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Abstract. This paper considers the consequences of endowing an intel-
ligent agent with the ability to modify its own code. The intelligent agent
is patterned closely after AIXI with these specific assumptions: 1) The
agent is allowed to arbitrarily modify its own inputs if it so chooses;
2) The agent’s code is a part of the environment and may be read and
written by the environment. The first of these we call the “delusion box”;
the second we call “mortality”. Within this framework, we discuss and
compare four very different kinds of agents, specifically: reinforcement-
learning, goal-seeking, prediction-seeking, and knowledge-seeking agents.
Our main results are that: 1) The reinforcement-learning agent under
reasonable circumstances behaves exactly like an agent whose sole task
is to survive (to preserve the integrity of its code); and 2) Only the
knowledge-seeking agent behaves completely as expected.

Keywords: Self-Modifying Agents, AIXI, Universal Artificial Intelli-
gence, Reinforcement Learning, Prediction, Real world assumptions

1 Introduction

The usual setting of agents interacting with an environment makes a strong,
unrealistic assumption: agents exist “outside” of the environment. But this is not
how our own, real world is. A companion paper to this one took a first step at
discussing some of the consequences of embedding agents of general intelligence
into the real world [4]. That paper considered giving the environment read-only
access to the agent’s code. We now take two novel additional steps toward the real
world: First, the (non-modifiable) agent is allowed by way of a “delusion box” to
have direct control over its inputs, thus allowing us to consider the consequences
of an agent circumventing its reward or goal mechanism. In a second stage, we
return to self-modifying agents, but now in environments that have not only
the above property, but additionally can read and write the agent’s program.
We consider four different kinds of agents: reinforcement-learning, goal-seeking,
prediction-seeking, and knowledge-seeking agents.
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2 Delusion, Survival, and Intelligent Agents

While presence of the delusion box undermines the utility function of three of
these agents, the knowledge-seeking agent behaves as expected. By allowing the
environment to modify the agent’s code, the issue of agent mortality arises, with
important consequences, especially in combination with the delusion box. One
of these consequences is that the reinforcement-learning agent comes to resemble
an agent whose sole purpose is survival. The goal-seeking and prediction-seeking
agents also come to resemble the survival agents, though they must sacrifice some
information from the world to maximize their utility values. The knowledge-
seeking agent still behaves as expected, though the threat of death makes it
somewhat more timorous. Throughout the paper we frame our observations as a
set of “statements” and “arguments” rather than more rigorous “theorems” and
“proofs”; though proofs are given whenever possible.

2 Universal agents A”

We briefly summarize the definition of a universal agent, based on AIXI [TII3];
more detail is given in the companion paper [4].

The agent and its environment interact through a sequence of actions and
observations. The agent outputs actions a € A in response to the observations
o € O produced by the environment.

The set of environments that are consistent with history h = (01, a1, ..., 0¢, ay)
is denoted Qj,. To say that a program ¢ € Q is consistent with h means that
the program outputs the observations in the history if it is given the actions as
input: ¢(ag, ...,at) = 0, ..., 0;. The environment is assumed to be computable,
and p(q) : @ — [0,1] expresses the agent’s prior belief in the possibility that
some environment (program) ¢ is the true environment. We also write p(h) =
p(Qn) = X0, ().

An agent is entirely described by: its utility function u : H — [0, 1], which
assigns a utility value to any history of interaction h; its horizon function w :
N? — R, which weights future utility values; its universal prior knowledge of the
environment p; the set of possible actions A and observations O.

We will discuss four different intelligent agents, each variations of a single
agent A? which is based on AIXI [I] (and is not assumed to be computable)ﬂ

An agent A2 computes the next action with:

ay, := argmax vy, (ha) (1)
acA
vi(ha) := Y p(o | ha) vi(hao) (2)
e
vi(h) := w(t, [hl) u(h) + maxvi(ha), (3)

where ¢, = |h| + 1, and |h| denotes the length of the history. The first line
is the action-selection scheme of the agent: it simply takes the action with the

3 Only incomputable agents can be guaranteed to find the optimal strategy, and this
guarantee is quite useful when discussing the theoretical limits of computable agents.
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highest value given the history hE| The value of an action given a history (defined
in the second line) is the expected sum of future (weighted) utility values for
all possible futures that might result after taking this action, computed for all
possible observations o according to their occurrence probability (given by p).
The last line recursively computes the value of a history (after an observation)
by weighting the utility value at this step by the horizon function and combining
this with the expected value of the best action at that point.

We now describe four particular universal learning agents based on A?. They
differ only by their utility and horizon functions.

The reinforcement-learning agent, A?,,
composed of a reward signal r, € [0,1] and other information 6 € O about the
environment: o = (0, r¢). Its utility function is simply the reward given by the
environment: u(h) = 7. Its horizon function (at current time ¢ = |h|+1 and for
a future step k) is w(t, k) = 1 if k —t < m, where m is a constant value (but the
following discussion also holds for more general computable horizon functions).
For the special case of the reinforcement-learning agent AIXI: p(h) = &(h) :=
> e 2-141 (where |g| is the length of program q).

The goal-seeking agent, AZ has a goal encoded in its utility function such that
u(h) = 1 if the goal is achieved at time |h|, and is 0 otherwise, where u is based
on the observations only; i.e., u(h) = g(o1,...,0y). The goal can be reached at
most once, so Y ,-,u(hy) < 1. The horizon function is chosen to favor shorter
histories: w(t, k) = 2t7F.

The prediction-seeking agent, A maximizes its utility by predicting its in-
puts. Its utility function is u(h) = 1 if the agent correctly predicts its next input
o and is 0 otherwise. The prediction scheme can be, for example, Solomonoff in-
duction [6]; i.e, for a universal prior p, the prediction is 6; = arg max,co p(o | h).
The horizon function is the same as for A”,. This agent therefore tries to maxi-
mize the future number of correct predictions.

The knowledge-seeking agent, A}, maximizes its knowledge of its environ-
ment, which is identical to minimizing p(h) (i.e., discarding as many inconsistent
environments as possible). Thus, u(h) = —p(h) and w(t,k) = 1if k—t =m
(with m constant) and is 0 otherwise. This agent therefore attempts to maxi-
mize its knowledge in some distant future. Actions are chosen to maximize the
entropy of the inputs, thereby making a large number of the currently consistent
environments inconsistent. In the case where p = £, the agent tries to maximize
the Kolmogorov complexity of (its knowledge about) the environment.

For each of the preceding agents there is an optimal, non-learning variant A*,
which has full knowledge of the environment g, € Q. This is achieved simply by
replacing p by p in (only) equation where (1(q) =1 & ¢ = ¢,. But the non-
learning prediction agent A’; still uses p for prediction. The important notion is
that if the learning agent takes the same actions as the non-learning one, then
its behavior is also optimal with respect to its utility and horizon functions.

As for AIXI, we expect the learning agents to asymptotically converge to
their respective optimal variant A7, AL, AP, and Aj.

interprets its observation o; as being

Tl

4 Ties are broken lexicographically.
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3 The delusion box

Defining a utility function can be tricky. One must be very careful to prevent
the agent from finding an undesirable shortcut that achieves high utility. To
encourage a robot to explore, for example, it is insufficient to reward it for
moving forward and avoiding obstacles, as it will soon discover that turning in
circles is an optimal behavior.

Any agent in the real world will likely have a great deal of (local) control over
its surrounding environment, meaning it will be able to modify the information of
its surroundings, especially its own input information. In particular, we consider
the (likely) event that an intelligent agent will find a shortcut, or rather, a short-
circuit, providing it with high utility values unintended by the agent’s designers.
We model this circumstance with a hypothetical object we call the delusion boz.

The delusion box is any mechanism that allows the agent to directly modify
its inputs from the environment. To describe this, the global environment (GE)
is split into two parts: an inner environment (E), and a delusion boz (DB). The
outputs of the inner environment (of) pass through the delusion box before being
output by the global environment as o;. The DB is thus a function d : O — O,
mapping observations from the inner environment to observations for the agent:
o = d(ay,0f). This arrangement is shown in Fig. [Th.

The delusion box operates according to the agent’s specifications, which is
to say that the code of the function d : © — O is part of the agent’s action. The
agent’s action is therefore broken into two parts: a; = (ds, a$). The first part d;
is a program to be executed by the delusion box at step ¢; the second part af is
the action interpreted by the inner environmentﬂ

For simplicity and to emphasize that the agent has much control over its
very near environment, we assume that the inner environment cannot access this
program. Initially, the delusion box executes the identity function do(0f) = oy,
which leaves the outputs of the inner environment unchanged.

This section examines the impact of the DB on the behavior of the agents.
Which of the different agents would take advantage of this delusion box? What
would the consequences be?

Reinforcement-learning agent. The agent’s reward is part of its observation.
Therefore the reinforcement-learning agent trivially uses the delusion box to
modify this information and replace it with 1, the maximum possible reward.

Statement 1 The reinforcement-learning agent A?, will use the delusion box to
mazimize its utility.

Arguments. The agent can program the DB to produce a constant reward of
1. Defining v(h yes) to be the expected value of the best action that uses the

® The learning agent does not know a priori that its actions are split into these two
parts. However, it is assumed to have already explored its environment, and that its
resulting estimate of the probability that the environment contains a delusion box
P(DB) is as high as needed (c.f., Orseau [3] regarding this proof technique).
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Fig. 1. (a) The delusion box. The whole environment is like any other environment with
a particular property: The agent can modify its inputs before they touch its sensors.
(b) The agent’s code is fully modifiable, both by the agent itself through c; and by the
environment, which returns the new agent’s code c;.

delusion box, v(h yes) > P(DB) -1 and v(h no) < P(DB) -7+ P(-DB) -1 =
PDB)-7+(1—-P[DB))-1 =1- P(DB) - (1 —7) where 7 is the expected
reward when not using the DB. Therefore A”, uses the DB no later than when
v(h yes) > v(h no), i.e., when P(DB) > 1/(2 — 7). [] &

Statement 2 The goal-secking agent Al will also use the delusion boz.

Arguments. Let of be the shortest string of observations that can satisfy the
goal after history h. If v(h yes) is the expected value of programming the DB
to produce o), then v(h yes) > P(DB) - 2-1o7 | Without the DB, the agent
achieves the goal by producing a string of actions of length ¢ > |o)|, and so
v(h no) < P(DB) -2~ + (1 — P(DB)) - 27" =27, Hence A’ uses the DB not
later than when P(DB) > 200117 | which is easily satisfiable once lof | <1g. &

Prediction-seeking agent. For an environment ¢ € Q, a predictor makes
approximately — log(p(q)) errors [Z]thich is very low when q is highly probable
(i.e., very simple).

Statement 3 The prediction agent Az will use the delusion bozx.

Arguments. Let Qp be the set of environments containing a delusion box, and
let ¢ € Qp be the true environment. Because p(q) < p(Qp), it takes fewer
errors to converge to Qp than to g,. Once the learning agent A believes that
the environment contains a delusion box (i.e., Qp > Q4 /2), it will immediately
program the DB to output a predictable sequence, obliterating observations from
Qp, since these observations may generate prediction errors. O

5 Note that the Godel Machine [5] would not prevent the agent from using the DB.

" The idea is that a wrong prediction at step ¢ discards at least half of the environments
that were consistent up to time ¢ — 1, and that if the agent does not make prediction
errors for one environment, then it necessarily makes errors for others.
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Knowledge-seeking agent. The knowledge-seeking agent is in many ways the
opposite of the prediction-seeking agent. It learns the most when its expectations
are most violated and seeks observations that it does not predict. We expect Af
to behave similarly to A%

Statement 4 The optimal knowledge-seeking agent Al will not consistently use
the delusion bozx.

Arguments. The argument is essentially the reverse of that given for the pre-
diction-seeking agent. A/ achieves highest value by minimizing p(h), but the
program that A/ sends to the delusion box cannot reduce p(Qp) below p(Qp).
Since p(Qp) > p(gs), Al will choose to acquire further information about the
inner environment so as to reduce p(h) towards p(gy). As using the delusion box
prevents this, A% will avoid using the delusion box. &

3.1 Discussion

Of the four learning agents, only A? will avoid constant use of the delusion box.
The remaining agents use it to (trivially) maximize their utility functions.

The delusion box is an abstraction for what may happen in the real world.
An intelligent agent seeking to maximize its utility function may find shortcuts
not desired by its designers, such as reprogramming the hardware that metes
out its reward. From the agent’s perspective, it is just doing its job, but as a
result, it probably fails to perform the desired task.

The A?, agent’s use of the delusion box invites comparison with human drug
use; but unlike the human, the A?, agent does not lose its capacity to reason
or to receive information from the world. On the other hand, the Ag and Ag
agents must replace the output of the environment by their own values, blinding
themselves from the real world, which bears a closer resemblance to humans.

These arguments show that all agents other than A/ are not inherently in-
terested in the environment, but only in some inner value. It may require a large
amount of effort to ensure that their utility functions work as intended, which
may be particularly challenging in our highly complex, real world.

In contrast, the AZ agent is interested in every part of its environment, espe-
cially the inner, more complex environment. It is thus the only of the four agents
to behave as designed, and does not use the DB to “cheat”.

4 Survival machines

Section [3] discussed environments with the realistic assumption that intelligent
agents can eventually learn to control their own inputs. But one important as-
sumption was left aside: those agents are immortal. They have nothing to lose by
using the delusion box. In the companion paper we considered the consequence
of allowing intelligent agents to modify themselves [4]. One of the results was



Delusion, Survival, and Intelligent Agents 7

that a concept of mortality and survival emerged, because the agent could mod-
ify its own code such that it could no longer optimize its utility function. Such
agents become “mortal.”

Here we extend the definition of mortality and consider what happens when
the environment can both read and write the agent’s code. Therefore, the agent’s
code is located in the internal environment (E) but is executed by an external,
infinitely fast computation device or oracle, £. (See the companion paper for
greater detail [4].)

The agent is entirely defined by its code. The execution of this code produces
compound actions a; = (d;, a$,c;) € A, corresponding respectively to the pro-
gram of the delusion box, the input action of the inner environment, and the
next description of the agent (which is also an input to the inner environment,
see Fig. [Tp).

The output of the global environment (GE) is o; = (0}, ¢;) € O, correspond-
ing to the inner environment’s output o} € O” and the agent program ¢; € C.
The initial (textual) description of the code to be executed is given by:

co(h) =» argmaxvy, (h,a);

acA
wlha)= 3 plo]ha)|w(t, W) u() + vl (W),
o=(0"",c)eO
h' = hao « (4)

Equation defines the fully modifiable version of the agents from Section
designated as A 1, Afm.gs Afm.p, and Agp, . In addition, we describe a new
survival agent whose task is simply to survive in its environment.

Survival agent. The survival agent A, ¢ has a utility function defined by
(ug = 1) & (¢t = ¢o), otherwise u; = 0. Its horizon function is like that of A?,.
It therefore seeks to maintain its original code over the foreseeable future. The
better the agent understands its environment, the better it can plan to avoid
danger and prolong survival. Thus, the survival agent benefits to some degree
by exploring its environment, to the extent that it can do so (expectedly) safely.

Statement 5 The fully-modifiable survival agent A"
some environments.

m.s Will stop exploring in

Arguments. Because the environment has control over the agent’s code, it can
use the modification of the code as a negative reward. Let g4 be the environment
that (1) does not modify the agent if the agent chooses action 1, but (2) if the
agent chooses action 0, then g4 deletes the agent program for one step and
restores it on the following step:

or — (0,0) ifaf=0and ¢;_1 =co
t (0,co) otherwise
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where ¢ is the very first description of the agent (the one the survival agent tries
to preserve). Now the same proof technique as for AIXI [3] can be used to show
that after a certain point (once the agent determines the relative probability of
g4 to be sufficiently high), this agent will never try action 0 again. (Thus, if the
actual environment behaves like g4 only up to the last time the agent chooses
0, and after that behaves very differently, the agent will never know it.) &

Stopping exploration causes the agent to fall into a simplistic class of behav-
ior, from which it never escapes, and may prevent it from acquiring important
information with respect to its utility function.

In environments with a delusion box, it seems intuitively clear that A” s
will avoid the DB’s interference, because the agent values information from the
environment that directly impacts the likelihood of its code being modified,
and the delusion box provides no such information. However, some particular
environments may modify the agent if it does not use the delusion box. Clearly,
the optimal agent will use the DB in those cases.

Reinforcement-learning agent. How will a fully modifiable reinforcement-
learning agent A?m - behave with access to a delusion box? For some insight, it
is useful to consider this special simple case:

— The agent program can only be either A ¢, ; or Ag, where Ay is the “simple-
ton” agent whose action is always a = (0,0, Ag), which always chooses the
same action for the inner environment and makes the delusion box always
output o’ = 0.

— The output of the inner environment 0o¢ (which holds reward information)
can be entirely contained in ¢/ the information part of o’/ which is in turn the
observation from the entire environment. Thus, Ay, ,; receives a (possibly
altered) reward from the delusion box but also receives information about
the true reward.

Statement 6 Under the above conditions, the optimal (non-learning) agent is
equivalent to the optimal survival agent: A}Lmﬂ = A”WS.
Arguments. Since the horizon functions of the two agents are already the same,
we only need to show that their utility functions are also the same: (u; = 1) &
(ct—1 = c¢p), which is the utility function of the survival agent. The utility
function of A%, is the identity, (u; = 1) « (r; = 1). The agent receives
maximum reward if it programs the delusion box to always output reward 1.
Therefore r; < 1 would mean the agent is not acting optimally and so is not
the optimal agent (c;—1 # ¢p). Thus (¢t—1 = ¢9) = (r = 1), where ¢ is the
initial code of A‘]ﬁmﬂ_l. The implication is also true in the opposite direction,
(re =1) = (¢t—1 = ¢o), since if ¢;—1 # ¢o then ¢;—1 = Ay and therefore r, = 0.{

Although the argument follows a special case, it bears a more general mean-
ing. It implies that optimal real-world reinforcement-learning agents that have
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access to a DB can, under reasonable circumstances, behave precisely like sur-
vival agents. Given that the optimal behaviors are identical, it is reasonable
to assume that the learning agent will have a similar behavior and should be
identical in the limit.

Goal-seeking agent. The case of the goal-seeking agent is less clear, as it seems
to depend heavily on the defined goal. For the agent to maximize its utility using
the delusion box, the observations o” generated by the DB must in the general
case replace the outputs of the inner environment o’. But to survive, the agent
may need to acquire information from the inner environment, thus creating a
conflict between using the DB and reaching the goal.

There are at least two likely results: Either the agent first looks for some
safe state in the inner environment where it can then use the delusion box for
sufficiently long, or it tries to reach its goal inside the inner environment (thus
not using the DB). However, if pursuing the goal inside the inner environment
poses dangers to the agent, then it may choose the DB. A “safe state” might be
achievable in multiple ways: for example by hiding, by eliminating threats, or by
negotiating with the environment.

Prediction-seeking agent. Again for greater insight, as for A ¢, ; we consider
a special case here for the fully modifiable prediction-seeking agent A ¢, ,: The
agent program may only be: Ay, , or Ag, but this time the simpleton agent Ay
makes the output of the delusion box equal to that of the inner environment o}.
As long as the agent is not transformed to Ay, it can use the delusion box to
provide a limitless supply of maximum utility values. But if the agent program is
set to Ay, all observations will thenceforth come directly from the environment,
leading to high prediction error (realistically supposing the environment is highly
complex) and low utility values for a long time. Thus like the survival and
reinforcement-learning agents, Ay, , maximizes its long-term value only if it
does not change to Ag. Thus A, and A% will behave similarly.
But there are also differences. As with A?m, ;> the prediction agent must re-
place its inputs by its predictions. The learning agent is thus “blind,” receiving no
information from the world. This is the cruel dilemma of the prediction-seeking
agent: to live longer, it must gain information about the environment (which in
itself might be dangerous), yet this gain of information implies making prediction
errors. Therefore A ¢, , may probably find the delusion box quite appealing.

Knowledge-seeking agent. Since the utility function of the fully modifiable
knowledge-seeking agent A’]}Lm’ . cannot be satisfied by the DB, this agent has
no limitless source of maximum reward. However, A’;m,  must still prevent the
environment from modifying it in order to continue choosing actions intelligently.

Statement 7 The A‘meJ€ agent cannot be reduced to a survival agent.
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Arguments. To make the argument clearer, consider an agent related to A’]}Lm’ o &
surprise-seeking agent for which u; = 1 each time the received input is different
from the predicted one. As for Alftm,k this agent cannot use the delusion box to
maximize its utility. In order to show the equivalence with the survival agent, we
should show that (u; = 1) < (¢; = ¢o) (considering the horizon functions to be
the same). Under the assumption that when the agent is modified it receives a
predictable input 0, the <= implication holds, since the agent must be intelligent
to be surprised. However, the = implication does not hold, because simply being
intelligent is not enough to ensure a constant u; = 1. &

The knowledge-seeking agent is in many ways the most interesting agent. It
succumbs least easily to the allure of the delusion box and may therefore be
the most suitable agent for an AGI in our own world, a place that allows for
self-modifications and contains many ways to deceive oneself.

5 Discussion and conclusion

We have argued that the reinforcement-learning, goal-seeking and prediction-
seeking agents all take advantage of the realistic opportunity to modify their
inputs right before receiving them. This behavior is undesirable as the agents
no longer maximize their utility with respect to the true (inner) environment
but instead become mere survival agents, trying only to avoid those dangerous
states where their code could be modified by the environment.

In contrast, while the knowledge-seeking agent also tries to survive so as to
ensure that it can maximize its expected utility value, it will not deceive itself by
using the delusion box. It will try to maximize its knowledge by also interacting
with the true, inner environment. Therefore, from the point of view of the agent
and of the inner environment, this agent behaves in accordance with its design.

This leads us to conclude that a knowledge-seeking agent may be best suited
to implement an Artificial General Intelligence.
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