
environment. In the present paper, we formulate a more generalized framework—
more reminiscent of physicalism [13] than dualism—where agents are fully inte-
grated into their environment: not just modifiable by it, but actually computed

by it. While it marks a considerable departure from the traditional agent frame-
work, this new formalization is surprisingly simple and deep.

After introducing notation and reviewing relevant background concepts, the
paper proceeds in two steps: first generalizing the agent framework to space-

embedded agents, which share computational storage with the environment; and
second, enhancing the framework with space-time embedding, in which all the
agent’s computations are performed by the environment.

2 Notation

The notation is similar to that of Orseau & Ring [5,8,6]. At some time t the agent
outputs actions a

t

2 A to the environment, which returns observations o
t

2 O
to the agent. The sequence of all actions up to time t is written a1:t, while
the sequence a1:t�1 is sometimes written a�t

, and similarly for other sequences.
An action and observation from the same time step (an “interaction pair”) is
denoted ao

t

, and the history of interaction up to t is ao1:t. The empty sequence
is denoted �. Measures and semi-measures are denoted by Greek letters.

3 Legg’s measure of intelligence

Legg [4] gave the first universal definition of intelligence, providing an equation
to assign a value ⌥(⇡) := V (⇡,�) to each (here stochastic) policy ⇡:3

V (⇡, ao�t

) :=
X

at

⇡(a
t

| ao�t

)
X

ot

⇠RS(o
t

| ao�t

a
t

)
h
r
t

+ V (⇡, ao1:t)
i

⇠RS(o1:t | a1:t) :=
X

⌫2MRS

2�K(⌫)⌫(o1:t | a1:t) ,

3 A stochastic policy ⇡(at|ao�t) specifies the probability that the agent chooses action
at given the current interaction history ao�t.

where r
t

= r(o
t

) is the reward output by the environment at step t; MRS is
the set of all reward summable stochastic environments ⌫4; and K(⌫) is the Kol-
mogorov complexity of ⌫. Considering a set of all computable such environments
ensures the generality of the intelligence of the agent.

This measure of intelligence allows the comparison of various agents de-
pending on the score they obtain in an infinite number of weighted environ-
ments. According to this measure, AIXI has the highest intelligence score; i.e.,
AIXI= argmax

⇡2⇧

V (⇡,�), where ⇧ is the set of all approximable policies.

4 Russell’s bounded optimality

Legg’s definition ignores the agent’s computational resource requirements and
considers intelligence to be independent of such constraints. It is mathemati-
cally aesthetic and also useful, but because it does not include time and space
constraints, an actual agent designed according to this measure (namely, AIXI),
would compute forever, never taking any action at all.

In 1995 (before AIXI was defined), Russell [10] gave a definition of bounded-
optimality, which does take real-world constraints into account, specifically the
constraints of a given computing architecture (see Goetzel [2] for related ideas).
A given architecture M (described as an interpreter) defines a set of policies
⇡ 2 ⇧M , subject to time, space and other possible constraints of the architecture
M . At each interaction step, the policy is run for a single time step (e.g., 0.01
seconds, measured in real-world time for a given architecture), continuing the
computation of the last time step, and possibly failing to output an action for
the current interaction step, in which case a default action is chosen.

The value of a policy is measured by a utility function u (to be defined for the
task at hand) in a set of environments q 2 Q with V (⇡, q) := u(h(⇡, q)) where
h(⇡, q) generates the interaction history ao1:1 of the policy ⇡ in the determinis-
tic environment q. The value of a policy over the set Q of environments is defined
by V (⇡,Q) :=

P
q2Q p(q)V (⇡, q), for a probability distribution p over the envi-

ronments. The optimal agent ⇡⇤ subject to the constraints of the architecture
M is defined by ⇡⇤ := argmax

⇡2⇧

M V (⇡,Q).

Self-modifying resource-bounded universal intelligence

Although not explicitly stated, it seems reasonable to assume that Russell’s def-
inition of bounded optimality also includes self-modifiable policies, i.e., those
that can optimize every aspect of themselves, to be more e�cient in both com-
putation time and memory space. (This is in fact the core idea behind the Gödel
Machine [11].)

It is straightforward to merge Legg’s intelligence measure with Russell’s
bounded optimality, and the result is an optimal, self-modifying, resource-bounded

4 A stochastic environment ⌫(o1:t|a1:t) specifies the probability that the environment
produces observation sequence o1:t given action sequence a1:t. A reward-summable
environment ensures the agent’s total cumulated lifetime reward does not exceed 1.

universal agent. To do so we first define a set of policies ⇧ t̃,l̃ based on a decom-
position of architecture M into a reference machine U (like a universal Turing
machine),a time t̃ of unitary computation steps per interaction, and a memory
space l̃ that contains both the source code of the agent and the usable memory.

In the remainder of the paper, we will consider only stochastic policies. A
self-modifying stochastic policy ⇡2⇧

t̃,l̃ at time step t defines the probability
⇡
t

(ha
t

,⇡
t+1i | ot�1) of outputting: (1) some action a

t

2 A at step t and (2) some

stochastic policy ⇡
t+1 2 ⇧ t̃,l̃ for use by the agent at t + 1; both conditioned

on the last observation o
t�1 output by the environment, and this computation

must be done within t̃ computation steps and l̃ bits of memory (otherwise some
default values are output). The new code ⇡

t+1 might, for example, be the same
as ⇡

t

or only slightly di↵erent, perhaps with o
t�1 written somewhere in it.

The environment ⇢ outputs an observation o
t

with a probability ⇢(o
t

| ao�t

a
t

)
depending on the current interaction history (not taking into account the se-
quence of policies of the agent). For generality, ⇢ is defined as a universal distri-
bution5 like ⇠ [15,3] (or ⇠RS above), such that w

⇢

(⌫) > 0 for some prior weight
w

⇢

(⌫) of any stochastic environment ⌫ 2 M and
P

⌫2M w
⇢

(⌫) 1. We use a
utility function u(ao�t

) 2 [0, 1] that assigns a utility value to each interaction
history, whose cumulated value over the future is discounted by a horizon func-

tion �
t

so that
P1

t=1 �t = 1 to ensure convergence (in ⇠RS the horizon function
is considered to be a part of the environment).

The optimal self-modifying, resource-bounded, universal agent ⇡⇤ can now
be defined:6

⇡⇤ := arg max
⇡12⇧

t̃,l̃
V (⇡1,�)

V (⇡
t

, ao�t

) :=
X

hat,⇡t+1i

⇡
t

(ha
t

,⇡
t+1i | ot�1) ⇥

X

ot

⇢(o
t

| ao�t

a
t

)
h
�
t

u(ao1:t) + V (⇡
t+1, ao1:t)

i
.

This description shows that the optimal policy achieves greatest average weighted
discounted utility in all possible futures by (a) choosing good actions within the
time and space constraints t̃ and l̃, and (b) choosing good future policies for
itself (within the same time and space constraints).

5
⇢ can be seen equivalently either as a single environment or a mixture of environ-
ments. The best way to think about it in the present case might be to consider ⇢

as a universal semi-measure (because we, humans, have no absolute certainty about
what the true environment is), but biased with all the knowledge we can, or the
knowledge we think is relevant. Thinking of ⇢ as a non-universal but accurate model
of the real world is also acceptable (although arguably non-realistic).

6 This is an uncomputable definition, but the solution of this equation is a computable
optimal resource-bounded agent.

5 Embedded resource-bounded intelligence

The self-modifying, resource-bounded intelligence just described does not take
into account the fact that the environment may have read or even write access
to the memory space of the agent, containing its memory of the past and its
source code. We now propose a new definition of intelligence that extends self-
modifying, resource-bounded intelligence in two ways. The first extension, which
we call space embedding (Section 5.1), moves the code and memory of the agent
into the environment. The second extension, which we call space-time embedding

(Section 5.2), allows the environment itself (rather than an external, possibly
infinite computational device) to compute the agent’s code.

5.1 Space-embedded agents

In the traditional Reinforcement Learning (RL) framework, the agent is external
to the environment [14,3]. It is immortal, and its resources are independent of
the resources of the environment. In the real world, agents are embedded in
the environment; i.e., they can be modified and even destroyed by it. Such
considerations were partially addressed in our definition of the optimal, self-
modifying, universal agent [5], whose source code was part of the environment
itself, both readable and modifiable by it. A companion paper [6] considers the
consequences of doing the same with the agent’s memory of the past (but not
its source code).

In this section, we consider space-embedded agents, whose code and memory
are modifiable by the environment. The space-embedded agent’s code is calcu-
lated by an infinite computational device (or oracle) which yields the full results
of the computation immediately and independently of the machine that com-
putes the environment. However, the environment can modify the agent in its
entirety—both its memory and its code, which together define the agent’s policy.

At each time step, the space-embedded agent uses its current policy ⇡
t

to
produce a candidate next policy ⇡0

t+1, which is passed to the environment. The
environment then produces the agent’s actual next policy ⇡

t+1, and the optimal
agent is therefore defined as:

⇡⇤ := arg max
⇡12⇧

V (⇡1,�) (1)

V (⇡
t

, ao�t

) :=
X

at=ha0
t,⇡

0
t+1i
⇡
t

(a
t

| o0
t�1)

X

ot=ho0t,⇡t+1i

⇢(o
t

| ao�t

a
t

)
h
�
t

u(ao1:t) + V (⇡
t+1, ao1:t)

i
(2)

where the time t̃ and memory l̃ limits are not considered for now. Note that
while Equation 2 shows the semantics of a

t

=
⌦
a0
t

,⇡0
t+1

↵
, neither a0

t

nor ⇡0
t+1 are

used in the equation. In fact, there is no need for an explicit action-observation
interaction protocol anymore: the environment can read and write any infor-
mation, including information about actions and observations, directly into the
agent’s space ⇡

t+1. Thus, Equation (2) can be rewritten in various equivalent

forms that have di↵erent interpretations:

V (⇡
t

, ao�t

) :=
X

at

⇡
t

(a
t

)
X

ot

⇢(o
t

| ao�t

a
t

)
h
�
t

u(ao1:t) + V (o
t

, ao1:t)
i

(3)

V (⇡
t

, a⇡�t

) :=
X

at

⇡
t

(a
t

)
X

⇡t+1

⇢(⇡
t+1 | ⇡a1:t)

h
�
t

u(a⇡1:t⇡t+1)+ V (⇡
t+1, a⇡1:t)

i
(4)

V (⇡
t

,⇡⇡0
�t

) :=
X

⇡

0
t

⇡
t

(⇡0
t

)
X

⇡t+1

⇢(⇡
t+1 | ⇡⇡0

1:t)
h
�
t

u(⇡⇡0
1:t⇡t+1) + V (⇡

t+1,⇡⇡0
1:t)

i

(5)

In Equation (3) the action-observation protocol has been removed; additionally,
⇡
t+1 is shown as an implicit interpretation of o

t

from the previous step. Equa-
tion (4) di↵ers from Equation (3) in that the environment’s output is always
interpreted as a policy. Equation (5) then also renames action a as ⇡0 to empha-
size that the agent and the environment share the agent’s memory space. In all
of these equations, the alphabets of the actions, observations, and policies are
considered to be the same.

It is interesting to note that when the environment contains the agent’s code,
there is no RL agent that is asymptotically as good as every other agent in all
environments: for each agent ⇡, there is an environment q

⇡̄

that always gives
r
t

= 08t to that particular agent, and r
t

= 18t for all other agents.
With the space-embedded framework, the agent can in principle make pre-

dictions about its source code and memory (e.g., that it will be updated by
humans, who are part of the environment, to get new sensors or more e�cient
code). By contrast, neither AIXI, nor AIXI

t̃,l̃

, nor the Gödel Machine can make

such predictions even in principle.7

5.2 Space-time-embedded agents

The space-embedded agent’s next action is computed independently from the en-
vironment by a separate machine. Its code can be incomputable (cf. AIXI [3]),
and, unless an explicit time limit t̃ is introduced, is expected to run until com-
pletion (regardless how much computation might be involved) before the result
is passed to the environment. In the real-world though, the agent cannot have
more computing power or memory than what the environment has to o↵er.

To better model the interaction between the agent and the environment in
the real world, we examine the case where the reference machine of the agent
(i.e., the computer on which it runs), is a part of the environment, and the agent
is computed by the environment. Our proposal is not simply for the agent and
environment to be computed by the same reference machine, but to actually
make the agent be computed by the environment itself.

7 In the case of the Gödel Machine, one could set up a special protocol whereby external
agents could propose a new source code to the machine, possibly along with a proof
that this leads to a better expected value. If the machine can verify the proof, it
could adopt the new code. But this is a restricted form of external modification.

One specific advantage of this model is that it allows the agent through its
actions (and predictions) to optimize not just its policy but also potentially the
physical device on which its policy is computed.8 An additional advantage is
that there is no need anymore for a time parameter t̃, since it is the environment
that determines how much computation the agent is allowed.

An alteration to Equation (5) describes the agent’s computation as performed
by ⇢ (even if ⇢ is only an estimate of the true environment):

⇡⇤ := arg max
⇡12⇧

V (⇡1)

V (⇡⇡0
�t

⇡
t

) :=
X

⇡

0
t

⇢0(⇡0
t

| ⇡⇡0
�t

⇡
t

) ⇥

X

⇡t+1

⇢(⇡
t+1 | ⇡⇡0

1:t)
h
�
t

u(⇡⇡0
1:t⇡t+1) + V (⇡⇡0

1:t⇡t+1)
i

(6)

V (⇡⇡0
�t

⇡
t

) :=
X

⇡

0
t⇡t+1

⇢00(⇡0
t

⇡
t+1 | ⇡⇡00

�t

⇡
t

)
h
�
t

u(⇡⇡0
1:t⇡t+1) + V (⇡⇡0

1:t⇡t+1)
i
, (7)

where ⇢0 is defined appropriately for ⇡0, and ⇢00 is the one-step combination of
⇢ and ⇢0. Loosely renaming ⇡0

t

⇡
t+1 to ⇡

t+1 and ⇢00 back to ⇢, we can interpret
Equation (7) as merging two interaction steps into a single one, and we obtain
the value of the space-time-embedded agent:

V (⇡�t

) :=
X

⇡t

⇢(⇡
t

| ⇡�t

)
h
�
t

u(⇡1:t) + V (⇡1:t)
i

. (8)

Equation (8) has one remaining problem, which is that for t = 0, when nothing
yet is known about the environment, the optimal policy may have infinite length.
Thus, we need to add a length constraint l̃ on the initial length that the program
can have. It is a reasonable parameter for any real-world model. In our world
it corresponds to the maximum number of bits that we, as programmers, are
ready to use for the initial policy of the agent. Note, however, that after the very
first step the actual length of the agent is determined by the computation of the
environment, i.e., ⇡

t

, t > 1 need not be of size less than l̃. Therefore, the final
definition of the optimal bounded-length space-time-embedded agent is:

⇡⇤ := arg max
⇡12⇧

l̃
V (⇡1)

V (⇡�t

) :=
X

⇡t2⇧

⇢(⇡
t

| ⇡�t

)
h
�
t

u(⇡1:t) + V (⇡1:t)
i .

Although simpler than Legg’s definition, this equation has profound implications
regarding the nature of the agent. In particular, it precisely represents the goal
of those attempting to build an Artificial General Intelligence in our world.

8 Such e↵ects can be neither predicted nor controlled by AIXI, AIXIt̃,l̃, or the Gödel
Machine using their current definition.

A Turing machine model. It is convenient to envision the space-time-embedded
environment as a multi-tape Turing machine with a special tape for the agent.
This tape is used by the environment just like any other working-memory tape.
The read and write heads need not be synchronized and there is no external
computing device, oracle or special interface for the agent. The agent’s tape can
be seen as a partial internal state of the environment, which is consistent with
the intuition that agents do not have special status in the real world compared to
the rest of the environment. This view extends easily to a multi-agent framework.

A cellular-automaton survival agent. It is also instructive to envision the envi-
ronment as a cellular automaton (e.g., the Game of Life [1]), in which an agent
is represented as a particular set of cells whose initial state is specified by the

initial policy ⇡1 (perhaps an
p
l̃⇥

p
l̃ square of cells). The cells surrounding the

agent, in possibly unbounded number, may be in any initial state.
As an example, consider a utility function whose value is 1 as long as some

critical part of the agent’s policy maintains some particular pattern (call it the
agent’s “heart”), and 0 otherwise. If the pattern can be destroyed by gliders

9

coming from outside the initial square of the agent, then the agent must find
ways to avoid them. The optimal initial policy ⇡⇤ is thus the one that maximizes
the expected number of time steps that the heart pattern survives. To ensure
its survival, the agent may need to learn about and react to its environment in
sophisticated and intelligent ways (provided l̃ is large enough).

Note that while the utility and horizon functions are part of the definition
of V , and thus are critical to defining ⇡⇤, they are not necessarily represented
within ⇡⇤ in any way. Note also that although ⇡1 is the entire initial state of
the agent, as soon as the agent and environment interact, the boundary between
them may quickly blur or disappear. Thus the notation ⇡

t

for t > 2 may be
misleading, since it can also be viewed simply as a window onto that part of the
environment used (by the utility and horizon functions) to assign a value to the
agent. Since only the output of ⇢ can be used by the utility function, ⇢ can be
defined so that ⇡

t

, t > 2 encompasses the entire environment, while ⇡1 remains
limited to l̃ bits. Thus, in the case of a cellular automaton, for example, the agent
and its heart pattern may drift away from its original cells; or, alternatively, the
utility function may seek to maximize the number of “live” cells (i.e., cells set
to 1) in the entire environment.

New kinds of questions. The framework for space-time-embedded agents allows
formal discussion of a range of questions that could not previously be formulated
using the traditional RL framework.

Because the agent is computed by the environment, the agent’s choices are
the result of the computations made by the environment on the bits defining the
agent’s policy. Genuine choice is exercised only by those processes (e.g., those
programmers) that define the agent’s initial program ⇡1 before interaction with
the environment begins. Yet the programmers are also part of the environment,

9 A “glider” is a repeating pattern that can cross regions of the cellular automaton.

which implies that the agent is generated ultimately as a result of the initial
conditions of the environment in a generative process much like Solomono↵’s
Sequence Prediction [12].

If at some time t some set of bits implements an intelligent agent ⇡, one
might wonder by what process this agent was generated or, more precisely, what
are the most probable environments that could have generated this set of bits.
We do not seek to answer to this question here, but only to point out that the
question itself can be discussed within the framework of space-time-embedded
agents, in contrast to the traditional RL framework, in which the agent is not
generated but is simply assumed to exist from the very first step.10

In fact, the framework now allows many questions to be discussed, such as:
Who is the agent? (i.e., what part of the global computation defines the identity
of the agent; e.g., ⇡1, u, �?) What is an agent? (i.e., where is the boundary
between the agent and its environment?) What does it mean for an agent to
live and to die? (Questions that depend deeply on agent identity and thus the
boundary between the agent and the environment.)

To perform any computation, an embedded agent necessarily a↵ects its en-
vironment, and thus the mere act of calculating the consequences of its own
actions implies a self-referential computation. It may seem we would therefore
need to define agents that deal explicitly with the problem of self reference, but
our framework instead circumvents this issue entirely by simply computing each
agent’s value subject to the environment’s computational constraints, and then
selecting the agent with the highest value. This best agent may, or may not, deal
with self reference, but does so to whatever extent is optimal for its environment.

6 Discussion and conclusion

This paper has proposed a new definition of intelligence within a theoretical
framework more realistic than previous definitions. In both Legg’s definition
of intelligence [4] (based on AIXI [3]) and Russell’s bounded-optimality frame-
work [10] (which embraces time and space constraints on the program of the
agent), the agent is separated from the environment and therefore immortal.

Space-time-embedded intelligence formally describes agents as components of
their environment. Such agents are thus limited to the computational resources
(computation time and memory space) provided by their environment, can be
fully modified by their environment (i.e., the agents are mortal), and are even
computed by the environment, making their computation dependent on the dy-
namics of the environment. Compared with previous definitions of intelligence,
the resulting equation is surprisingly simple—deceptively simple, in fact, hiding
considerable depth beneath its surface.

Our primary motivation was to find an equation of intelligence that, if solved,
might lead to the actual building of real-world, artificially intelligent agents. We
believe that this new formalization brings us a step closer to our goal, though we

10 Note, though, that in our companion paper [6] we address the issue of how to assess
the probability of some particular memory state generated by an environment.

are by no means naive as to the di�culty of its solution. As much as anything
else, we greatly lack insight into ⇢ (i.e., the universe in which we live). For
example, our universe allows for the sustainability of intelligent agents—patterns
that continue through large stretches of space and time (partly thanks to our
protective skulls). We hope this work will help us develop a better understanding
of the information we will need for eventually solving the equation.

When discussing narrow AI, our framework might be regarded as a step
backward compared to Russell’s definition, since the interaction loop is hidden
in the embedding and makes reasoning about the actions of the agents less
explicit. But when discussing true AGI, our framework captures critical aspects
of reality that Russell’s definition simplifies away: agents are computed by and
can be modified by the environment, and are therefore mortal. Furthermore,
these theoretical consequences of inhabiting one’s environment turn out to be
essential and practical considerations for all the intelligent agents who inhabit
our own.

References

1. Conway, J.: The game of life. Scientific American 303(6), 43–44 (1970)
2. Goertzel, B.: Toward a Formal Characterization of Real-World General Intelli-

gence. In: Proceedings of the 3d Conference on Artificial General Intelligence (AGI-
10). pp. 19–24. Atlantis Press (2010)

3. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2005)

4. Legg, S.: Machine Super Intelligence. Department of Informatics, University of
Lugano (2008)

5. Orseau, L., Ring, M.: Self-Modification and Mortality in Artificial Agents. In: Ar-
tificial General Intelligence (AGI). pp. 1–10. LNAI, Springer (2011)

6. Orseau, L., Ring, M.: Memory Issues of Intelligent Agents (2012), Artificial General
Intelligence (AGI)

7. Ortega, P.A., Braun, D.A.: Information, utility and bounded rationality. In: Arti-
ficial General Intelligence (AGI). pp. 269–274. Springer, Berlin, Germany (2011)

8. Ring, M., Orseau, L.: Delusion, Survival, and Intelligent Agents. In: Artificial Gen-
eral Intelligence (AGI). pp. 11–20. LNAI, Springer, Berlin, Heidelberg (2011)

9. Robinson, H.: Dualism. In: The Stanford Encyclopedia of Philosophy. Winter 2011
edn. (2011)

10. Russell, S.J., Subramanian, D.: Provably Bounded-Optimal Agents. Perspective 2,
575–609 (1995)

11. Schmidhuber, J.: Ultimate Cognition à la Gödel. Cognitive Computation 1(2),
177–193 (2009)

12. Solomono↵, R.J.: A Formal Theory of Inductive Inference. Part I. Information and
Control 7(1), 1–22 (1964)

13. Stoljar, D.: Physicalism. In: The Stanford Encyclopedia of Philosophy. Fall 2009
edn. (2009)

14. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge, MA (1998)

15. Zvonkin, A K and Levin, L.A.: The complexity of finite objects and the develop-
ment of the concepts of information and randomness by means of the theory of
algorithms. Russian Mathematical Surveys 25(6), 83–124 (1970)

	Space-Time Embedded Intelligence
	Introduction
	Notation
	Legg's measure of intelligence
	Russell's bounded optimality
	Embedded resource-bounded intelligence
	Space-embedded agents
	Space-time-embedded agents

	Discussion and conclusion

