
The Organization of Behavior into Temporal and
Spatial Neighborhoods

Mark Ring
IDSIA / University of Lugano / SUPSI

Galleria 1
6928 Manno-Lugano, Switzerland

Email: mark@idsia.ch

Tom Schaul
Courant Institute of Mathematical Sciences

New York University
715, Broadway, New York, NY 10003

Email: schaul@cims.nyu.edu

Abstract—The mot1 framework [1] is a system for learn-
ing behaviors while organizing them across a two-dimensional,
topological map such that similar behaviors are represented in
nearby regions of the map. The current paper introduces temporal
coherence into the framework, whereby temporally extended
behaviors are more likely to be represented within a small, local
region of the map. In previous work, the regions of the map
represented arbitrary parts of a single global policy. This paper
introduces and examines several different methods for achieving
temporal coherence, each applying updates to the map using both
spatial and temporal neighborhoods, thus encouraging parts of
the policy that commonly occur together in time to reside within
a common region. These methods are analyzed experimentally
in a setting modeled after a human behavior-switching game, in
which players are rewarded for producing a series of short but
specific behavior sequences. The new methods achieve varying
degrees—in some cases high degrees—of temporal coherence.
An important byproduct of these methods is the automatic
decomposition of behavior sequences into cohesive groupings,
each represented individually in local regions.

I. BACKGROUND

The mot framework [1] is a system for continual learning [2]
in which behaviors are organized into a two-dimensional
map according to their similarity.2 This organization was
conjectured to convey many useful properties to the learning
agent—properties such as robustness, non-catastrophic forget-
ting, and intelligent resource allocation. One method shown
for achieving such a map in practice was by laying out
reinforcement-learning modules (SERL modules [3]) in a two-
dimensional grid and then updating these modules in local
spatial neighborhoods, much like the nodes of self-organizing
maps (SOMs) are updated in local spatial neighborhoods [4].
As a result, the maps show spatial smoothness, the property
underlying most of the advantages conjectured. Our goal
in the current paper is to achieve temporal smoothness as
well, such that temporally extended, coherent behaviors tend
to be represented in small, local regions of the map. The
methods presented here for achieving temporal smoothness

1Pronounced “mōt” or “moUt”, like moat or mote, rhyming with “boat” as
in “motor boat”.

2“Continual learning” refers to the constant and incremental acquisition of
new behaviors built on previously acquired behaviors, where each behavior
is learned through interaction with an environment that can provide positive
and negative rewards.

apply updates not just to local spatial neighborhoods but to
local temporal neighborhoods as well.

The mot framework was inspired by recent evidence in
neuroscience that the motor cortex may be laid out as a topo-
logical map organized according to behavior, where similar
behaviors occur close together and very different behaviors
lie far apart [5], [6]. As described by Ring et al. (2011b),
this organization in and of itself conveys many surprising
advantages, including: smoothness (the closer two regions
are, the more likely they are to represent similar behav-
iors, thus providing a gradient in behavior space); robustness
(should a failure occur, nearby regions can provide similar
behavior, and learning can be done simultaneously across
entire regions); hierarchical organization (large regions tend
to represent generic behaviors, smaller regions represent more
specific behaviors); safe dimensionality reduction (only those
sensorimotor connections needed by a region are delivered
there, but all connections remain accessible somewhere in
the map); intelligent use and reuse of resources (obsolete
behaviors can be replaced by similar ones, and new behaviors
can be learned in those regions already representing the most
similar behaviors); state aggregation by policy similarity (the
position in the map of the currently active behavior provides
a compact representation of state); continual learning and
graceful degradation (regions can compete to best cover the
useful behavior space).

The Motmap is the two-dimensional sheet of mots whose
purpose is to achieve the above advantages for an artificial
agent. Each mot has a location in the map where it receives
its input and computes its output. While the mot framework
is quite general and allows a large number of possible in-
stantiations, the system underlying the methods discussed here
is exactly that described in detail by Ring et al. (2011b). It
is composed of a fixed number of SERL modules that learn
to combine their individually limited capacities to represent
a complex policy. If there are more modules than necessary,
they redundantly represent large areas of behavior space (thus
increasing robustness). If there are too few modules (the more
common case), they spread out to cover the most important
areas best.

The learning rule encourages smoothness, and the map
becomes organized such that nearby mots compute similar

outputs to similar inputs; however, this organization does not
imply that the behaviors represented in a region will be tempo-
rally cohesive, or that the input-output pairs of any frequently
occurring sequential behavior will likely be represented within
the same region, as seems to be evidenced by the motor
cortex [5], [6]. Thus, the current paper addresses this issue by
introducing mechanisms that encourage temporally extended
behaviors to be represented in small, local regions of the map.

II. FORMAL DESCRIPTION

In the current system, each mot is implemented as a
single SERL module, extended with a coordinate on a two-
dimensional grid (Figure 1, left). Since neither SERL nor
the mot system are widely known, we repeat their formal
description here.

SERL is best understood as a multi-modular system for
reinforcement learning (RL) based in the standard RL frame-
work [7], in which a learning agent interacts with a Markov
decision process (MDP) over a series of time steps t ∈
{0, 1, 2, ...}. At each time step the agent takes an action
at ∈ A from its current state st ∈ S . As a result of
the action the agent transitions to a state st+1 ∈ S , and
receives a reward rt ∈ R. The dynamics underlying the
environment are described by the state-to-state transition prob-
abilities Pass′ = Pr{st+1=s

′ | st=s, at=a} and expected
rewards Rass′ = E{rt+1 | st=s, at=a, st+1=s

′}. The
agent’s decision-making process is described by a policy,
π(s, a) = Pr{at=a | st=s}, which the agent refines through
repeated interaction with the environment so as to maximize
Q(s, a) = E{

∑∞
k=0 γ

krt+k+1 | st = s, at = a}, the total
future reward (discounted by γ ∈ [0, 1]) that it can expect to
receive by taking any action a in any state s and following
policy π thereafter.

SERL is an online, incremental, modular learning method
that autonomously assigns different parts of a reinforcement-
learning task to different modules, requiring no intervention
or prior knowledge.

SERL consists of a set of modules, M. Each receives as
input an observed feature vector o ∈ O, which uniquely iden-
tifies the state. Each module i ∈M contains two components:
a controller function,

f c,i : O → R|A|,

which generates a vector of action-value estimates; and an
expertise estimator (also called “predictor function”),

fp,i : O → R|A|,

which generates a vector of predicted action-value errors. At
every time step, each module produces values based on the
current observation vector, ot :

qit = f c,i(ot)

pit = fp,i(ot)

These are combined for each module to create an |M| × |A|
matrix Lt of lower confidence values such that

Lit = qit − |pit|,

where Lit is the ith row of Lt.
At every time step there is a winning module, wt, which is

generally one whose highest L value matches L∗t , the highest
value in Lt. But this rule is modified in an ε-greedy fashion [7]
to allow occasional random selection of winners, based on a
random value, xt ∼ U(0, 1):

Wt = {i ∈M : max
a

Liat = L∗t }

Pr{wt = i | Lt} =


1
|M | if xt < εM
1
|Wt| if xt ≥ εM and i ∈Wt

0 otherwise,

where Liat is the value for action a in Lit. Once a winner
is chosen, SERL calculates an ε-greedy policy based on the
winner’s L values: Lwt

t , using a potentially different constant,
εA.

Learning. The function approximators for both controllers
and expertise estimators are updated with targets generated by
TD-learning [8]. Unlike simple SERL modules, in addition
to the controller and expertise estimator, each mot is as-
signed a coordinate in an evenly spaced, two-dimensional grid.
Whereas in SERL, only the winner’s controller is updated, the
mot system updates the controllers for a set of mots w+

t that
surround the winner in the Motmap within a given radius.

The controllers are updated using Q-learning [9]; thus for
each i ∈ w+

t the target for qiatt (the component of qit
corresponding to action at) is rt + γL∗t+1.

All the expertise estimators are updated at every step, and
their target is the magnitude of the mot’s TD error:

δit = rt + γL∗t+1 − qiatt .

III. TEMPORAL COHERENCE

The method just outlined does result in a Motmap where
similar policies are organized nearby each other and where
the mapping represented by each mot is more similar to its
neighbors than to mots farther away. However, the policies
themselves are not necessarily temporally coherent: in the
general case, if a mot has high expertise in a given state, it may
not have high expertise in any of the immediately subsequent
states. Conversely, for a learned global policy in which one
state frequently or always follows immediately after another,
there is no increased probability that the regions of greatest
expertise for the two states are nearby each other. Indeed,
the individual state-action mappings of extended behavior
sequences are distributed arbitrarily throughout the Motmap.
Thus, it cannot be argued with the above rules that extended
behaviors are represented within local regions, as seems to
be the case in the motor cortex. A temporally coherent
organization, however, would be advantageous in all of the
following ways:

Motor Vocabulary. When we learn extended coordinated
behaviors, such as picking up a glass, crawling or walking,
brushing our teeth, etc., these activities are generally composed
of smaller behaviors that are themselves useful, such as reach-
ing the hand to a specific location, swinging a leg forward,

Fig. 1. Left: A Motmap of 100 mots laid out in a two-dimensional grid. The
red mots depict a learning update: the controllers and predictors of all mots
within a certain radius around the winning mot are updated. For the other
mots, only the predictors are updated. Right: Smoothly varying expertise
levels (darker corresponds to greater expertise) across the motmap, on nine
random observations. Both figures adapted from Ring, et al. (2011b).

grasping and holding, etc.—meaningful behaviors, that recur
in a variety of situations for a variety of purposes. One of
the goals of the mot framework is to learn such behaviors,
to isolate them, and organize them for reuse. One of the
hypotheses of the system is that it is particularly beneficial
to build up a vocabulary of small, useful motor behaviors that
can be strung together on the fly, much as words are strung
together as circumstances demand to form desired meanings.
Thus, it would be beneficial if there were a specific region of
the map where each entire extended behavior could be located,
learned, and accessed.

Larger-scale smoothness. The Motmap described for-
mally in Section II encourages the development of small-
scale smoothness: for each individual observation, expertise
in the Motmap generally varies smoothly. There is usually
a center of expertise somewhere in the map with expertise
gradually dropping off as distance from the center increases
(see Figure 1, right). However, if two observations always
occur in succession, their centers of expertise are no more
likely to be near each other than if they never occur in suc-
cession. Larger-scale smoothness could be achieved if entire
extended behaviors represented in one region were similar to
extended behaviors represented by its neighbors. If the map
were organized in this way, then taking small steps between
neighboring regions would correspond to navigating through
a smooth space of full, extended behaviors.

Behavior-based hierarchy. One of the most attractive
potential properties expected from the Motmap (which is, how-
ever, yet to be demonstrated in publication) is the autonomous
formation of hierarchies, in which smaller subregions represent
more refined behaviors than the larger regions they make up.
Without temporal coherence, these hierarchies are small scale:
formed with respect to isolated observation-action mappings
only. Temporal coherence encourages the larger-scale corre-
late, where larger regions represent coarse versions of extended
behaviors, and smaller regions represent more specific, more
refined, extended behaviors.

Increased robustness. In the case of environmental noise,
locality of behavior provides additional information to be
exploited for increased robustness. If the agent preferentially

chooses winners near the previous winner, it is more likely
to remain within the region of state space appropriate to the
current behavior.

Autonomous discovery of behavior. Perhaps the most im-
portant goal of the temporal-coherence mechanisms described
above is the possibility of automatically and autonomously
discovering useful units of behavior—the words of the motor
vocabulary described above. We hypothesize that the continual
learning of motor skills is not so much a matter of stringing
together small motor skills into larger ones, but a matter of
finding an ever more refined set of useful skills. That is to say,
it is more about subtlety than sequencing.

The question obviously arises, then, how can useful skills be
discovered? How can a good vocabulary of behaviors be found
that can be put together in useful ways? In other words, how
can we, as Plato said, “carve nature at its joints” [10], or in
this case, carve an agent’s behavior space at its joints? While
we do not propose to have solved this long-standing problem,
we believe that an important part of the answer is to allow
these motor words to form around the places where decisions
must be made, drawing inspiration from Dawkins [11].

Dawkins proposed a method for describing sequences hi-
erarchically by focusing on the decision points within the
sequences, the places where successors are less clearly de-
termined by their predecessors. For example, in the sequence
“AbcXyzAbcAbcXyzXyz”, whenever A occurs, “bc” always
follows; whenever X occurs, “yz” always follows. But there
are no such deterministic successors for “c” or “z”; these
are the decision points that suggest the boundaries between
subsequences. The joints of behavior space are the places
where decisions must be made, the places where it is less
obvious to the agent which action should occur next, in other
words, the states where the entropy of the policy is highest.
These are the clues that a coherent behavior has ended and a
new one should begin.

As adults, during our daily lives we are constantly engaging
in an enormous variety of different short-term behaviors: we
reach for things, touch things, grasp things, pick things up
(each different thing in a slightly different way), point at
things; we move our heads and eyes to locate and watch
things; make hand gestures and facial gestures; we form an
enormous variety of exact tongue and mouth positions when
we communicate, and body-posture and leg movements to get
from place to place; we scratch; we rub; we pick and preen;
and on and on. The range of short-term behaviors we have to
call from is considerable. We choose each of these in context,
stringing them together to achieve our desires of the moment.

But how do we learn to divide our overall behavior into
meaningful components? Our approach is to encourage indi-
vidual responses (state-action pairs) to be stored in the same
location as other responses depending on both their similarity
and their temporal contiguity. As a consequence of this update
rule, we anticipate that strings of responses occurring together
frequently will be stored in nearby locations of the map.

We imagine that in early learning, small behaviors (small
sequences of responses) are formed by a planning process

in which the agent chooses actions to exploit the regularities
within its immediate environment. Due to the presence of these
environmental regularities, the agent will frequently produce
similar or identical plans, followed by moments of decision
making in which a new plan is formed that may or may not
be related to the previous behavior sequence. Thus, boundaries
emerge automatically as a result of planning, decision making,
and the statistical regularities of the environment.

IV. IMPLEMENTATION AND TESTING

To encourage the mots to represent temporally contiguous
portions of the global policy, we introduce, test, and compare
several new possible update mechanisms. In all cases, the
expertise estimators are updated as above; only the controller
updates are modified here.
• Method W t,t+1: at time t all controllers in w+

t−1∪w
+
t are

updated using rt−1+γL∗t as the target. This means that if
two mots tend to be temporal neighbors, they will often
get trained on the same data, until one of them dominates
on both.

• Method W t−1,t,t+1: same as Method W t,t+1, but the
controllers in w+

t+1 are also updated, making the method
symmetric with respect to the past and future. (This
method of course necessitates keeping the target until
t+ 1.)

• Method W t−1,t: same as Method W t−1,t,t+1, but the
controllers in w+

t−1 are not updated.
In addition to these are three more aggressive variants
(W t,t+1

2α, W t−1,t,t+1
2α, and W t−1,t

2α) that double the
learning rate on those controllers not in w+

t . The intuition
here is that the temporally adjacent winning mots will thereby
be forced to assume some of the current winners’ expertise.

Benchmark task.. The video game Dance Central provides
a useful illustration of the process of planning, choosing,
and ultimately learning short-term behaviors. In the game,
the screen shows a picture representing which dance move
the player should perform next. The player, whose actions
are analyzed by computer as part of the KinectTM gaming
system, receives points for performing the sequence correctly.
The game then displays a different movement sequence from
a fixed library of such sequences, and the process continues
until the song is over. The player thus learns a broad range
of different motor-control behaviors, each having sequential
contiguity, punctuated by decision points in which new plans
and decisions are made.

For training purposes, we model the game as an MDP,
where each of D dance sequences is represented as a chain
of N states: the starting state is at one end of the chain and
the final state is at the other. In each state of the chain, the
agent can choose from a variety of actions; a single “correct”
action advances it to the next state of the chain, while all
other actions take the agent back to the previous state. When
the agent reaches the end state of a chain (which corresponds
to successfully producing the dance sequence), it receives a
reward of 1.0 and is placed at the starting state of a randomly

chosen chain. (All other state transitions return a reward of
zero.) The agent’s observation in each state is a feature vector
comprising two concatenated, binary unit subvectors: the first
subvector identifies the task, while the second identifies the
current step within the task. (Each subvector has a 1 in a single
position, all other positions are 0.) This abstract representation
captures at a high level the agent’s overall goal of mapping a
target dance move and a current progress indicator to a discrete
action.

Before training begins, the actions that take the agent to the
next state are assigned randomly, independently and uniformly.
Generalization is therefore impossible, and the agent cannot
choose the correct action based on the regularities in the inputs.
Thus, for each behavior the agent should learn to produce a
string of actions that are temporally coherent, but once the
behavior is finished, a new one is selected at random. This
scenario allows us to test the mechanisms proposed above
for their ability to capture the temporal coherence of the
learned behaviors and to assign them to nearby locations of
the Motmap.

We examined games of different sizes, varying the number
of dance sequences (behaviors or tasks), their length, and the
number of possible actions that are available to the agent at
every step.

Measures of coherence.. To compare the methods de-
scribed above, we use two measures of temporal coherence:
(P) the probability of switching to a mot outside the current
winner’s local neighborhood, and (H) the entropy of a se-
quence of mot winners. For measure (P), we compare two
values: (Ps) the probability of a switch during the sequence,
and (Pe) the probability of a switch at the end of the sequence
(when a new dance sequence is chosen); thus,

Ps =
1

D(N − 1)
·
D∑
d=1

N−1∑
n=1

{
0 if adjacent(wd,n, wd,n+1)

1 otherwise,

Pe =
1

D(D − 1)
·
D∑
d=1

D∑
d′ 6=d

{
0 if adjacent(wd,N , wd′,1)

1 otherwise,

where adjacent(x, y) is true if mot x is immediately above,
below, left or right of mot y on the Motmap, and wd,n is the
winning mot when the agent’s input is the observation from
the nth step in dance sequence d.

For measure H, we define the entropy of a sequence as :

H(s) =

M∑
i

psi logM psi ,

where M is the number of mots, and psi is the fraction of
states in sequence s in which mot i is the winner. (If a single
mot is the winner for every state in the sequence, its entropy
is zero.) Then we compare Hd (the average entropy of those
dance sequences to be learned) with Hr (the expected entropy

of a random dance sequence):

Hd =
1

D

D∑
d=1

H(sd)

Hr = E [H(sr)] ,

where sd is the dth dance sequence to be learned, and sr
is a randomly generated sequence where for step i of the
sequence, each observation is drawn uniformly from the ith

step of all D sequences to be learned. The expectation in Hr

is approximated by averaging over 100 such sequences.

V. RESULTS

We use the following parameter settings: αc = 0.005
(learning rate for controllers), αe = 0.05 (learning rate for
expertise estimators), εA = 0.02 (exploration on actions),
εM = 0.5 (exploration on mots), γ = 0.95 (reward discount),
and M = 100 (number of mots).

Figure 2 displays results for two variants of the mot system:
(1) with update radius 1 (corresponding to one neighbor of the
winner in each cardinal direction), denoted as the ‘Motmap’
scenario; and (2) with update radius 0 (no neighbors), denoted
as the ‘SERL’ scenario. In the latter scenario, no spatial
organization is applicable, and we study purely the dynamics
of the temporal coherence. In each case we test the six update
mechanisms from section IV on the same task. The task
uses 16 dance sequences (D = 16), each dance sequence
representing a behavior of length 4 (N = 4), with 10 actions
possible in each state (|A| = 10). The results of all 14
variants are shown. Figure 3 then shows the results of the
best method on three different task settings to show how the
results generalize.

VI. DISCUSSION

The results demonstrate temporal coherence emerging from
several of the methods tested, visible both through the low
entropy and the low switching probability within a sequence,
in comparison to the relatively high entropy of the random
sequence and the relatively high switching probability between
different sequences. This shows two things. First, behavior
sequences are coalescing within local regions of the map.
Second, the boundaries of the behaviors are being discerned
and captured as an emergent property of the system; i.e.,the
mots are learning to carve the agent’s behavior at its joints.

Interestingly, it seems that temporal coherence can be
achieved without harming task performance—compare the
black curves from the top row in Figure 2 to the rows below.

The shape of the two probability curves Ps and Pe depends
on the update method used. Without an explicit method for
encouraging temporal coherence (top row), these curves are es-
sentially the same. Thus, the probability of switching to a mot
outside the current winner’s local neighborhood is no lower
during the course of a dance sequence than when changing to a
new sequence. In contrast, all the temporal-coherence methods
successfully reduce Ps (intra-sequence switching) and Hd

0 500k 1M 0 500k 1M

SERL Motmap

ba
se

T
T-
sy
m

T-
re
v

T+
T-
sy
m
+

T-
re
v+

Fig. 2. Average performance curves (over 10 trials) for a million update steps,
with 14 different settings. Left column is the SERL scenario, right column
the motmap scenario. The first row is the baseline performance (using none
of the temporal update mechanisms), and the following 6 rows contain one
mechanism variant each. In each graph, the black circles shows the percentage
of actions the agent has learned to choose correctly. The crosses measure the
switching probabilities: red ‘x’s measure Ps (see text), to compare to its
reference value Pe (purple ‘+’s). The dashed dark blue line measures Hd
(reference value is the dotted light blue line, Hr).

SERL Motmap
D

 =
 1

6,
 |A

| =
 1

0
D

 =
 8

, |
A|

 =
 1

0
D

 =
 1

6,
 |A

| =
 4

0 500k 1M 0 500k 1M

Fig. 3. Results using the best mechanism found (W t,t+1
2α), but now across

three different tasks, where N = 4 in all cases and the first row coincides
with the default task from before. See Figure 2 for plot details.

(intra-sequence entropy) without drastically reducing Pe (inter-
sequence switching) nor Hr (random-sequence entropy). In
both the Motmap and SERL case, W t,t+1

2α has the greatest
impact.

In each graph a phase transition can be seen in which a
sudden reduction in Ps and Hd coincide with an increase
in the number of correct action choices. Before learning the
sequence well, the agent generally takes many actions to reach
the end; thus it repeatedly experiences the same small set
of observations, and the updates are applied consistently to
a small number of winning mots. However, once the agent
has learned the sequence, it spends less time within sequences
and relatively more time at the ends of sequences, where it is
exposed to a broader range of mot winners at the following
step. The agent then applies relatively more updates to the
winners dedicated to one sequence with values from the
following (unrelated) sequence, which may explain the gradual
loss in coherence visible in some graphs after a good policy
is learned. Keeping high values of ε helps to avert the loss
by guaranteeing more intra-sequence updates even after the
optimal policy has been learned (thus the high value we use
for εM , the probability of switching to a random mot).

In addition to the temporal update mechanisms presented
here, we tried numerous other methods that were less suc-
cessful. For the reader interested in negative results, those
included: (a) sharing eligibility traces Q(λ) among spatio-
temporal neighbors; (b) rather than modifying the learning
rule, a preference was given to the previous winner(s), boost-
ing the probability of being chosen again.

Finally, the desire to carve behavior at its joints is hardly

new in AI or RL. A different method proposed for segmenting
RL policies into meaningful chunks is to find bottleneck
states (“doorways”) through which many possible paths can
pass [12]. These methods bear a certain resemblance to the
current method, in that doorways are also likely to be states
of higher entropy.

VII. CONCLUSIONS

The temporal and spatial organization of behavior is of
great potential benefit for continual-learning agents, promoting
increased robustness, hierarchical learning, and the navigation
and search of learned behaviors. Building upon our earlier
work, which had introduced mechanisms for the spatial or-
ganization of behavior in a two-dimensional “Motmap,” the
current paper introduced six related, novel update mechanisms
for achieving temporal coherence in SERL and the Motmap. In
each case, this coherence is achieved as an emergent property
of the update rule.

A variable set of sequential tasks patterned after the game
Dance Central allowed us to demonstrate that the new mecha-
nisms can segment behavior into cohesive chunks, representing
each chunk within individual modules of a SERL system or
within local neighborhoods of the two-dimensional Motmap.
The latter result, a topological map organized in both space
and time, is an important step towards an agent that maintains
a library of useful motor behaviors—ordered, accessible, and
extensible according to their similarities. We posit that this
organization will be critical for an agent that learns continually
and is constantly expanding the sophistication of its behavior.

VIII. ACKNOWLEDGMENTS

This research was funded in part through EU project IM-
Clever (231722) and through AFR postdoc grant number
2915104, of the National Research Fund Luxembourg.

REFERENCES

[1] M. B. Ring, T. Schaul, and J. Schmidhuber, “The Two-Dimensional
Organization of Behavior,” in First Joint IEEE International Conference
on Developmental Learning and Epigenetic Robotics, Frankfurt, 2011.

[2] M. B. Ring, “Continual learning in reinforcement environments,” Ph.D.
dissertation, University of Texas at Austin, Austin, Texas 78712, August
1994.

[3] M. Ring and T. Schaul, “Q-error as a Selection Mechanism in Modular
Reinforcement-Learning Systems,” in Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2011, to appear.

[4] T. Kohonen, Self-Organization and Associative Memory. Springer,
second edition, 1988.

[5] M. S. A. Graziano and T. N. Aflalo, “Rethinking cortical organization:
moving away from discrete areas arranged in hierarchies.” Neuroscien-
tist, vol. 13, no. 2, pp. 138–47, 2007.

[6] M. Graziano, The Intelligent Movement Machine: An Ethological Per-
spective on the Primate Motor System. Oxford University Press, 2009.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press, 1998. [Online]. Available:
http://www-anw.cs.umass.edu/ rich/book/the-book.html

[8] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, pp. 9–44, 1988.

[9] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, May 1989.

[10] H. Fowler, W. Lamb, and R. Bury, Plato. 4. Cratylus, Parmenides,
Greater Hippias, Lesser Hippias, ser. Loeb Classical Library. Harvard
University Press, 1970.

[11] R. Dawkins, “Hierarchical organisation: a candidate principle for ethol-
ogy,” in Growing Points in Ethology, P. P. G. Bateson and R. A. Hinde,
Eds. Cambridge: Cambridge University Press, 1976, pp. 7–54.

[12] A. Mcgovern and A. G. Barto, “Automatic discovery of subgoals in
reinforcement learning using diverse density,” in In Proceedings of the
eighteenth international conference on machine learning. Morgan
Kaufmann, 2001, pp. 361–368.

