Finding Promising Exploration Regions by Weighting
Expected Navigation Costs

Mark B. Ring
Mark.Ring@GMD.de
GMD — German National Research Center for Information Technology
Schlof Birlinghoven, D-53 754 Sankt Augustin

Germany

April 11, 1996

Abstract

In many learning tasks, data-query is neither free nor of constant cost.
Often the cost of a query depends on the distance from the current location in
state space to the desired query point. Much can be gained in these instances
by keeping track of (1) the length of the shortest path from each state to
every other, and (2) the first action to take on each of these paths. With
this information, a learning agent can efficiently explore its environment,
calculating at every step the action that will move it towards the region of
greatest estimated exploration benefit by balancing the exploration potential
of all reachable states encountered so far against their currently estimated

distances.

1 Tasks with Distance Relationships

In many learning tasks, data-query is neither free nor of constant cost. Often the cost of
a query depends on the distance from the current location in state space to the desired
query point. This is easiest to visualize in robotics environments where a robot must
physically move to a location in order to learn something there. The cost of this learning
is the time and effort it takes to reach the new location. Furthermore, this cost is
characterized by a distance relationship: When the robot moves as directly as possible
from a source state to a destination state, the states through which it passes are closer
(i.e., cheaper to reach) than is the destination state.

Distance relationships hold in many real-world, non-robotics tasks also: whenever
information from any desired state cannot be queried at will. Optimizing the performance
of a chemical plant, for example, requires the adjustment of analog controls which have
a continuum of intermediate states. Querying possibly optimal regions of state space in
these environments is inadvisable if the path to the query point intersects a region of
known volatility.

In continuous environments, some first-order approximations to such distance-depen-
dent active learning has already been done [2, 5, 7, 8]. In these cases, the learning agent
follows a gradient towards promising learning areas by taking the action at each step
that maximizes a local ignorance measure. These techniques have no explicit way of
balancing the exploration of mildly promising local areas with greatly promising distant

areas.

2 Keeping Track of Navigation Costs

In discrete environments with small numbers of states, it is possible to keep track of
precisely where and to what degree learning has already been done sufficiently and
where it still needs to be done. It is also possible to keep best known estimates of the
distances from each state to each other (see Kaelbling, 1993). Kaelbling’s DG-learning
algorithm is based on Floyd’s all-pairs shortest-path algorithm [1] and is just slightly
different from that used here. These “all-goals” algorithms (after Kaelbling) can provide
a highly satisfying representation of the distance/benefit tradeoff.

The following describes a minor variation of the DG algorithm that is perhaps a
bit more direct. Associated with every pair of states x and y are two quantities: D,
and Agy. Dy is the distance (navigation cost) from state z to state y, and A, is the
originating action the agent takes in state z to move most directly (most cheaply) to
state y. This information can be learned incrementally and completely: that is, if a path
from any state z to any state y is deducible from the state transitions seen so far, then
the following three conditions can be guaranteed. (1) The algorithm will know a path
from z to y. (2) The current value for D, will be the best deducible value from all data
seen so far. (3) No next action could be found, given the data seen so far, that moves
the agent towards state y from state z more directly then Ag,.

The modified DG-algorithm for deterministic environments is given in Figure 1. All

1 If D[S¢—1][S¢] > d; then
2 FROM <« {}
3 TO < {}
4 DI[5¢][St+1] < di
5 A[S:—1][St] < a;
/* See if this improves any paths to S;. */
6 For all x in S (except S;_1):
7 if D[z][S¢] > D[z][S¢—1] + d;
8 DIz][St] < D|[z][St—1] + d;
9 Alz][51] < Ale][Si-]
10 FROM < FROM U z
/* See if this improves any paths from 5;_1. */
11 For all y in S (except 5;):
12 if D[Si-1]ly] > di + D[S¢][y]
13 D[Si-1]ly] < di + D[S:][y]
14 A[S:—1][y] < a4
15 TO < TO Uy
/* Improve paths from all € FROM to all y € TO. */
16 For all x in FROM:
17 for all y in TO:
18 if Dlz][y] > D[z][S:—1] + d: + D[S:][y]
19 Dlz]ly] < D[z][Si-1] + di + D[S4][y]
20 Alz][y] < Alz][Se—]

Figure 1: Modified all-goals learning algorithm.

costs are stored in the two-dimensional array D[z][y], which is initialized with infinite
costs from every state z to every state y. S5, is the state the agent is in at step 7, so
St is the agent’s current state and 5;_; was its previous state. Steps 2 through 20 are
only executed if the action just taken (a;) has revealed information that can reduce the
cost of at least one known path. If the previously stored cost from S;_; to S; is greater
than the cost just experienced (d;), then this new cost is stored instead (line 4), and the
action the agent took to achieve it is also stored (line 5). Lines 6 through 20 search for
other paths that might be reduced with this new knowledge. Lines 6 through 10 search
for all states whose stored path to S; can be improved by first going to S;—; (and
then taking action a¢). Any such states found are then stored in a set called “FROM”
(line 10), and the stored distances from these states to S; are updated (line 8). The
originating actions from these states are also updated (line 9). Lines 11 through 15 do
exactly the same thing in the opposite direction, finding all states y to which paths from
Si—1 can be improved by going first to 5;. These states are collected into a set named

“TO” (line 15). Lines 16 through 20 update all remaining paths that might be improved
by going through 5;_1 and 5.

So long as the D and A arrays accurately reflected the best deducible distances and
actions at ¢ — 1 (before the last action was taken), no paths can be improved other
than (1) those whose distances to S; are reduced by going first to S;_; (the FROM set),
(2) those to which the distance from Sy_; can be improved by going first to Sy (the TO
set), and (3) those originating at a FROM state and terminating at a TO state that can
be improved by passing through S;_; and 5%.

The proof (by contradiction) is very simple. For the proof, index D according to when
it was last modified: D'~! represents the state of the matrix just before taking action
as. Since the information gained from the last action is only useful if it reduces an entry
in D, only paths that can be improved by taking the last action are affected. Assume
that after following the procedure given above, there is still some path, ps, (from some
state & to some state y) that can be found using the current knowledge to have a total
cost of less than that stored in D;y. That is, D;y is not minimal given knowledge at .
Since the only new information introduced at time ¢ is d;, the path p must pass through
Si—1 and S%. For the assumption to be true, then, either z was not in the FROM set, or
y was not in the TO set. That is, although it is the case that D, can be improved by
going through 5;_; and 5;:

DL, > D5 +di+ DY)

St Sty ?

one of the following is also true: either 2 was not in the FROM set,

Dyg, < Dgs,_, + b, (1)
or y was not in the TO set,
DG < di+ DY (2)

In the case of (1), DE;! could have been reduced to D;—g} + DtS:yl at ¢ — 1. In the case
of (2) DL;' could have been reduced to D;—gi_l + Dts:_lly. However, since D'~1 already
held the best deducible values, neither (1) nor (2) can be true, and the assumption is

therefore false.

3 Full Exploration Guarantee

If nothing is known about the environment, a simple strategy will guarantee complete
exploration: move next towards any known state whose actions have not yet all been
tested. This is due to the following property that can be proven for the agent described
above in any deterministic environment, regardless of the actions available:

If there are any reachable states that have not yet been fully explored, then
there is also a known path from the current state to a state with unexplored

actions.

More formally, define the following sets: R, K, and U. R is the set of all states reachable
from the current state. K is the set of all states to which a path from the current state
is known (K C R). U is the set of all underexplored states (i.e., states in which there is
at least one action that has not yet been tried).

Theorem 1 [Fz:z € UNR] — [Jy:y e UNK].

Proof: Since z is reachable, a path exists from the current state to z. The first underex-
plored state y encountered on this path (i.e., y € U) will be z if no earlier such state is
encountered. All states on the path before y are fully explored. Therefore, all actions on
the path from the current state to y have been tried. Since all actions from the current
state to y have been tried, a path from the current state to y is deducible and therefore
(from above) such a path is also known, i.e., y € K.

As a result, the agent will always know a path to an underexplored state until all
reachable states have been explored. (The existence of this proof was also implied by
Rivest and Schapire [6].)

4 Locality and Exploration Benefit

Though the strategy just given will guarantee complete exploration, it does not imply
efficient exploration when certain common properties about the environment might be
known in advance. One of these is the property of locality. Locality is exhibited by
environments in which an action taken in a state will not generally take the agent very
far away. That is, after taking action @ in state x, the agent will be taken to a state y
where D, is small. The smaller this value is on average, the greater the environment’s
locality. This property of locality is very high, for example, in most robotics applications.

Another aspect of the environment that may be known is the degree to which certain
states may be more interesting than others — for example, the degree to which they offer
a greater exploration benefit. In these cases, the agent can better organize its exploration
strategy if it has access to a quantity £, that specifies the exploration benefit of visiting
state z. With this information, decisions about which areas to explore next can be based
on both the benefit resulting from the exploration as well as the cost of reaching each

area.

4.1 Weighting Actions by Exploration Benefit and Navigation Costs

If the effects of all actions in all states were known before exploration began, planning the
route that most efficiently visited every action in every state would be NP-hard, being
equivalent to TSP. However, this information is not known in advance, which makes the
optimization problem somewhat easier. In the general case, planning is useless: there
is no better exploration strategy than to always move towards the closest known state
that has an unexplored action, since there is no way to predict where that action could
next take the agent.

If the environment exhibits some degree of locality, however, then it can be split into

regions, one for each action available in 5S¢, such that all the states in each region have

the same originating action from 5;. The agent can then take the action that moves it
into the region with the best tradeoff between proximity and exploration benefit, since
the chances are high that unexplored actions will leave the agent within approximately
the same region. A value, w, is computed for each region a that balances the benefits

of visiting the states in the region against their distances from the current state.

For each action a in state 5

Wq = Z f(DStvay)

{y|a:ASty}

The action taken next is that which leads in the direction of greatest accumulated
exploration benefit (i.e., the one whose weight is the largest). Ties are broken arbitrarily.
Different functions f can be used to find different ways of balancing small local benefit
against large but distant benefit. And, of course, even when all nearby regions are
fully explored, the agent will automatically take the least-cost path to distant regions of
highest potential exploration benefit.

4.2 Balancing Exploitation with Exploration

Most often, exploration is not the only or even the central goal of a learning agent.
Usually the agent has a primary goal — a value to maximize or a state to reach —
toward which exploration is only of long-term benefit. In these cases, the agent must
have some other measure besides F that specifies the intrinsic goodness of taking certain
actions in certain states. Fortunately, the £ values can be modified to explicitly balance
exploitation with exploration, that is, to take advantage of short-term goal opportunities
while also pursuing the long-term benefits of exploring new actions.

Some actions, for example, may provide short-term benefit but as a consequence may
bring the agent to a place far from its previous state (i.e., the return distance is great.)
While returning to achieve another short-term benefit, it may be worthwhile for the
agent to explore adjacent areas. The E values might therefore be a sum of the intrinsic
benefit and the exploration benefit of visiting a state.

5 Some Results

When implemented in a two-dimensional grid world with random obstacles, the benefits
of the exploration approach described above become evident. In these environments there
are four possible actions in each state, and each state is accessible from every other. A
lower bound on the number of actions needed to fully explore these environments is VA
(where A is the average number of actions available in each state), though this can only
be achieved if the topology of the environment is known in advance (or by great luck).
Random exploration performs particularly poorly. With about 85 states in a 10x10 grid
(i.e., about 15% of the grid is occupied by obstacles), about 4200 actions are required
on average before all state/action pairs have been tried, or roughly 1100% above the

lower bound (which is 340 in this environment). Better performance is achieved when

Unexplored actions Exploration Speed

3000 Random’
| Semi=random
1000 All'Goals
300
‘a I E—
100 ‘e RN
I R R R R R
10
3
1 :
0 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 Agent steps

Figure 2: Comparisons of the three exploration methods mentioned in the text. The
vertical access shows the number of actions left to explore. The horizontal axis shows
the number of steps the agent has taken so far. The all-goals method explores all actions
quickly and without delay. Both the random strategy and the semi-random strategy
(where exploration is locally intelligent) get slower as the number of unexplored actions
decreases. Notice that the vertical axis is logarithmic, so that approximately the bottom
third of the graph is devoted to the last 10 actions (less than 0.4%).

actions are locally intelligent: untested actions in a state are tried before already-tested
actions are retried. This yields about 2200 actions to fully explore 85 states, or about
550% above the lower bound. In contrast, the method described in Section 4.1 requires
approximately 410 actions in an environment of 85 states when f(z,y) = y/z*. This
is about 20% above the lower bound. Of course, the performance of the two random
approaches scales miserably. The all-goals approach scales extremely well: even with
4500 states, the number of actions taken was still less than 20% above the lower bound.

Figure 2 graphs the performance of the three methods in a small sample environment
of 631 states and 2524 actions. The two random methods are dominated by the time

spent finding a small number of remaining unexplored actions.

6 Compression Strategies

By far the biggest drawback of using this method is the overhead imposed by the O(N?)
storage requirement, where N is the number of states. The most space-saving represen-
tation of the environment is a single-step model that only keeps track of the immediate
costs and results of each action. Though the space complexity drops to O(N A), the time
required to find the distance between two states also rises to O(N A).

An alternative method for compressing the D matrix after a complete exploration of

the environment is as follows:

1. Choose the state, V, that lies on the greatest number of shortest paths, (i.e., where

Dy = Dyv 4 Dy, for the greatest number of pairs z,y.)

2. Create two sets: V7 and Vg:
Vi = set of all initial states, I, for each of the paths in 1.
Vi = set of all final states, F, for each of the paths in 1.

3. For each z in V; and each y in Vg, store its distance to or from V respectively:
D.y and Dy,,. Also store the originating actions: A7, and Ay, .

4. Remove all entries D,v, Dy, and D, from D, where z € V7, and y € V.

Repeat steps 1 through 4 until no more pairs remain in D. To find the distance from
state @ to state y, find the state V' where z € V; and y € Vp such that D], + Dy, is
minimal. Experimental results in 2-dimensional grid worlds demonstrate a final size of
about O(NIg®N) for D’ using this method, but the cost is the access time O(lgN) to
find the distance between two states. Worse still, the time needed for the compression
is O(N*), mostly due to the first line of the algorithm.

An alternate scheme replaces line 1 with a heuristic. For each state V', the heuristic
finds two values: (1) the number of entries in D that go either to or from V; (2) the sum
of these entries’ values. The first divided by the second squared provides a rating for V.
The state with the highest rating is chosen. This seems to work fairly well and results
in an average space requirement of O(N'-*) for D’ while reducing the run time of the
algorithm to O(N?).

Unfortunately, neither of these schemes could be said to require less than O(N?)
space, since the complete D matrix is needed from the outset. So far, none of the
attempts to find an incremental version of the algorithm have yielded a satisfactory result.
Kaelbling [3] has introduced some methods that use less space while approximating the
D matrix using neural networks and hierarchies of distances. Though promising, this
approach has not yet yielded a practical solution to the problem.

One highly pleasing, very intuitive idea that unfortunately does not seem to improve
the situation at all, is to assign each state a coordinate in some multidimensional space
and then to apply a distance function to the coordinates of the two states to determine
their distance. It can easily be proven that no Euclidean distance function will suffice in
an environment with obstacles, regardless of the number of dimensions used. The best
non-Euclidean function I have yet discovered is that described by the method above,
where a state’s coordinates are its distances in all the sets V; and V.

7 Conclusions

The general principle of using all-goals learning in unknown deterministic environments
has many positive characteristics. Chief among these is the efficiency with which the
environment can be explored. Of equal importance is the intuitive way in which explo-
ration can be balanced with exploitation. Also of major importance is the fact that, once
the knowledge is gained, it can be used by the agent to reach any goal from any starting

state in the provably minimal number of steps. For small state spaces (given today’s
computer capacities, this means not more than ten thousand states), the advantages of
the technique far outweigh its drawbacks.

There are drawbacks, however, in terms of space and time complexity. The two major
obstacles that keep this approach from being applicable to large or continuous state
spaces are (1) the O(N?) space requirement, and (2) the O(N) time required at every
step to choose the best action. Furthermore, the method described above deals only with
deterministic environments. The amount of storage required for stochastic environments
is even higher. Should the next stage of research — reducing these requirements while
still learning incrementally — be successful, the resulting algorithm will provide an
enormously powerful way to explore any unknown environment.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and
Algorithms. Addison-Wesley Series in Computer Science and Information Processing.

Addison-Wesley, 1983.

[2] David Cohn. Neural network exploration using optimal experiment design. In Jack D.
Cowan, Gerald Tesauro, and Joshua Alspector, editors, Advances in Neural Infor-
mation Processing Systems 6, pages 679-686, San Mateo, California, 1994. Morgan
Kaufmann Publishers.

[3] Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary re-
sults. In Machine Learning: Proceedings of the tenth International Conference, pages
167-173. Morgan Kaufmann Publishers, June 1993.

[4] Leslie Pack Kaelbling. Learning to achieve goals. In Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence, pages 1094-1098, Chambéry,

France, 1993. Morgan Kaufmann.

[5] Alexander Linden and Frank Weber. Implementing inner drive through competence
reflection. In J. A. Meyer, H. Roitblat, and S. Wilson, editors, From Animals to
Animats 2: Proceedings of the Second International Conference on Simulation of
Adaptive Behavior, pages 321-326. MIT Press, 1993.

[6] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing
sequences. Information and Computation, 103(2):299-347, April 1993.

[7] Jiirgen Schmidhuber. Adaptive confidence and adaptive curiosity. Technical Re-
port FKI-149-91 (revised), Technische Universitat Minchen, Institut fir Informatik,
April 1991.

[8] Sebastian B. Thrun and Knut Moller. Active exploration in dynamic environments.
In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural Infor-
mation Processing Systems 4, pages 531-538, San Mateo, California, 1992. Morgan
Kaufmann Publishers.

