In Meyer, J.-A., Roitblat, H., and Wilson, S., editors, From Anwimals to Animats 2: Proceedings of the Second
International Conference on Simulation of Adaptive Behavior, pages 148-155. MIT Press.

Two Methods for Hierarchy Learning in

Reinforcement Environments

Mark Ring
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

(ring@cs.utexas.edu)

Abstract

This paper describes two methods for hier-
archically organizing temporal behaviors. The
first is more intuitive: grouping together com-
mon sequences of events into single units so
that they may be treated as individual be-
haviors. This system immediately encounters
problems, however, because the units are bi-
nary, meaning the behaviors must execute com-
pletely or not at all, and this hinders the con-
struction of good training algorithms. The sys-
tem also runs into difficulty when more than
one unit is (or should be) active at the same
time. The second system is a hierarchy of tran-
sitton values. This hierarchy dynamically mod-
ifies the values that specify the degree to which
one unit should follow another. These values
are continuous, allowing the use of gradient
descent during learning. Furthermore, many
units are active at the same time as part of the
system’s normal functionings.

1 Introduction

The importance of hierarchy in adaptive systems that
perform temporal tasks has been noted often (Al-
bus, 1979; Wilson, 1989; Roitblat, 1991; Wixson,
1991; Drescher, 1991; Schmidhuber, 1992; Singh, 1992).
Dawkins (1976) described the intrinsic importance and
variety of hierarchy in animal behavior, and he noted
several arguments that demonstrate the merit of hierar-
chy as a general design principle.

In some systems (Albus, 1979; Roitblat, 1991), hierar-
chy is developed as an efficient method for modularizing
temporal tasks such that they can be accomplished in a
general way: in order to perform each task, a sequence
of sub-tasks must somehow be performed. In other sys-
tems (Wilson, 1989; Drescher, 1991; Schmidhuber, 1992;
Singh, 1992), hierarchy is used to organize concept learn-
ing. In these cases, sequences or sequential tasks are
learned by combining already known sequences or tasks

into new ones. In this paper, I will focus on the latter
class. Specifically, I will explore two methods for learn-
ing behavior hierarchies, where a behavior is a sequence
of perceptions and/or actions.

The motivation for hierarchy learning is one of effi-
ciency and increased learning potential. As Dawkins
pointed out (Dawkins, 1976, p. 16), complex organisms
probably evolved from simpler organisms that embodied
many of the sub-assemblies required to build the more
complex organisms. One might also speculate that or-
ganisms capable of performing certain elaborate behav-
iors may have evolved from simpler organisms that per-
formed less elaborate components of these more complex
behaviors. One often finds in the neural network litera-
ture the tendency to preprogram into one’s learning sys-
tems everything that one can preprogram easily, because
the system might find exactly these aspects of the task
very difficult, and it might then learn the remainder of
the task—that which is difficult to preprogram—fairly
easily (see for example Bachrach, 1983, ch. 5). But even
the simplest organisms are often so difficult for artifi-
cial systems to simulate, that there is a vast expanse of
behavior both too difficult to hard-wire, and too diffi-
cult to learn. In these cases, what 1s needed 1s a system
specifically designed to learn layer after layer of behav-
iors on top of those that it has already learned, each
possibly more complex than the preceding ones (see also
Drescher (1991) for a related discussion). With a hierar-
chical approach such as this in mind, it 1s conceivable to
imagine simulated agents where the foundations neces-
sary for learning a difficult task are not hard-wired into
the circuitry of the system, but taught to the continu-
ously evolving adaptive system.

In this paper, I investigate two methods that attempt
to capture some aspects of hierarchical learning. In sec-
tion 2, I will describe a unit devised for learning sequen-
tial behavior hierarchies. In section 3, I will describe a
continuous version of this unit that overcomes problems
encountered with the first method while being simpler
to 1mplement.

2 Method I: Behavior Hierarchies

My first attempt at behavior hierarchies was an animat
controlled by a system of units.® In this system, each
unit represents a specific behavior sequence. Some units
represent primitive behaviors: a single sensation, or a
single action. Other, higher-level units represent a se-
quence of two primitive units, and still higher-level units
represent sequences of any two lower units. The system
executes a behavior by choosing the unit that stands for
that behavior. If a primitive action is chosen, that ac-
tion is attempted in an external environment. If a primi-
tive sensation 1s chosen, the system attempts to perceive
that sensation. If a higher-level unit is chosen, it is de-
composed into the two units that it represents; then the
first unit’s behavior is executed, followed by the second
unit’s. At any time, a new higher-level behavior might
be added to the system’s abilities by creating a new unit
that represents a sequence of two units already in the
system.

An example should clarify all this. Suppose the sys-
tem could sense heat and coldness, light and darkness,
and that it could move one step to the north, south,
east, or west. Its primitive sensation units would be:
SH (sense heat), SC (sense cold), SL (sense light), and
SD (sense darkness). Tts primitive actions would be:
MN (move north), MS (move south), MW (move west),
and ME (move East). A new behavior could be created
that combined, for example, ME and SC. The new unit
would be called: <ME, SC>, and it would represent the
behavior, “Move East and see if it’s cold”. After this
unit is created, another new unit might also be formed:
<<ME, SC>, MS> (move east and see if it’s cold; if it
is, move south). As can be seen in the last example, the
rest of a sequence is executed only if the part executed
so far has been successful. This allows testing the envi-
ronment and acting on the results: <SD, MW> (see if
it’s dark, and if it is, move west).

Behaviors are chosen randomly at first in an effort
to achieve a reward. When a reward is received, the
system learns that the most recently chosen behaviors
may be worth repeating. The system must therefore
keep track of the choices it has made and the level of
reinforcement it has received for these choice-sequences.
To do this, the entire system is embedded in a neural
network, where the connections between units record this
information. The stronger the connection from one unit
to another, the more likely execution of the first followed
by the second will result in reward. Therefore, in order
to determine which behavior the system should execute
next, every unit representing a behavior that has just

11 do not have the space here to give all the fine-grained de-
tails of this first system. I can however give a general overview and
describe the intended behavior of the system from a high-level per-
spective, depicting the units as something akin to macro-operators.
The details of the implementation are somewhat cumbersome, but
are given in slightly more detail in a previous paper (Ring, 1991).

completed votes for a successor with its weights: 2

ai(t+1) = sz’jOj(t), (1)

where 0;(t), the output of unit j at time ¢, is 1.0 if the
behavior represented by unit j completed at time £, and
is 0.0 otherwise; w;; is the weight of the connection from
i to j; and a;(¢t + 1) is the resulting degree to which
the system believes unit j’s behavior should occur at the
next time-step. When a unit is chosen at the next time-
step, t 4+ 1, the choice is biased by these values: though
stochastic, the unit chosen is probably the one with the
highest activation.

The connection weights are set by use of the delta rule
(Widrow and Hoff, 1960), amplified by the reinforcement
signal:

Awij(t) = nR(t)o;)(Ti(1) — ai(1)) (2)

That is, the weight change at time ¢ of the connection
from unit j to unit 7 is equal to the product of the learn-
ing rate, 1, the current reward-level R(t), the current
output of unit j, and the difference between the acti-
vation of unit ¢ and its target, 7;(¢). The target of
a unit is simply its output at the next time-step, i.e.
T:(t) = 0;(t + 1). (They are given different names in
equation 1 for the benefit of those already familiar with
the delta rule).

This rule states that if some unit B is chosen after
another unit A’s behavior completes, then wait to see if
B’s behavior completes. If it does not complete (or if
unit B had not been chosen), then the weight from A to
B is decreased by an amount proportional to the current
reward and unit B’s expectation. (So if unit B was highly
expected, but it did not complete, the change is large,
causing the system to learn not to expect B as much
following A.) But if unit B’s behavior does complete,
then the weight is increased by an amount proportional
to the reward received and the amount by which B fell
short of its target, 1.0. (The smaller the expectation,
the more the weight will be changed, causing the system
to increase its expectation of B following A.)

Figure 1 presents a very simple example of how the
system could be used. The animat begins at position 1
in the maze. It will receive a reward if it makes it
to the asterisk in position 6. From position 5, ME
should become highly activated because the animat will
receive a reward if it moves east. But how does it
know it’s in position 57 It knows it’s in position 5
if it senses a light. Therefore, the sequence SL—ME
may frequently be followed by reward, so the connec-
tion from SL to ME will become strong. After a while,

2Tt is possible for more than one behavior to complete at the
same time. For example: SC, <ME,SC>, and <MN,<ME,SC>>
would all finish whenever <MN,<ME,SC>> finishes.

Figure 1: A maze for an animat. The animat would start in
position 1 and would receive a reward in position 6. Other labels
show what sensations the animat could perceive in different parts
of the maze.

a new unit might be formed, <SL, ME>, to encapsu-
late this behavior. As units are used more and more
in the same sequence again and again, the connections
between them get stronger, and other new units might
be created, such as <SC, <MN, MN>> (useful in posi-
tion 3), <SH, <MW, MW>> (useful in position 8), and
<<<ME, ME> <SC, <MN, MN>>>, <SL, MR>>
(useful in position 1), for example. The units clearly
resemble macro-operators, though they are to be used in
reinforcement environments with no explicit goals.

Reinforcement, in fact can be done easily: simply re-
ward the last n choices made, and even though the be-
haviors represented by these choices may span a large
period of time, reinforcement is spread smoothly across
that time span. This is accomplished by slightly modi-
fying equation 2 to:

Awij(t) = o;(A)(T3(t) — ai(t)) + cAwi;(t = 1) (3)
wij(t) = nR()Awij () + wij(t — 1)

where 0 < ¢ < 1 is a decay parameter that discounts
previous weight changes in favor of more recent ones.
The Aw’s are therefore a trace of weight changes that
decay exponentially—like the eligibility trace presented
in (Barto et al., 1983). The trace constantly accrues
weight changes over time, biased toward the most recent
ones, but the changes are only applied to the weights
when a reward is received.

2.1 A Different Approach is Needed

There are problems with this approach. First and most
importantly, these units are binary: the behaviors either
execute, or they do not. This is a discontinuity that
keeps the gradient descent performed by the delta rule
from working effectively. Learning tends to be chaotic.
Second, it’s possible for multiple behaviors to complete
simultaneously, as mentioned above, or to begin simulta-
neously. For example, if many sensations are impinging
on the system at the same time, the sequence in which

they are sensed is irrelevant. In these cases many units
could be formed that are functionally identical (group-
ing together the same sensations), but structurally dif-
ferent (grouping them together in different orders). And
third, there may be many ways of achieving the same
end. A behavior that takes the animat from home to
work, for example, may meet contingencies on the way.
A traffic light may be red when a green light was ex-
pected. Yet there is no way to encode this contingency
within a single unit such that one action is taken when
the light is green, and another is taken when the light
is red, both ending with the animat arriving at work. If
two behaviors could be chosen at the outset, in one of
which a green light is expected, and in the other a red
light is expected, then the system would merely be inef-
ficient, requiring enormous numbers of units to encode
every possible combination of contingencies. But when
only one sequence of behaviors can be chosen at a time,
encoding contingencies is not just inefficient; 1t’s impos-
sible. A solution to some of these problems is described
in the next section.

3 Method II: Transition Hierarchies

The second method of organizing behaviors hierarchi-
cally also uses a pool of units in the form of a neural net-
work. This time, however, only the primitive units repre-
sent behaviors (as they did with Method TI). The higher-
level units now represent transitions between lower level
units. Instead of combining together behaviors as was
done with Method I, these units represent the degree to
which one behavior should follow another at any partic-
ular time—they therefore resemble “higher order” units
to some extent (c.f. Pollack, 1991; Giles, 1992; and Wa-
trous, 1992).

Take for example Figure 2a. In one case (position 9)
the animat should go south when it senses light, while
in another case (position 5), it should go north. To de-
cide whether to move north or south after the light, it
is sufficient to know whether the animat sensed heat or
cold in the previous step. Therefore, a unit can be built,
<SL, MN> that causes the connection weight from SL to
MN to be strong after sensing heat, but to be weak after
sensing coldness. (The connection weight from one unit,
A, to another, B, as with Method I, indicates how much
the system believes unit B should be chosen directly fol-
lowing unit A.) Another unit, <SL, MS>, can be built to
increase the weight from SL to MS after sensing coldness
and to decrease it when sensing heat.

The same thing can be done for transitions among
higher-level units. For example, in figure 2b, <SL, MN>
and <SL, MS> cannot be correctly predicted from the
sensation of heat or cold alone, but require knowledge of
what happened in the previous step. Thus, a new unit
might be built <SH, <SL, MS>> that sets to a high
value the weight from SH to <SL, MS> immediately

Figure 2: Maze (a) shows the need for two new units: <SL, MS>, to modify the connection from SL (sense light) to MS (move south),
and <SL, MN>, to modify the connection from SL (sense light) to MN (move north). In maze (b), new units are needed to modify the

connections from SH (sense heat) to <SL, MS> and to <SL, MN>.

following the sensation of darkness (position 12), but
sets the weight to a low value otherwise. Clearly, this
kind of hierarchy construction can continue indefinitely.

Mathematically, the activation of the units can be ex-
pressed as:

ai(t+1) = sz’j(t)%(t)

wij + ac;j>(t—1) if a unit <i,j>
R for w;; exists
wij(t) = Y

W otherwise

The output of the unit, o;(¢), is the same as its tar-
get, T;(1), and the targets are different for primitive and
higher-level units. For a primitive unit, the target is 1.0
if the behavior it represents completes and 0.0 otherwise
(as with Method T). For higher-level units, it is given by
the learning rule:

Awij(t) =
Teij>(t) =

The value 7; depends on how “high” in the hierarchy unit
¢ 1s: if ¢ is a primitive unit, 7; is 1. If ¢ is a higher-level
unit, modifying the connection from unit A to unit B,
it is 1 4+ 7. The higher in the hierarchy unit 7 is, the
larger 7; is, and the longer the time lag is between when
the unit is activated and when its target arrives. This
learning rule accomplishes actual gradient descent in the
error space, unlike the learning rule of the first system.

New units are now created for different reasons from
the units of Method I. If one unit is reliably activated
after another, there is no reason to interfere with the
connection between them. Only when the transition is
unreliable, that is, when the connection weight should be

0j(t = m)(L; () — ai(t))
acij>(t) + Awi(t) (4)

different in different circumstances, is a unit required to
predict the correct value.

In order to decide when a transition is unreliable, a
statistical record is kept of each connection. Two long-
term averages are maintained: the average change made
to the connection, and the average magnitude of the
change. When the average change is small, but the av-
erage magnitude is large, this implies that the learning
algorithm is changing the weight of the connection back
and forth by a large amount. Therefore, a criteria value,
O, is chosen arbitrarily, and when

| Awj|
€+ |Awi]'|

(where € simply keeps the denominator from being zero),
a new unit is created for w;;. That is, when the average
size of weight-change divided by the size of the average
weight-change (plus €) is larger than © for some connec-
tion w;;, then this connection is judged to be unreliable,
and a new unit is created for it. This new unit can now
attempt to learn the circumstances under which the con-
nection weight should be one value, and when 1t should
be another. A similar technique for creating new nodes
in a non-temporal neural network is given in (Wynn-
Jones, 1993).

The resulting system has much in common with the
original one, but there are differences. First, this new
system has no discontinuities. Higher-level units may
come on to a greater or lesser degree, not just com-
pletely on or completely off. Second, the behavior hier-
archies built by the new system are different from those
built by the old system, and these new hierarchies are
distributed; execution of a sequence of behaviors, say
ME—SC—MS (move east, then if it’s cold move south),
might require no hierarchy at all! If this sequence al-

ways occurs whenever ME is chosen, only ME needs to
be chosen, and the rest will follow (since the connection
weights from ME to SC and from SC to MS will be large).
If, on the other hand, there are different sequences that
can follow ME, say SC—MS and SD—MW, (where MS
always follows SC, and MW always follows SD), then
these can be distinguished with new units: <ME, SC>
and <ME, SD>. The sequence ME—SC—MS can then
be executed by activating both ME and <ME, SC> at
the same time, while negatively activating <ME, SD>.
Thus, what took only one activation in the first system
now takes three simultaneous activations, but they ac-
complish the same end.

Because of its distributed nature, the new system can
handle situations that troubled the first system. Con-
tingencies are a good example. Let’s say the desired
behavior is: move east, and if it’s cold, move south, but
if it’s hot, move north. This can be done by activat-
ing all of the following units: ME, <ME, <SC, MS>>,
and <ME, <SH, MN>> (while negatively activating any
conflicting <ME, ...> units).

3.1 Reinforcement Learning

Reinforcement learning was fairly intuitive in the first
system in that 1t spread reinforcement back over a small
number of “choices” while possibly spreading it over an
unlimited number of primitive behavior executions. A
reinforcement learning scheme in the new system can
do nearly the same thing by dynamically modifying the
o of equation 3. This trace can be modified such that
unexpected events are remembered strongest at the time
of the reward by setting o equal to a normalized error
value for the current time-step.

o(t) = (1— %Z IT3(t) - as (1))

(n is the number of units in the system.) The weight
changes are now accumulated in A’w;; (because of the
use of Aw;;(t) in equation 4).

A/wi]' (t) =
wij(t) =

With this method, if everything in the current time-step
is expected exactly as it occurred, the trace of weight
changes, A'w;;(t), will remain essentially the same as it
was in the previous time-step, but if there is a large error,
then the trace is altered significantly. This way, when a
reward arrives, it applies the A’w’s from the last few
time-steps where expectations were not met, no matter
how many time-steps have occurred in the mean time.
These methods of reinforcement for both Method 1
and Method II are really quite old-fashioned. There are
many newer and better approaches based on temporal
difference (TD) methods (Sutton, 1988) and dynamic

Awi]' (t) + O'(t)A/wZ']' (t — 1)
nR()A wij(t) + wij(t — 1)

programming, for example (Barto et al., 1983; Barto
et al., 1989; Sutton, 1990; Barto et al., 1991), that are
much more efficient. There 1s a major obstacle to using
these newer, better approaches for reinforcement learn-
ing in the hierarchical systems presented here, however:
they all depend on accurate knowledge of the state of the
environment. It is conceivable that these methods could
be used anyway, if one were to allow the hierarchical
system to learn also to predict a discounted reinforce-
ment signal, as 1s used in the TD methods. But despite
some work on joining temporal difference methods with
hierarchical learning, for example (Singh, 1992; Wixson,
1991), it is not immediately obvious how to tailor the
TD approach to the hierarchical systems presented in
this paper, (whereas it was relatively straightforward to
tailor the reinforcement learning methods given above
to these hierarchical systems). T am, however, currently
working on doing just this and hope that TD methods
allow improvement over the somewhat ad hoc reinforce-
ment learning techniques presented above.

4 Results

It should be noted that the tasks described in the pre-
vious sections were presented for explanatory purposes.
Certainly there are known techniques, such as recurrent
neural networks, that could solve such simple tasks. The
important 1ssue that is not solved by recurrent neural
networks is the implementation of hierarchy. In partic-
ular, one would like to have a system that is capable of
learning from its environment and using the skills that it
has gained so far for the purposes of solving still more dif-
ficult tasks and learning even more elaborate skills. Neu-
ral networks, on the other hand, are typically renowned
for their ability to forget when learning something new.

Dawkins (Dawkins, 1976) presented a method of hier-
archically reducing the description of symbol sequences
without loss of information. This method, similar to
the principles exploited here, is also used by Schmidhu-
ber (1992) to build hierarchies within a neural network,
though the network is of fixed size and not capable of
indefinite extension. The Recurrent Cascade Correla-
tion (RCC) algorithm however is not so limited. This
algorithm also learns sequences by adding new units,
and 1t has been shown capable of incremental learning
(Fahlman, 1991). Tt does not build explicit behavior hi-
erarchies, however, and it cannot be used for reinforce-
ment learning because of the intricacies of its training
algorithm.

Despite the fact that it was designed for tasks that
required hierarchy learning, Method II has been tested
on some traditional sequential tasks that did not require
hierarchy learning, and it has compared favorably with
other systems. One such task, reported in more detail in
(Ring, 1993), was a finite state grammar learning prob-
lem that required use of previous sense information to

Time-step: o 1 2 3 4 5 6 7 & 9 10 11 12
Sequence : X A B X C D E F G H 1 J K
Sequence2: 'Y A B Y C D E F G H 1 J K

Table 1: Training Set for “Gap” task with a gap of two.

Mean number of Training sets required by:
gap | Standard recurrent net | Mozer network | Method IT | Units created
2 468 328 4 10
4 7406 584 6 15
6 9830 992 8 19
8 > 10000 1312 10 23
10 > 10000 1630 12 27

Table 2: Comparison of Learning Methods on “Gap” Task.

determine the correct output. For this task, reinforce-
ment learning was not used—R(t) was constant for all
t. Instead, the task was supervised. That is, the targets
were given by a teacher at every time-step. Traditional
recurrent networks, including RCC, have been tested on
the same task by other researchers (Cleeremans et al.,
1989; Fahlman, 1991). The Method IT algorithm learned
the task approximately 100 times faster than the best
results reported by the other researchers. (That is, the
other networks needed to see 100 times more training
examples before learning the task.) The number of new
units in the network after learning completed was, how-
ever, between two and twenty times greater than the
number of hidden units used in the networks reported
by the other researchers.

The finite state grammar task was solvable by keep-
ing track of information from only one time-step into
the past. Method IT was also tried on (again supervised)
tasks that required maintaining information over a much
larger time span, and the network quickly learned these
tasks as well. For example, tasks of the form given in Ta-
ble 1 have been given to the network to compare against
the recurrent network of Mozer (Mozer, 1992). These
two sequences formed a single traning set given to the
network. The network was given as sensory input each
element in the sequence one at a time until the end of
the sequence was reached. At that point, the activations
of the higher-level units were reinitialized and the second
sequence was given to the network. At each time-step,
the network’s target output was the item of the sequence
that the network would be given as input on the follow-
ing time-step. Thus, at time-step 1, while experiencing
sequence 2, sensory line A would be activated (i.e. set to
1.0), and all others would be quiescent (i.e. set to 0.0).
The network’s target output would be B. Because the
network will always be asked to predict B when its in-
put is A, this part of the task is fairly simple. However,
at time-step 2, the network will see B as input and must
predict either X or Y, depending upon which sequence

it 1s currently sensing, and this information is contained
two steps back in time. Thus, the network must remem-
ber what it saw at time-step 0 to correctly predict what
it will see at time-step 3.

The difficulty of the task can clearly be increased by
lengthening the duration between the initial X or Y stim-
ulus at time-step 0 and its recurrence later on in the se-
quence. Mozer used sequences generated in this manner
to compare his algorithm to traditional recurrent neu-
ral networks, which he realized were extremely poor at
learning extended time delays. He compared the algo-
rithms on sequences with gaps of between two and ten
time-steps from the initial X or Y and its reappearance.
The results of his tests, together with the results from
Method II, are printed in table 2. Mozer noticed that the
number of training sets his architecture required to learn
a sequence scaled roughly linearly with the size of the
gap. Method II also scaled linearly, but it learned the
task approximately 100 times faster than Mozer’s net-
work. T tested the network at gaps of up to 24 and found
the identical scaling behavior (i.e. 26 training set pre-
sentations were required, and 49 new units were built).

It should be noted that the parameters were optimized
for these particular tasks and would not necessarily be
the best parameters for a different task. Specifically, it
is not always beneficial for units to be created as quickly
as they were for this task. It should also be noted that
Method II learns the precise number of time-steps be-
tween when information becomes available and when it
It does so by creating a hierarchy that
spans the gap exactly. Mozer’s network, on the other
hand, maintains more general knowledge and is able to
keep information for use over broader periods of time.
In the end, one would expect Mozer’s network to gener-
alize better than the network of Method II. Part of my
current work is to provide the Method II algorithm with
the same flexibility that Mozer’s network has.

will be used.

5 Summary and Conclusions

Two methods for hierarchically organizing temporal
events have been described. The first is more intuitive:
grouping together common sequences of events into sin-
gle units so that they may be treated as individual be-
haviors. This system contains discontinuities, however,
and it runs into difficulty when more than one unit is (or
should be) active at the same time. The second system
can dynamically modify the values that specify the de-
gree to which one unit should follow another. These val-
ues are continuous, allowing the use of gradient descent
during learning. Furthermore, many units are active at
the same time as part of the system’s normal function-
ings. The new system is actually more powerful than the
first, while being easier to train.

Acknowledgements

This work was supported by NASA Johnson Space
Center Graduate Student Researchers Program training
grant, NGT 50594. I would like to thank Kadir Liano
and my advisor, Robert Simmons, for many helpful dis-
cussions. | would also like to thank Pavilion Technolo-
gies, Inc. for their generous contribution of computer
time and office space required to complete much of this
work.

References

Albus, J. S. (1979). Mechanisms of planning and problem
solving in the brain. Mathematical Biosciences, 45:247—
293.

Bachrach, J. R. (1992). Connectionist Modeling and Con-
trol of Finite State Environments. PhD thesis, Depart-
ment of Computer and Information Sciences, University
of Massachusetts.

Barto, A. G., Bradtke, S. J., and Singh, S. P. (1991).
Real-time learning and control using asynchronous dy-
namic programming. Technical Report 91-57, Com-
puter Science Department, University of Massachusetts
at Amherst.

Barto, A. G., Sutton, R. S., and Anderson., C. W. (1983).
Neuron-like elements that can solve difficult learning
control problems. IFEF Transactions on Systems, Man,
and Cybernetics, 13:835-846.

Barto, A. G., Sutton, R. S., and Watkins, C. J. C. H. (1989).
Learning and sequential decision making. Technical Re-
port COINS Technical Report 89-95, University of Mas-
sachusetts at Ambherst, Department of Computer and
Information Science.

Cleeremans, A., Servan-Schreiber, D., and McClelland, J. L.
(1989). Finite state automata and simple recurrent net-
works. Neural Computation, 1(3):372-381.

Dawkins, R. (1976). Hierarchical organisation: a candidate
principle for ethology. In Bateson, P. P. G. and Hinde,
R. A, editors, Growing Points in Fthology, pages T-54.
Cambridge: Cambridge University Press.

Drescher, G. L. (1991). Made-Up Minds: A Constructivist
Approach to Artificial Intelligence. Cambridge, Mas-
sachusetts: MIT Press.

Fahlman, S. E. (1991).
architecture. In Lippmann, R. P., Moody, J. E., and
Touretzky, D. S., editors, Advances in Neural Informa-
tion Processing Systems 3, pages 190-196. San Mateo,
California: Morgan Kaufmann Publishers.

Giles, C. L., Miller, C. B., Chen, D., Sun, G. Z., Chen,
H. H., and Lee, Y. C. (1992). Extracting and learning
an unknown grammar with recurrent neural networks.
In Moody, J. E., Hanson, S. J., and Lippman, R. P., ed-
itors, Advances in Neural Information Processing Sys-
tems 4, pages 317-324. San Mateo, California: Morgan
Kaufmann Publishers.

The recurrent cascade-correlation

Mozer, M. C. (1992). Induction of multiscale temporal struc-
ture. In Moody, J. E., Hanson, S. J., and Lippmann,
R. P., editors, Advances in Neural Information Process-
ing Systems 4, pages 275-282. San Mateo, California:
Morgan Kaufmann Publishers.

Pollack, J. B. (1991). The induction of dynamical recognizers.
Machine Learning, 7:227-252.

Ring, M. B. (1991). Incremental development of complex

behaviors through automatic construction of sensory-
In Birnbaum, L. A. and Collins,
G. C., editors, Machine Learning: Proceedings of the
FEighth International Workshop (ML91), pages 343-347.
Morgan Kaufmann Publishers.

motor hierarchies.

Ring, M. B. (1993). Learning sequential tasks by incremen-
tally adding higher orders. In Giles, C. L., Hanson, S. J.,
and Cowan, J. D., editors, Advances in Neural Informa-
tion Processing Systems 5, pages 115-122. San Mateo,
California: Morgan Kaufmann Publishers.

Roitblat, H. L. (1991). Cognitive action theory as a control
architecture. In Meyer, J. A. and Wilson, S. W., edi-
tors, From Animals to Animats: Proceedings of the First
International Conference on Simulation of Adaptive Be-
havior, pages 444-450. MIT Press.

Schmidhuber, J. (1992). Learning unambiguous reduced se-
quence descriptions. In Moody, J. E., Hanson, S. J., and
Lippman, R. P., editors, Advances in Neural Informa-
tion Processing Systems 4, pages 291-298. San Mateo,
California: Morgan Kaufmann Publishers.

Singh, S. P. (1992). Transfer of learning by composing solu-
tions of elemental sequential tasks. Machine Learning,
8(3/4).

Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine Learning, 3:9-44.

Sutton, R. S. (1990). Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Porter, B. W. and Mooney, R.],
editors, Proceedings of the Seventh International Con-
ference on Machine Learning, pages 216-224. Morgan
Kaufmann Publishers.

Watrous, R. L. and Kuhn, G. M. (1992). Induction of finite-
state languages using second-order recurrent networks.
In Moody, J. E., Hanson, S. J., and Lippman, R. P., ed-
itors, Advances in Neural Information Processing Sys-
tems 4, pages 309-316. San Mateo, California: Morgan
Kaufmann Publishers.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching cir-
cuits. In IRFE WESCON Convention Record, pages 96—
104. IRE. New York.

Wilson, S. W. (1989). Hierarchical credit allocation in a clas-
sifier system. In Elzas, M. S., Oren, T. 1., and Zeigler,
B. P., editors, Modeling and Simulation Methodology.
Elsevier Science Publishers B.V.

Wixson, L. E. (1991). Scaling reinforcement learning tech-
niques via modularity. In Birnbaum, L. A. and Collins,
G. C., editors, Machine Learning: Proceedings of the
FEighth International Workshop (ML91), pages 368-372.
Morgan Kaufmann Publishers.

Wynn-Jones, M. (1993). Node splitting: A constructive al-
gorithm for feed-forward neural networks. Neural Com-
puting and Applications, 1(1):17-22.

