
Organizing Behavior into Temporal and Spatial Neighborhoods∗

Mark Ring
IDSIA / University of Lugano / SUPSI

Galleria 1
6928 Manno-Lugano, Switzerland

Email: mark@idsia.ch

Tom Schaul
Courant Institute of Mathematical Sciences

New York University
715, Broadway, New York, NY 10003

Email: schaul@cims.nyu.edu

Abstract

The mot1 framework (Ring, Schaul, and Schmidhuber 2011)
is a system for learning behaviors while organizing them
across a two-dimensional, topological map such that simi-
lar behaviors are represented in nearby regions of the map.
The current paper introduces temporal coherence into the
framework, whereby temporally extended behaviors are more
likely to be represented within a small, local region of the
map. In previous work, the regions of the map represented ar-
bitrary parts of a single global policy. This paper introduces
and examines several different methods for achieving tempo-
ral coherence, each applying updates to the map using both
spatial and temporal neighborhoods, thus encouraging parts
of the policy that commonly occur together in time to re-
side within a common region. These methods are analyzed
experimentally in a setting modeled after a human behavior-
switching game, in which players are rewarded for produc-
ing a series of short but specific behavior sequences. The
new methods achieve varying degrees—in some cases high
degrees—of temporal coherence. An important byproduct of
these methods is the automatic decomposition of behavior se-
quences into cohesive groupings, each represented individu-
ally in local regions.

Background
The mot framework (Ring, Schaul, and Schmidhuber 2011)
is a system for continual learning (Ring 1994) in which
behaviors are organized into a two-dimensional map ac-
cording to their similarity.2 This organization was con-
jectured to convey many useful properties to the learn-
ing agent—properties such as robustness, non-catastrophic
forgetting, and intelligent resource allocation. One method
shown for achieving such a map in practice was by laying
out reinforcement-learning modules—SERL modules (Ring
and Schaul 2011)—in a two-dimensional grid and then up-
dating these modules in local spatial neighborhoods, much

∗This is a revised and corrected version of a paper appearing
under the same title at ICDL-EpiRob (2012).

1Pronounced “mōt” or “moUt”, like moat or mote, rhyming with
“boat” as in “motor boat”.

2“Continual learning” refers to the constant and incremental ac-
quisition of new behaviors built on previously acquired behaviors,
where each behavior is learned through interaction with an envi-
ronment that can provide positive and negative rewards.

like the nodes of self-organizing maps (SOMs) are updated
in local spatial neighborhoods (Kohonen 1988). As a result,
the maps show spatial smoothness, the property underlying
most of the advantages conjectured. Our goal in the cur-
rent paper is to achieve temporal smoothness as well, such
that temporally extended, coherent behaviors tend to be rep-
resented in small, local regions of the map. The methods
presented here for achieving temporal smoothness apply up-
dates not just to local spatial neighborhoods but to local tem-
poral neighborhoods as well.

The mot framework was inspired by recent evidence in
neuroscience that the motor cortex may be laid out as a topo-
logical map organized according to behavior, where similar
behaviors occur close together and very different behaviors
lie far apart (Graziano and Aflalo 2007; Graziano 2009).
As described by Ring et al. (2011b), this organization in
and of itself conveys many surprising advantages, includ-
ing: smoothness (the closer two regions are, the more likely
they are to represent similar behaviors, thus providing a gra-
dient in behavior space); robustness (should a failure occur,
nearby regions can provide similar behavior); efficient lo-
calization of learning (learning can be done simultaneously
across related regions); hierarchical organization (large re-
gions tend to represent generic behaviors, smaller regions
represent more specific behaviors); safe dimensionality re-
duction (only those sensorimotor connections needed by a
region are delivered there, but all connections remain acces-
sible somewhere in the map); intelligent use and reuse of re-
sources (obsolete behaviors can be replaced by similar ones,
and new behaviors can be learned in those regions already
representing the most similar behaviors); state aggregation
by policy similarity (the position in the map of the currently
active behavior provides a compact representation of certain
state information); continual learning (new learning is com-
patible with and builds on top of old learning); and graceful
degradation (regions compete to best cover the useful behav-
ior space).

The Motmap is the two-dimensional sheet of mots whose
purpose is to achieve the above advantages for an artificial
agent. Each mot has a location in the map where it receives
its input and computes its output. While the mot framework
is quite general and allows a large number of possible instan-
tiations, the system underlying the methods discussed here
is exactly that described in detail by Ring et al. (2011b).

It is composed of a fixed number of SERL modules that
learn to combine their individually limited capacities to rep-
resent a complex policy. If there are more modules than nec-
essary, they redundantly represent large areas of behavior
space (thus increasing robustness). If in the more common
case there are too few modules, they spread out to cover the
most important areas best.

The learning rule encourages smoothness, and the map
becomes organized such that nearby mots compute similar
outputs to similar inputs. Unfortunately, however, this orga-
nization does not imply that the behaviors represented in a
region will be temporally cohesive, or that the input-output
pairs of any frequently occurring sequential behavior will
likely be represented within the same region, as seems to be
evidenced by the motor cortex (Graziano and Aflalo 2007;
Graziano 2009). Thus, the current paper introduces new
mechanisms to encourage temporally extended behaviors to
be represented in small, local regions of the map.

Formal Description
In the current system, each mot is implemented as a sin-
gle SERL module, extended with a coordinate on a two-
dimensional grid (Figure 1, left). Since neither SERL nor
the mot system are widely known, we repeat their formal
description here.

SERL is a multi-modular system for reinforcement learn-
ing (RL). In the standard RL framework (Sutton and Barto
1998), a learning agent interacts with a Markov decision pro-
cess (MDP) over a series of time steps t ∈ {0, 1, 2, ...}.
At each time step the agent takes an action at ∈ A from
its current state st ∈ S . As a result of the action the
agent transitions to a state st+1 ∈ S , and receives a re-
ward rt ∈ R. The dynamics underlying the environment
are described by the state-to-state transition probabilities
Pass′ = Pr{st+1=s

′ | st=s, at=a} and expected rewards
Rass′ = E{rt+1 | st=s, at=a, st+1=s

′}. The agent’s
decision-making process is described by a policy, π(s, a) =
Pr{at=a | st=s}, which the agent refines through re-
peated interaction with the environment so as to maximize
Q(s, a) = E{

∑∞
k=0 γ

krt+k+1 | st = s, at = a}, the total
future reward (discounted by γ ∈ [0, 1]) that it can expect to
receive by taking any action a in any state s and following
policy π thereafter.

SERL is an online, incremental, modular learning
method that autonomously delegates different parts of a
reinforcement-learning task to different modules, requiring
no intervention or prior knowledge. Each module i ∈M re-
ceives as input an observed feature vector o ∈ O, which
uniquely identifies the state. Every module contains two
components: a controller function,

f c,i : O → R|A|,

which generates a vector of action-value estimates; and an
expertise estimator (also called “predictor function”),

fp,i : O → R|A|,

which generates a vector of predicted action-value errors. At
every time step, each module produces values based on the

current observation vector, ot :

qit = f c,i(ot)

pit = fp,i(ot)

These are combined for each module to create an |M|× |A|
matrix Lt of lower confidence values such that

Lit = qit − |pit|,
where Lit is the ith row of Lt.

At every time step there is a winning module,wt, which is
generally one whose highest L value matches L∗t , the high-
est value in Lt. But this rule is modified in an ε-greedy fash-
ion (Sutton and Barto 1998) to allow occasional random se-
lection of winners, based on a random value, xt ∼ U(0, 1):

Wt = {i ∈M : max
a

Liat = L∗t }

Pr{wt = i | Lt} =

1
|M | if xt < εM
1
|Wt| if xt ≥ εM and i ∈Wt

0 otherwise,

where Liat is the value for action a in Lit. Once a winner
is chosen, SERL calculates an ε-greedy policy based on the
winner’s L values: Lwt

t , using a potentially different con-
stant, εA.

Learning. The function approximators for both con-
trollers and expertise estimators are updated with targets
generated by TD-learning (Sutton 1988). Each mot is a sin-
gle SERL module assigned a coordinate in an evenly spaced,
two-dimensional grid. Whereas in SERL, only the winner’s
controller is updated, the mot system updates the controllers
for a set of mots w+

t that surround the winner in the Motmap
within a given radius.

The controllers are updated using Q-learning (Watkins
1989); thus for each i ∈ w+

t the target for qiatt (the com-
ponent of qit corresponding to action at) is rt + γL∗t+1.

Every module’s expertise estimator is updated at every
step; its target is the magnitude of the controller’s TD error:

δit = rt + γL∗t+1 − qiatt ,∀i ∈M.

Modules differentiate themselves due to random initial
weights. Since no module can solve the entire task alone,
each develops expertise within a niche of the task space.

Temporal Coherence
The Motmap self-organizes such that each mot’s policy
mapping is more similar to its neighbors’ than to mots far-
ther away. However, the policies themselves are not neces-
sarily temporally coherent: in the general case, if a mot has
high expertise in a given state, it may not have high exper-
tise in any of the immediately subsequent states. Conversely,
for a learned global policy in which one state frequently
or always follows immediately after another, there is no in-
creased probability that the regions of greatest expertise for
the two states are nearby each other. Indeed, the individual
state-action mappings of extended behavior sequences are
distributed arbitrarily throughout the Motmap. Thus, it can-
not be argued that extended behaviors are represented within

Figure 1: Left: A Motmap of 100 mots laid out in a two-
dimensional grid. The red mots depict a learning update: the
controllers and predictors of all mots within a certain radius
around the winning mot are updated. For the other mots,
only the predictors are updated. Right: Smoothly varying
expertise levels (darker corresponds to greater expertise)
across the motmap, on nine random observations. Both fig-
ures adapted from Ring, et al. (2011b).

local regions, as seems to be the case in the motor cortex. A
temporally coherent organization, however, would be advan-
tageous in the following ways:

Motor Vocabulary. Extended behaviors, such as pick-
ing up a glass, crawling or walking, brushing teeth, etc.,
are generally composed of smaller behaviors that are them-
selves useful, such as reaching the hand to a specific
location, swinging a leg forward, grasping and holding,
etc.—meaningful behaviors, that recur in a variety of sit-
uations for a variety of purposes. One of the goals of the
mot framework is to learn such behaviors, to isolate them,
and organize them for reuse. An important hypothesis of the
system is that it is particularly beneficial to build up a vocab-
ulary of small, useful motor behaviors that can be combined
dynamically—much as words are combined to form desired
meanings. Thus, it would be beneficial if each extended be-
havior could be located, learned, and accessed within a local
region of the map.

Larger-scale smoothness. The Motmap encourages
small-scale smoothness for individual observations: Exper-
tise is usually concentrated somewhere in the map, gradu-
ally dropping off as distance from the center increases (see
Figure 1, right). However, if two observations always occur
in succession, their centers of expertise are no more likely
to be near each other than if they never occur in succes-
sion. Larger-scale smoothness could be achieved if entire
extended behaviors represented in one region were similar
to extended behaviors represented by its neighbors.

Behavior-based hierarchy. One property expected from
the Motmap (not yet demonstrated in publication) is the au-
tonomous formation of hierarchies, in which smaller subre-
gions represent more refined behaviors than the larger re-
gions they make up. Without temporal coherence, these hi-
erarchies are small scale: formed with respect to isolated ob-
servations only. Temporal coherence encourages the larger-
scale correlate, where ever smaller regions represent ever
more specific, more refined, extended behaviors.

Increased robustness. In the case of environmental
noise, locality of behavior provides additional information
for increasing robustness. If the agent preferentially chooses
winners near the previous winner, it is more likely to remain
within the region of state space appropriate to the current
behavior.

Autonomous discovery of behavior. Perhaps the most
tantalizing goal of temporal coherence is the automatic dis-
covery of useful behaviors—the words of the motor vocab-
ulary. We hypothesize that the continual learning of motor
skills is not so much stringing together small motor skills
into larger ones, but finding an ever more refined set of use-
ful skills. That is to say, it is more about subtlety than se-
quencing.

But how can a good vocabulary of behaviors be discov-
ered? How can we, as Plato (and many since) asked, “carve
nature at its joints”—or in our case, carve an agent’s be-
havior space at its joints? While we do not propose to have
solved this long-standing problem, an important part of the
answer may be for these motor words to form around the
places where decisions must be made, drawing inspiration
from Dawkins (Dawkins 1976).

Dawkins proposed a method for describing sequences hi-
erarchically by focusing on decision points: the places where
successors are less clearly determined by their predecessors.
For example, in the sequence “AbcXyzAbcAbcXyzXyz”,
whenever A occurs, “bc” always follows; whenever X oc-
curs, “yz” always follows. But there are no such deter-
ministic successors for “c” or “z”; these are the decision
points that suggest the boundaries between subsequences.
The joints of behavior space are places where decisions must
be made, where it is less obvious to the agent which action
should occur next; i.e., where the entropy of the policy is
highest. These are clues that a coherent behavior has ended
and a new one can begin.

As adults we engage in an endless variety of short-term
behaviors: we point, reach, touch, grasp, pick things up
(each thing in its own way); we localize with our heads
and eyes; we make gestures; we form a constant variety of
precise tongue and mouth positions to speak, body postures
and leg movements to get from place to place, and on and
on. Our range of short-term behaviors is considerable. We
choose each in context, combining them to achieve our de-
sires of the moment.

But how can these meaningful components emerge
through learning? Our approach is to encourage similar or
temporally contiguous responses (state-action pairs) to be
stored nearby each other.

The planning, choosing, learning loop. We hypothe-
size the following scenario for early learning. When it is not
obvious what to do next, short behavior sequences are cho-
sen through planning: the agent finds actions to exploit the
regularities in its immediate environment (and due to these
regularities, the agent frequently produces similar plans). It
then acts on them and must plan again. Boundaries emerge
automatically as a result of planning, decision making, and
the statistical regularities of the environment.

Implementation and Testing
To encourage the mots to represent temporally contiguous
portions of the global policy, we introduce, test, and com-
pare six new update mechanisms. In all cases, the expertise
estimators are updated as above; only the controller updates
are modified here.
• Method W−t: at time t all controllers in w+

t−1 ∪ w
+
t are

updated using rt−1 + γL∗t as the target. This means that
if two mots tend to be temporal neighbors, they will often
get trained on the same data, until one of them dominates
on both.

• Method W−t+: same as Method W−t, but the controllers
in w+

t+1 are also updated, making the method symmetric
with respect to the past and future. (This method of course
necessitates keeping the target until t+ 1.)

• Method W t+: same as Method W−t+, but the controllers
in w+

t−1 are not updated.
The remaining three mechanisms are more aggressive vari-
ants of the above: W t+

2α , W−t+2α , and W−t2α , in which the
learning rate for the controllers in w+

t−1 and/or w+
t+1 is twice

that for w+
t . The intuition here is to force the temporally ad-

jacent winners to assume some of the expertise from w+
t .

Benchmark task. The video game Dance Central pro-
vides a useful illustration of the planning, choosing, and
learning loop. In the game, the screen shows a picture repre-
senting which dance move the player should perform next.
The player, whose actions are analyzed by computer as part
of the KinectTM gaming system, receives points for perform-
ing the sequence correctly. The game then displays a differ-
ent movement sequence from a fixed library, and the process
continues until the song is over. The player thus learns a
broad range of different motor-control behaviors, each hav-
ing sequential contiguity, punctuated by decision points in
which new plans and decisions are made.

We model the game as an MDP, where each of D dance
sequences is represented as a chain of N states: the starting
state is at one end of the chain and the final state is at the
other. In each state of the chain, the agent can choose one of
A actions; a single “correct” action advances it to the next
state in the chain, while all other actions take the agent back
to the previous state. When the agent reaches the end state
of a chain (which corresponds to successfully producing the
dance sequence), it receives a reward of 1.0 and is placed
at the starting state of a randomly chosen chain. (All other
state transitions return a reward of zero.) The agent’s obser-
vation in each state is a feature vector comprising two con-
catenated, binary unit subvectors: the first subvector iden-
tifies the task, while the second identifies the current step
within the task. (Each subvector has a 1 in a single position,
all other positions are 0.) This abstract representation cap-
tures at a high level the agent’s overall goal of mapping a
target dance sequence and a current progress indicator to a
discrete action.

Before training begins, the actions that take the agent to
the next state are assigned randomly, independently and uni-
formly. Therefore, the agent cannot deduce the correct ac-
tion based on regularities in the inputs. For each behavior

the agent must learn to produce a string of actions that are
temporally coherent, but once the behavior is finished, a new
one is selected at random. This scenario allows us to test the
mechanisms proposed above for their ability to capture the
temporal coherence of the learned behaviors and to assign
them to nearby locations of the Motmap.

We examined games of different sizes, varying the num-
ber of dance sequences (D), their length (N), and the number
of possible actions (A).

Measures of coherence. For the comparisons we used
two measures of temporal coherence: (P) the probability of
switching to a mot outside the current winner’s local neigh-
borhood, and (H) the entropy of a sequence of mot winners.
For measure (P), we compared two values: (Ps) the probabil-
ity of a switch during the sequence, and (Pe) the probability
of a switch at the end of the sequence (when a new dance
sequence is chosen); thus,

Ps =
1

D(N − 1)
·
D∑
d=1

N−1∑
n=1

{
0 if adjacent(wd,n, wd,n+1)

1 otherwise,

Pe =
1

D(D − 1)
·
D∑
d=1

D∑
d′ 6=d

{
0 if adjacent(wd,N , wd′,1)

1 otherwise,

where adjacent(x, y) is true if mot x is immediately above,
below, left or right of mot y on the Motmap, and wd,n is the
winning mot when the agent’s input is the observation from
the nth step in dance sequence d.

For measure H, we define the entropy of a sequence as :

H(s) = −
M∑
i

psi logM psi ,

where M is the number of mots, and psi is the fraction of
states in sequence s in which mot i is the winner. (If a single
mot is the winner for every state in the sequence, the en-
tropy is zero.) Then we compare Hd (the average entropy of
those dance sequences to be learned) with Hr (the expected
entropy of a random dance sequence):

Hd =
1

D

D∑
d=1

H(sd)

Hr = E [H(sr)] ,

where sd is the dth dance sequence to be learned, and sr
is a randomly generated sequence where for step i of the
sequence, each observation is drawn uniformly from the ith
step of all D sequences. The expectation in Hr is approxi-
mated by averaging over 100 such sequences.

Results
Results are shown in Figure 2 for two variants of the mot
system: (1) with update radius 1 (corresponding to one
neighbor of the winner in each cardinal direction), denoted
as the ‘Motmap’ scenario; and (2) with update radius 0 (no
neighbors), denoted as the ‘SERL’ scenario. (There is no
spatial organization in the latter scenario, where we study

purely the dynamics of the temporal coherence.) In each
case we test the six new update mechanisms from the last
section on the same task. The task uses 16 dance sequences
(D = 16), each dance sequence representing a behavior of
length 4 (N = 4), with 10 actions possible in each state
(A = 10). The results of all 14 variants are shown. Figure 3
then shows the results of the best method on three different
task settings.

The parameter values were: αc = 0.005 (learning rate for
controllers), αe = 0.05 (learning rate for expertise estima-
tors), εA = 0.02 (exploration on actions), εM = 0.5 (explo-
ration on mots), γ = 0.95 (reward discount), and M = 100
(number of mots).

Discussion
The results demonstrate temporal coherence emerging from
several of the methods tested, visible both through the low
entropy and the low switching probability within a sequence,
in comparison to the relatively high entropy of the random
sequence and the relatively high switching probability be-
tween different sequences. This shows two things. First, be-
havior sequences are coalescing within local regions of the
map. Second, the boundaries of the behaviors are being dis-
cerned and captured as an emergent property of the system;
i.e.,the mots are learning to carve the agent’s behavior at its
joints.

Interestingly, it seems that temporal coherence can be
achieved without harming task performance—compare the
black curves from the top row in Figure 2 to the rows below.
Thus, all the benefits of temporal (and spatial) organization
outlined above can be achieved nearly for free.

The shape of the two probability curves Ps and Pe
depends on the update method used. Without an explicit
method for encouraging temporal coherence (top row), these
curves are essentially the same. Thus, the probability of
switching to a mot outside the current winner’s local neigh-
borhood is not lower during the course of a dance sequence
than when changing to a new sequence. In contrast, all the
temporal-coherence methods successfully reduce Ps (intra-
sequence switching) and Hd (intra-sequence entropy) with-
out drastically reducing Pe (inter-sequence switching) nor
Hr (random-sequence entropy). In both the Motmap and
SERL case, W t+

2α has the greatest impact.
In each graph a phase transition can be seen in which a

sudden reduction in Ps and Hd coincide with an increase in
the number of correct action choices. Before learning the se-
quence well, the agent generally takes many actions to reach
the end; thus it repeatedly experiences the same small set of
observations, and the updates are applied consistently to a
small number of winning mots. However, once the agent has
learned the sequence, it spends less time within sequences
and relatively more time at the ends of sequences, where it is
exposed to a broader range of mot winners at the following
step. The agent then applies relatively more updates to the
winners dedicated to one sequence with values from the fol-
lowing (unrelated) sequence, which may explain the gradual
loss in coherence visible in some graphs after a good policy
is learned. Keeping high values of ε helps to avert the loss
by guaranteeing more intra-sequence updates even after the

SERL Motmap

ba
se

W
 –t

W
 –t

+
W

 t +
W

 –t 2α
W

 –t
+

2α
W

 t + 2α

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0
0 500k 1M

1.0

0.5

0.0
0 500k 1M

Figure 2: Average performance curves (10 trials) for one mil-
lion update steps (horizontal axis), with 14 different settings. Left
column is the SERL scenario, right column the motmap scenario.
Baseline performance (having no temporal update mechanism) is
shown in the first row, one mechanism for each of the next six rows.
For each graph: vertical axis is 0 to 1; black shows the percentage
of actions the agent chooses correctly; red shows Ps (see text), to
compare to its reference value Pe (purple); and dark blue measures
Hd (reference value is the light-blue line, Hr).

SERL Motmap
D

 =
 1

6,
 A

 =
 1

0
D

 =
 8

, A
 =

 1
0

D
 =

 1
6,

 A
 =

 4

0 500k 1M 0 500k 1M

Figure 3: Results using the best mechanism found (W t+
2α), but now

across three different tasks, where N = 4 in all cases and the first
row coincides with the default task from before. See Figure 2 for
plot details.

optimal policy has been learned (thus the high value we use
for εM , the probability of switching to a random mot).

In addition to the six update mechanisms presented here,
we tried numerous others that were less successful, in-
cluding: (a) sharing eligibility traces Q(λ) among spatio-
temporal neighbors; (b) giving preference to the previous
winner(s), boosting their probability of being chosen again.

The goal of carving behavior at its joints is not new
in AI or RL. A different method proposed for segmenting
RL policies into meaningful chunks is to find bottleneck
states (“doorways”) through which many possible paths can
pass (Mcgovern and Barto 2001). These methods bear a cer-
tain resemblance to the current method, in that doorways are
also likely to be states of higher entropy.

Conclusions
The temporal and spatial organization of behavior is of great
potential benefit for continual-learning agents, promoting
increased robustness, hierarchical learning, and the naviga-
tion and search of learned behaviors. Building upon our ear-
lier work, which had introduced mechanisms for the spatial
organization of behavior in a two-dimensional “Motmap,”
the current paper introduced six related, novel update mech-
anisms for achieving temporal coherence in SERL and the
Motmap. In each case, this coherence is achieved as an
emergent property of the update rule.

The new mechanisms can segment behavior into cohesive
chunks, representing each chunk within individual modules
of a SERL system or within local neighborhoods of the two-
dimensional Motmap. Both results were demonstrated using

a variable set of sequential tasks patterned after the game
Dance Central. The latter result, a topological map organized
in both space and time, is an important step towards an agent
that maintains a library of useful motor behaviors—ordered,
accessible, and extensible according to their similarities. We
posit that this organization will be critical for a continual-
learning agent that is constantly expanding the sophistica-
tion of its behavior.

Acknowledgments
Funded in part through EU project IM-Clever (231722) and
through AFR postdoc grant number 2915104, of the Na-
tional Research Fund Luxembourg. We thank the anony-
mous reviewers for their thoughtful comments.

References
Dawkins, R. 1976. Hierarchical organisation: a candidate
principle for ethology. In Bateson, P. P. G., and Hinde, R. A.,
eds., Growing Points in Ethology, 7–54. Cambridge: Cam-
bridge University Press.
Graziano, M. S. A., and Aflalo, T. N. 2007. Rethinking corti-
cal organization: moving away from discrete areas arranged
in hierarchies. Neuroscientist 13(2):138–47.
Graziano, M. 2009. The Intelligent Movement Machine:
An Ethological Perspective on the Primate Motor System.
Oxford University Press.
Kohonen, T. 1988. Self-Organization and Associative Mem-
ory. Springer, second edition.
Mcgovern, A., and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
In In Proceedings of the eighteenth international conference
on machine learning, 361–368. Morgan Kaufmann.
Ring, M., and Schaul, T. 2011. Q-error as a Selection Mech-
anism in Modular Reinforcement-Learning Systems. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI). To appear.
Ring, M., and Schaul, T. 2012. The organization of behavior
into temporal and spatial neighborhoods. In Development
and Learning and Epigenetic Robotics (ICDL), 2012 IEEE
International Conference on, 1–6.
Ring, M. B.; Schaul, T.; and Schmidhuber, J. 2011. The
Two-Dimensional Organization of Behavior. In First Joint
IEEE International Conference on Developmental Learning
and Epigenetic Robotics.
Ring, M. B. 1994. Continual Learning in Reinforcement
Environments. Ph.D. Dissertation, University of Texas at
Austin, Austin, Texas 78712.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3:9–44.
Watkins, C. J. C. H. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation, King’s College.

