CONTINUAL LEARNING IN REINFORCEMENT
ENVIRONMENTS

by

MARK BISHOP RING, A.B., M.S.C.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
August, 1994

For My Father,
without whom I never would have done this.
And To Amy,

without whom I never could have done this.

And In Memory of
Robert F. Simmons

Acknowledgments

This book is a modestly revised version of my dissertation of the same title which was
written for the Department of Computer Sciences at the University of Texas at Austin.
The corrections, revisions, and preparations for printing in book format were all done at
the GMD — German National Research Center for Information Technology, in the Institute
for System Design Technology, where I serve as a postdoc in the Adaptive Systems Research
Group, led by Dr. Heinz Miihlenbein.

Work on the dissertation began with an effort to understand human thought processes.
The first major step in this journey was discovering that it had already been done over 100
years ago. Through The Principles of Psychology, 1 learned from William James that many
of my early ideas were promising, if incomplete, and should be pursued. Though none of
this research survived into the final dissertation, the foundation and understanding I gained
into human psychology has continually benefited all aspects of my research. I therefore want
to acknowledge, first and foremost, my advisor, Robert Simmons. I will always remember
him as the person who introduced me to a true theory of human psychology, who waited
patiently as my thoughts developed, and who gave me (much) more than 600 hours of his
time while I tried to explain them. Robert Simmons was a rare man, a professor who truly
cared about his students and made sure that they were able to overcome the many and
constant challenges of graduate school. This work would not have been possible without
him. I will always owe him a great debt, and I will miss him.

Much of this dissertation was greatly improved by the contributions of David Pierce,
who read and commented on all the chapters (in some cases more than once!), and who
was a daily help to me during the arduous process of thinking through and writing up
these thoughts. Kadir Liano acted as my sounding board before Dave, and to him I owe
much gratitude for his patience and for his excellent understanding of mathematics which
he always generously shared with me. I would like to thank Rick Froom for his friendship,
which has been a constant source of support for me. I’ve also been very fortunate to have
had Eric Hartman’s personal and professional support (as well as his sense of humor) to
rely upon for many years. Thanks to Jim Keeler for sharing his time and confidence and for
showing me what it means to work like hell. I'd also like to thank Ben Kuipers for his help
and encouragement, and to him and his students for allowing me the use of their sleeker,
faster, more expensive computers for doing many weeks of constant computations. I thank
Pavilion Technologies for allowing me to use their equipment while I worked for them.

Special thanks to Peter Dayan, who was more than generous with his time and energy,
reading through the entire dissertation and giving me many invaluable comments, particu-
larly on the sections involving reinforcement learning. Thanks also to Risto Miikkulainen
and Ray Mooney, whose comments also had a substantial impact on the final version. Long-
Ji Lin was very helpful in working through issues related to those described in Section 5.5.
Ming Tan pointed out the importance of separating the testing of Continual Learning from
that of testing CHILD. Joseph O’Sullivan gave me software for generating 3D policy plots,
such as that in Figure 5.3. Many thanks to Jurgen Schmidhuber for his encouragement and
for discussions on many topics.

vii

Thanks in a very major way go to NASA who supported three years of this research
through their Graduate Student Researchers Program, and to Tim Cleghorn at NASA who
has always shown enthusiasm for my work and who encouraged me despite many delays.

The most important acknowledgment belongs to the person whose contribution was
greater than all others combined: Amy Graziano (my wife). Without her help, I would now
be much older and much thinner.

Abstract

Continual learning is the constant development of complex behaviors with no final end in
mind. It is the process of learning ever more complicated skills by building on those skills al-
ready developed. In order for learning at one stage of development to serve as the foundation
for later learning, a continual-learning agent should learn hierarchically. CHILD, an agent
capable of Continual, Hierarchical, Incremental Learning and Development is proposed,
described, tested, and evaluated in this dissertation. CHILD accumulates useful behaviors
in reinforcement environments by using the Temporal Transition Hierarchies learning algo-
rithm, also derived in the dissertation. This constructive algorithm generates a hierarchical,
higher-order neural network that can be used for predicting context-dependent temporal se-
quences and can learn sequential-task benchmarks more than two orders of magnitude faster
than competing neural-network systems. Consequently, CHILD can quickly solve compli-
cated non-Markovian reinforcement-learning tasks and can then transfer its skills to similar
but even more complicated tasks, learning these faster still. This continual-learning ap-
proach is made possible by the unique properties of Temporal Transition Hierarchies, which
allow existing skills to be amended and augmented in precisely the same way that they were
constructed in the first place.

Table of Contents

Acknowledgments

Abstract

Table of Contents

List of Tables

List of Figures

1. Introduction

1.1 Ingredients of Continual Learning
1.2 An Example e
1.3 Incremental Learning, Hierarchical Development
1.4 Existing Hierarchical Systems

1.4.1 Bottom-up Constructive Hierarchies.
1.5 Proposed Methods
1.6 Overview of Dissertation

2. Robotics Environments and Learning Tasks

2.1 Robots and Robotics Tasks
2.1.1 The Environment
2.1.2 The Task e
2.1.3 The Learning Task o
2.1.4 Task Environments

2.2 Environmental Complexities oL
2.2.1 Varieties of Senses and Actions
2.2.2 Markov Environmentso 0o
2.2.3 Markov-k Environments L
2.2.4 Finite State Environments L.
2.2.5 Still More Complex Environments
2.2.6 The Effect of Future Activity

2.3 Dimensions of Difficulty o000

2.4 Conclusions

vi

Vviil

ix

xi1

x1il

Contents

. Neural-Network Learning 17
3.1 Supervised Mappings 17
3.2 Constructive Networks Lo 19
3.3 Higher-Order Systems Lo 21

3.3.1 Second-Order Networks 22
3.3.2 Partially Connected Higher-Order Networks 23
3.4 Conclusions 23

. Solving Temporal Problems with Neural Networks 25
4.1 Delay Lines 26
4.2 Learning Time Delays o 27
4.3 Recurrent Networks oo 28

4.3.1 The Focused and Sticky-bit Architectures 28
4.3.2 Recurrent Cascade Correlation 29
4.3.3 Fully Connected Recurrent Architectures 29
4.3.4 Second-Order Recurrent Networks 31
4.4 Conclusions e 33

. Reinforcement Learning 34

5.1 The Adaptive Heuristic Critic 34

5.1.1 Implementationo L 37
5.2 Q-learning e 38
5.3 Dynamic Programming oL 38
5.4 Gradient Following Methods 40
5.5 Some Geometric Intuition L oo 42

. The Automatic Construction of Sensorimotor Hierarchies 45

6.1 Behavior Hierarchies oo 46
6.1.1 Network Example 0 oo A7
6.1.2 Learning 48
6.1.3 An Example of Hierarchy Construction 19
6.1.4 Reinforcement Learning with Hierarchies 50
6.1.5 A Different Approach is Needed 50

6.2 Temporal Transition Hierarchies 51
6.2.1 Structure and Dynamicso 52
6.2.2 An Example oo 54
6.2.3 Deriving the Learning Rule 54
6.2.4 Adding New Units 59
6.2.5 The Algorithm 61
6.2.6 Tracing Through the Algorithm 64

6.3 Conclusions L 70

Contents xi

7. Simulations 72
7.1 Description of Simulation System 00000 72
7.2 Supervised-Learning Tasks oo o0 73

7.2.1 Reber Grammar. oL 73
7.2.2 The Gap Task o 78
7.3 Continual-Learning Results 82
7.3.1 Continual Learning vs. Learning From Scratch 85
7.3.2 Proprioception L 89
7.3.3 Hierarchy Construction in the Maze Environments. 92
7.3.4 Non-Catastrophic Forgetting 93
7.3.5 Distributed Senseso 94
7.3.6 Other Reinforcement-Learning Methods 95

8. Synopsis, Discussion, and Conclusions 96
8.1 Discussion of Results L oo 96
8.2 Deficiencies 97
8.3 Contributions 98

8.3.1 Distributed Hierarchical Control 99
8.3.2 Rating CHILD with the Dimensions of Difficulty 101
8.4 Future Work oL 101
8.4.1 Stationary Mappings 102
8.4.2 Recurrent Connections 102
8.4.3 The Changing-Reward Problem 103
8.4.4 Practical and Theoretical Work 105
8.5 Closing Thoughts 106

A. Simulating a Queue With a Focused Network 108

B. Equivalence of SLUG and Second-order Recurrent Networks 109

C. Parameter Values for the Maze Tasks 110

D. Derivation of Learning Rule for Non-Temporal Network 112

E. Derivation of Learning Rule for Recurrent Network 115

Bibliography 118

List of Tables

2.1
3.1

4.1
4.2

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1

The Dimensions of Difficulty0 0L 15
Properties of Several Feed-Forward Neural Networks 24
Finite-state grammars from Tomita 32
Characteristics of Temporally-Sensitive Networks 33
Learning Equivalence: The First Five Time Steps 65
Learning Equivalence: Time Steps 6-11 66
Learning Equivalence: Time Steps 12 and 21-25 68
Characteristics of Transition Hierarchies 71
Dimensions of Difficulty of the Proposed Tasks 73
Results on the Reber Grammar 76
The Algorithm’s Sensitivity to its Parameters 77
Results on the Mozer Gap Task 81
Results of Learning from Scratch 0. 86
Continual-Learning Results 0oL 87
Results of Learning from Scratch with Proprioception 90
Continual-Learning Results with Proprioception 90

CHILD and the Dimensions of Difficulty 101

List of Figures

1.1 A simple Environment 2
1.2 A slightly more complex environment 3
1.3 A still (slightly) more complex environment 3
4.1 A Markov-2 Environment o000 27
5.1 The Adaptive Heuristic Critic 35
5.2 Training a Controller Through Distal Learning 41
5.3 Landscape for the Simple Environment 43
6.1 A Behavior Hierarchy Without High-Level Units 47
6.2 A Behavior Hierarchy With One High-Level Unit 48
6.3 A Behavior Hierarchy With Two High-Level Units 49
6.4 An Environment to Demonstrate Behavior Hierarchies 50
6.5 An Environment to Demonstrate Temporal Transition Hierarchies 51
6.6 A Transition Hierarchy Without High-Level Units 53
6.7 A Transition Hierarchy with One High-Level Unit 55
6.8 A Transition Hierarchy for Figure 6.5 55
6.9 A More Complicated, Context-Sensitive Environment 56
6.10 A Transition Hierarchy for Figure 6.9 56
7.1 The Simulation System 0oL 74
7.2 The Reber Grammar 0 75
7.3 Progress of Testing Performance During Training 78
7.4 A Typical Training Curve While Learning the Reber Grammar 79
7.5 Sequences for a Gapof Two oo 79
7.6 Sequences for a Gap of Eight 000000 80
7.7 Training Curves While Learning the Gap Tasks 81
7.8 Diagram of Sense Labels oo oo 83
7.9 The Nine Mazes 84
7.10 Continual Learning vs. Learning from Scratch 88
7.11 Continual Learning vs. Learning from Scratch Using Proprioception 91
7.12 Maze Environment Introduced By McCallum 95
8.1 A Context-Sensitive Policy Lo 100
C.1 Optimized Parameters When Learning from Scratch 110

C.2 Optimized Parameters When Learning from Scratch Using Proprioception . 111

xiv

1

Introduction

The real world is characterized by a seemingly unlimited degree of detail and regularity.
Regularity occurs at multiple scales and to various extents. The simplest organisms may find
regularity such as correlations between scent and food (or movement and danger) that allow
them to survive and succeed. More developed creatures recognize subtler concepts, such as
the movements involved in mating rituals, and carry out more complex behaviors, such as
hunting and stalking prey. Humans, during the course of their lives, continually grasp ever
more complicated concepts and exhibit ever more intricate behaviors. The world supports
this continual learning process by providing a never-ending multitude of complexities and
regularities.

Traditional Al, dedicated to the automation of processes formerly requiring human in-
telligence, is also characterized by continual development. As the field progresses, new
technologies are created from those already in use. Machine learning techniques assist and
speed this process by allowing developers to focus on the more abstract issue of what the
working system must do rather than on how the system should work. (This is usually done
by creating examples of the system’s desired outputs for different inputs.) Developers often
find that even the much simpler task of specifying what the system must do can nevertheless
be onerous and time-consuming; so the pressure of progress also forces learning algorithms
to improve. Reinforcement-learning can potentially speed Al progress by taking the process
of abstraction one step further: the developer of a reinforcement-learning system need not
even specify what the working system does, but need only recognize when the system does
the right thing.

This dissertation focuses on an issue still more abstract: the process of automating
the development process itself. This is continual learning. Given a world of unlimited
complexity and regularity, and a method for measuring improvement, learning does not
need to stop. Even while performing a skill already well learned, it may be possible for
learning to continue, blurring the traditional distinction between training and performance.
Like the evolution of an organism, the growth of human learning, and progress in the field
of Al, continual learning is the process of constant improvement, towards no single, final
end other than improvement itself.

1.1 Ingredients of Continual Learning

Constructing an algorithm capable of continual learning is a difficult business. Fields of
research can progress because this progress is made by humans — systems still somewhat too
complicated to simulate computationally. Humans are themselves only capable of research
after decades of a continual-learning process requiring an unfathomably large number of
experiences and a device perhaps too complicated for humans ever to fully comprehend.
(Some say that if the brain were simple enough to understand, we’d be too simple to
understand it.) We can, however, attempt to specify a simplest minimal set of ingredients

2 Chapter 1. Introduction

Figure 1.1: A simple Environment.

necessary for the continual-learning process and then try to construct and combine these
ingredients computationally.

Three initial ingredients of continual learning are as follows. First, the continual-learning
algorithm should be autonomous: it should be able to receive input information, produce
outputs that can potentially affect the information it receives, and respond to positive
and negative reinforcement. That is, it must behave in its environment and be able to
assign credit to behaviors that lead to desirable or undesirable consequences. Second, these
behaviors should be capable of spanning arbitrary periods of time; i.e, their duration should
have no preset limit. Third, the continual-learning algorithm should be able to acquire new
behaviors when useful, but should avoid acquiring them otherwise.

1.2 An Example

A simple example should help demonstrate what is required by continual learning. Imag-
ine an agent in a maze-like environment, such as that shown in Figure 1.1. The agent can
occupy any of the twelve numbered positions. In each position the agent perceives a num-
ber, which uniquely represents the configuration of the walls immediately surrounding that
position. (A more detailed description will be given in Section 7.3.) The agent can move
north, south, east, or west. (It may not enter the barrier positions in black, nor may it
move beyond the borders of the maze.)

The agent’s task is to learn to move from any position in this grid-world maze to the
goal state (marked by the food dish), where it receives reinforcement. Using standard
reinforcement-learning techniques (as will be described in Chapter 5), the agent can learn
which actions to take so that it will reach the goal no matter where it begins. Such an agent is
autonomous: it receives information, evaluates it, makes a decision, and acts without human
intervention or interruption. (The relationship between the agent and its environment will
be discussed in Chapter 2.)

All positions are uniquely specified by the number in that position, except for those
labeled “6” and “12”. However, if in all positions labeled “6”, the agent moves south, and
in all labeled “12” the agent moves west, then it can choose an action in each position based
only upon its immediate perception, that will lead it to the goal regardless of its starting
position. But what should happen if the agent is moved to a slightly more complicated
environment, such as that shown in Figure 1.2, where there is an ambiguity due to the two
occurrences of the input “9”7 The agent’s previous learning should remain for the most part

1.3. Incremental Learning, Hierarchical Development 3

Figure 1.2: A slightly more complex environment.

intact. The agent should continue to move east when it senses “9” in the upper position.
However, it should move west upon sensing “9” in the lower position. How can this be done
without disturbing the behavior the agent has already successtully learned that brings it to
the goal in Figure 1.17

The answer proposed in this dissertation is to build upon the extant skills hierarchically,
leaving what is in place and amending it only as necessary to accomplish the current task.
The agent must leave its response to stimulus “9” in the upper position intact while modi-
fying its response to the same stimulus in the lower position. It must therefore be able to
distinguish the two different positions, though its input remains the same. It can recognize
that it is in the lower position by its preceding context: only in the lower position has it
just seen input “12”7. Therefore, the agent’s response to the “9” stimulus must be mediated
by the agent’s preceding sensory information.

If the agent were now to be placed in a different maze, such as that shown in Figure 1.3,
its behavior would need to be extended again, such that it moves west upon seeing “9”
whenever its previous input was either a “12”7 or a “9”7. The agent should cope with every
new situation in a similar way: old responses should be modified with surgical precision,
and new exceptions to these responses should be implemented based on the contextual
information that disambiguates the situations in which they apply.

1.3 Incremental Learning, Hierarchical Development

Two further ingredients of continual learning manifest themselves in the above examples.
The first is incremental learning. Incremental learning is a continuing process whereby

Figure 1.3: A still (slightly) more complex environment.

4 Chapter 1. Introduction

learning occurs with each experience rather than from a fixed and complete set of data.
Many learning algorithms, such as ID3 and back-propagation are so-called batch algorithms
requiring all training data to be collected in advance of the algorithm’s execution. (Back-
propagation can be modified trivially, however, into an incremental version that allows data
to be generated and presented as training progresses; and incremental versions of ID3 — ID4
and ID5 — also exist.) For continual learning, it is not known in advance what problems
will be addressed. It is impossible to collect the data from all the problems in advance of
training, and therefore incremental learning is needed.

The second and by far the most significant ingredient of continual learning is hierar-
chical development. Hierarchical development is the subsumption of extant mechanisms or
behaviors by newer, more sophisticated ones. This bottom-up process uses the system’s old
components as constituents of newly created components. Richard Dawkins [18] describes
evolution as a similar process whereby complex organisms evolve from simpler ancestors
that already embody many of the later organism’s sub-assemblies. It seems reasonable to
speculate also that elaborate behaviors would be exhibited by organisms whose ancestors
performed less elaborate versions of these behaviors. Human bipedal locomotion, for exam-
ple, is a very sophisticated behavior that arose from a less demanding, quadrupedal form
of movement. One of the clearest examples of this kind of development is the subsump-
tion architecture of Brooks [14] that seems to mimic the evolutionary process described
by Dawkins. Though development occurs in the subsumption architecture only through
concentrated human effort, it represents precisely the kind of development that must occur
automatically in continual learning.

1.4 Existing Hierarchical Systems

The importance of hierarchy in adaptive systems that perform temporal tasks has been
noted often, and many hierarchical systems have been proposed. In existing systems such
as those of Albus [1], Roitblat [86, 87], Jameson [42], Lin [55], Wixson [126], Dayan and
Hinton [21], Schmidhuber and Wahnsiedler [97], and Singh [99], hierarchical architectures
are developed top down by hand as an efficient method for modularizing large temporal
tasks.

In the architectures of Albus and Roitblat, tasks are defined as a disjunction of sequences
of subtasks. That is, every task might be accomplished in several ways, each of which
involves executing a sequence of less elaborate tasks. The other systems mentioned above
make use of reinforcement-learning. Wixson’s, Lin’s, and Dayan and Hinton’s systems
correspond roughly to the Albus-style architecture without the disjunction: Each high-
level task is divided into sequences of lower-level tasks where any task at any level may
have a termination condition specifying when the task is complete. Jameson’s system is
somewhat different in that the higher levels “steer” the lower levels by adjusting their
goals dynamically. Schmidhuber and Wahnsiedler proposed a mechanism for decomposing
a start and goal combination into a fixed number of subgoals generated automatically to
minimize the “cost” of the action sequence. The system proposed by Singh, when given a
task defined as a specific sequence of subtasks, automatically learns to decompose the task
into its constituent sequences.

1.4. Existing Hierarchical Systems 5

In all of the above systems, hierarchy is enlisted for task modularization. This allows
higher levels to represent elaborate behaviors that span broad periods of time. Modulariza-
tion can also speed learning. For example, the learning algorithm can take into account the
slower time-scales at which higher levels operate when assigning credit to the different lev-
els of the hierarchy. This “vertical” credit assignment is different from but related to both
temporal and structural credit assignment, and it is important in any temporal, hierarchical
learning system.

The purpose of the above systems, however, is not to develop hierarchies bottom-up
as a method for learning more and more complicated tasks. Rather, their purpose is to
improve performance in predesignated domains. These systems are constructed top-down by
human intelligence to reflect the intuitive decomposition of the task and its subtasks (though
Wixson presented some general guidelines for determining how to create new hierarchical
nodes).

1.4.1 Bottom-up Constructive Hierarchies

There are existing hierarchical systems that do develop their architectures bottom-up,
such as those of Wilson [124] and Drescher [24]. Wilson proposed a bucket brigade sys-
tem that allows classifiers to be executed in a hierarchical fashion. The system in some
ways resembles that of Albus (above) but its foundation in a classifier system implies the
possibility of automatic hierarchy-construction by a genetic algorithm. The schema sys-
tem proposed by Drescher supports three kinds of dynamic architectural development: new
schemas, “composite actions” (sequences of actions that lead to specific goals) and “syn-
thetic items” (concepts used to define the pre-conditions and results of actions). The latter
two are hierarchical constructs and reflect the fact that Drescher’s goal — simulating early
stages of Piagetian development — is most congruous with the philosophy of continual
learning. Drescher’s is also the most intricate system of those mentioned here.

Macro-operators in STRIPS [7, §D5] and “chunking” in SOAR [52] are two other meth-
ods for constructing temporal hierarchies. Macro-operators are specific sequences of lower-
level operators combined into a single new operator. They are somewhat like non-disjunctive
Albus-style hierarchies, though they are composed at the lowest level of discrete actions,
whereas Albus’s hierarchies consist of continuous actions. Unlike Albus hierarchies, macro-
operators can be constructed automatically to represent frequently occurring sequences.
Chunking in SOAR is also a development process. In solving a problem or task, the
solutions to subproblems are remembered (as a “chunk”) and used again whenever the
subproblem reappears. In real-world tasks, both macro-operators and chunking tend to
be less suitable than methods based on closed-loop control such as reinforcement-learning.
With macro-operators and chunking there is an assumption that the results of actions are
known in advance. They are not learned, which makes learning in stochastic environments
cumbersome.

Another constructive, bottom-up approach is the “hierarchy of decisions” of Dawkins [18],
similar to “history compression,” recently described and implemented by Schmidhuber [96].
The idea is that if one element of a sequence reliably predicts the next several elements, then
it can represent the predicted elements in a reduced description of the entire sequence. For
example, the sequence: AbcDefXyzDefQrsXyzDefQrsAbcDef can be reduced to ADXDQXDQAD.
This new sequence could then be reduced in the same way, to AXXA, which represents the

6 Chapter 1. Introduction

original sequence. This bottom-up process can continue, constructing a many-leveled hierar-
chy for long sequences with a large amount of regularity. However, this is not an incremental
method: all data must be specified in advance. It is also not immediately obvious how to
convert a method that constructs hierarchies out of a set of data into something an agent
can use for choosing actions.

1.5 Proposed Methods

In this dissertation I introduce a system capable of Continual, Hierarchical, Incremental
Learning and Development (CHILD). Two hierarchical methods are explored for use in
CHILD. The first method constructs hierarchies of binary sequences. The elements at the
lowest level of the hierarchy can be either senses or actions. Higher-level elements are
similar to macro-operators in that they stand for specific sequences of lower-level nodes.
These elements are different from macro-operators in that each unit acts as both an action
and as a sense: it can be executed, and it generates a value indicating whether the sequence
it represents occurred. The units are embedded in a connectionist-like system allowing
operation in stochastic environments. An overview of this method is presented in Section 6.1.

The second method, Temporal Transition Hierarchies, is far more successful than the
first. It is a neural-network-based learning algorithm presented in detail in Section 6.2. It
resembles Dawkins’ “hierarchy of decisions” method in that it pays particular attention to
the least predictable events. It then creates new units that learn to predict these. However,
the Temporal Transition Hierarchies method keeps track of the probabilities between events
(there may be no such thing as a completely “reliable” sequence of events), and it uses the
new units to modify these probabilities dynamically.

The underlying assumption of the untrained Temporal Transition Hierarchies network is
that event probabilities are constants: “the probability that event A will lead to event B is
P4p.” The network’s task is to learn these probabilities. Such an assumption of constancy
is only the first, coarsest, and most abstract description of any set of events, however.
After some examination, certain events can be seen to follow other events with varying
probabilities depending on the context. There may be a specific probability that pressing
the right button on the vending machine will result in the sudden appearance of a small
box of doughnuts. However, knowing the context — whether the correct amount of change
was deposited in the slot — generates two different, much more precise probabilities.!

The Temporal Transition Hierarchies algorithm focuses on highly unpredictable events
and creates new units to help predict these events more reliably. The new units look at
information from the previous time step in search of an unambiguous context in which the
event becomes predictable, just as the context of “deposited correct change” helps determine
whether “doughnuts will appear” when the right button is pressed.

In robotics tasks, an action may seem to succeed frequently and fail frequently. Temporal
Transition Hierarchies can be used to find the broader context in which an action will

IDawkins also noticed this with respect to animal behavior, and he posited a model in which “there is
not just one global set of transition rules governing all behaviour patterns of an animal,” but that there are
“nested sets of transition rules, each set of rules holding sway within a circumscribed cluster of elements.”
Dawkins’ model is also hierarchical, though it is much different from and somewhat less powerful than the
one presented here.

1.6. Overview of Dissertation 7

succeed. In Figure 1.2 simply sensing input “9” is insufficient for determining whether to
move east or west. A new unit would be constructed to find the broader context in which
the agent should move east. The new unit searches for information from the preceding time
step to predict whether, when the agent senses “9”. the move-east action will succeed or
fail. If it finds no such information, another unit can be built to search one more step back
in time, and so on.

The units created by the Temporal Transition Hierarchy resemble Drescher’s “synthetic
items”, created to determine the causes of an event (the cause is determined through train-
ing, after which the item represents that cause). What is particularly powerful about
Temporal Transition Hierarchies is that they are differentiable and can be trained via gra-
dient descent, as described in Section 6.2.3. The algorithm can therefore also be used as a
sequence-learning neural-network algorithm. As such, it learns very quickly — more than
two orders of magnitude faster than recurrent neural-network algorithms on benchmark
tasks — shown in Section 7.2.

1.6 Overview of Dissertation

The chapters that follow fall into three categories: background material, novel contri-
butions, and results. Chapters 2-4 are background chapters, providing descriptions of all
concepts necessary for understanding the primary technical contribution (Chapter 6), the
results (Chapter 7), and the conclusions (Chapter 8). Chapter 2 explores the kinds of tasks
that appear in the later chapters and describes their most influential attributes. It is a gen-
eral overview of the technical issues relevant to continual learning, such as sense and action
types, Markov environments, reinforcement versus supervised learning, and modeling versus
control. Chapter 3, “Neural Network Learning,” describes background issues and related re-
search in the field of neural networks most relevant to continual learning and the methods of
Chapter 6. Besides simple feed-forward networks, it discusses constructive and higher-order
neural networks. Chapter 4 discusses the issue of time in neural networks, including time-
delay neural networks, recurrent neural networks, constructive recurrent neural networks,
and higher-order recurrent neural networks. Chapter 5 is a general overview of reinforce-
ment learning and describes the most pertinent aspects of the field for those not already
familiar with it. Chapters 3, 4, and 5 may be skipped in part or in whole by those who
already have a good background in the topics addressed. Chapter 6 describes the two hier-
archical methods mentioned just above. It derives the learning rule for the second of these
(Temporal Transition Hierarchies) and presents the learning algorithm. Chapter 7 presents
the major results, first demonstrating the efficacy of the Temporal Transition Hierarchies
learning algorithm, and then presenting CHILD, the continual learner, in reinforcement-
learning environments. Chapter 8 concludes the dissertation by discussing and interpreting
the results, and analyzing the contributions as well as the deficiencies of the Temporal
Transition Hierarchies algorithm and of CHILD as a continual learner. The chapter ends
optimistically by proposing future work.

2

Robotics Environments and Learning Tasks

This chapter explores the kinds of tasks that appear in the chapters that follow. These
tasks can best be described as simple (often simplistic) robotics tasks that have several
important properties. First, they are amenable to reinforcement learning, where the re-
inforcement can be easily changed to create tasks of greater or lesser difficulty. Second,
they are easy to visualize: it is clear what the robot (or agent) should be learning, and its
progress can be readily measured by monitoring the amount of reinforcement it receives.
Third, the tasks are highly general; the details, including the complexity of the task to be
learned, are all modifiable. In fact, all tasks of this kind can be described very simply in
terms of senses, actions, and reinforcement, which allows an enormous range of possible
specific tasks, from the trivial to the non-computable.

2.1 Robots and Robotics Tasks

Any robot can be described as the implementation of a set of mappings from current
and previous sense signals and actions, to action signals. For a robot to perform a task it
must produce actions through its actuators, possibly as a function of its previous actions
and its previous and current sensations. In the discrete time case, this can be formalized
as follows:

a(t) = f:(5(0),a(0),35(1),a(l),...,8t —1),dat —1),s(t)), (2.1)
where @(7) is a vector of actuator signals describing the motor activity of the robot at time 7;
§(7) is the vector of sensory signals the robot receives at time 7; and f; is a function mapping
a sequence of 2t 41 vectors onto a single vector. f; is not necessarily deterministic but might
choose randomly from among many possible action-vector candidates. This formalization is
general enough to describe any discrete-timerobot.! The senses can encode tactile, auditory,
visual information, etc. including, for example, joint angles and rates of change. The action
vector can encode any control signal, including the specification of positions, joint angles,
and torques.

Since f; can be any function taking the proper arguments, Equation 2.1 imposes no
limits on the complexity of the robot. A more appealing yet no less general formulation of
Equation 2.1 is the following combination of equations:

ity = F(S@)
S() = g(S(t—1),a(t —1),5(0).

Clearly, Equations 2.2 and 2.3 are identical to Equation 2.1 when ¢ is the concatenation
operator, and f(.S(t)) simply translates its argument into a call of f;. However, it is conve-
nient to think of the robot’s next action as a function of its last action, its current sensory
inputs, and its internal state.

1The continuous-time case will not be considered here.

2.1. Robots and Robotics Tasks 9

2.1.1 The Environment

The robot’s environment interprets the sequence of action vectors and generates the
sequence of sense vectors. It can be described as nearly the mirror-image of the robot:

st) = f(EQ®)
E(t) = ¢(E(t—1),dt—1)).

where E(t) is the state of the environment at time ¢. (Just as with f in Equation 2.1, both
f" and ¢’ may be stochastic: different possible states might result from a given action in
a given state, and different possible sense vectors can be produced in the same state on
different occasions.) A similar description of finite-state task environments was given by

Wilson [125].

2.1.2 The Task

Together, Equations 2.2-2.5 define a protocol by which a robot can interact with an
environment. The robot acts in response to the sensations it receives; the environment
responds to the robot’s actions. This general framework describes a set of robots that can
perform the broadest range of tasks in the broadest range of environments.

Besides describing the actions that are performed by a robot, the functions f and ¢
implicitly describe the task the robot performs. Since Equations 2.2-2.3 impose no limits
on the complexity of the robot, they therefore also impose no limit on the complexity of the
robot’s task (provided it can be performed at all). However, the task might often require
less than all the information supplied in Equation 2.1. Some very simple tasks do not
depend on sensory or action information of any kind. In fact, most tasks, even most of
those that require knowledge of previous actions, can be performed when ¢ is a function of
state and current sense information only (i.e., when f; is a function of sense information
only). With proprioceptive devices, for example, the robot can encode its last action as
sensory inputs. This simply uses the robot’s hardware to transform action information
into sensory information, thereby eliminating ¢’s explicit dependence on d@(t — 1). More
generally, ¢ could include as part of its preliminary computation of S(¢) a computation of
f(S(t—1)). This will work when f is deterministic or when its randomness is reproducible.
The function ¢ actually requires @(t — 1) as an argument only when (1) the task requires
knowledge of previous actions, (2) f is truly stochastic, and (3) the robot lacks sufficient
proprioceptive devices.

2.1.3 The Learning Task

Because d(t) can be used to describe the behavior of an agent that performs a task, it can
also be used to express the desired behavior of an agent that learns to perform the task. In
this case, Equations 2.2 and 2.3 describe a set of training examples for a supervised-learning
agent. The training input to the agent at time 7 would be §(7) — and possibly d(7 — 1) —
and the target output would be a(7).

10 Chapter 2. Robotics Environments and Learning Tasks

Reinforcement Learning Tasks. A reinforcement-learning agent is somewhat more so-
phisticated than the supervised-learning agent. A teacher must be present to provide the
supervised-learning agent with correct responses for each situation. In reinforcement learn-
ing, the correct action is never given. Instead, the agent must learn for itself which actions
are correct in each situation.

To make learning possible without a teacher, a reinforcement environment supplies the
agent with a “reinforcement signal.” The agent monitors changes in the reinforcement signal
to decide which actions are best, where the best actions maximize the agent’s expected
reinforcement over time. More formally, the reinforcement signal is some function of the
previous state of the environment and the most recent action taken:

r(t) = R(E(t —1),@(t — 1)), (2.6)

where E(t) was given in Equation 2.5. The correct action to take in a state is any action
that maximizes the expected future reinforcement:

a(t) = argimax E[i Yr(t+ 1), (2.7)

T=1

where argmax,(f(a)) returns the argument, a, that maximizes f(a); and v is a “discount
factor” — a value often chosen less than 1.0 to avoid infinite sums. The correct action
at time ¢ is any of the possible actions that maximizes the expected sum of the (possibly
discounted) future reward signals — assuming every action taken at every step obeys this
rule.

Because reinforcement-learning environments specify the agent’s reinforcements, they
also implicitly define the agent’s task (to perform the behavior that maximizes expected
reinforcement). As a result, there are two separate meanings of the word “task” in reinforce-
ment learning: the behavior the agent should ultimately perform, and the task of learning
to perform this behavior. In the remainder of this dissertation the word “task” is intended
to denote the latter, the task of learning to perform the appropriate behavior.

Much has been written about reinforcement-learning in both deterministic and stochastic
environments [9, 10, 11, 111, 120]. Some of this work will be described in detail in Chapter 5.

2.1.4 Task Environments

In the reinforcement-learning literature, task environments are frequently quite simple
and are typically not intended to replicate actual environments. Instead, they are used
to test out aspects of intelligence a robot might require in a real environment. The tasks
explored are therefore often “toy” domains (for example, the maze tasks of Sutton [105]).
Yet they are subtly different from most “toy” domains of traditional Artificial Intelligence
(e.g., the blocks world of Winograd [7, §F4]). One way of describing this difference is
that in the latter case, algorithms are often devised to solve problems that embody some
important aspect of reality, whereas in the former case, problems are usually devised to test
algorithms that embody some important aspect of intelligence. The underlying motivation
for traditional Al systems is also often to emulate some important aspect of intelligence,
but not necessarily in a way that can be tested in arbitrary situations. The algorithms
investigated here, however, are not designed for the peculiarities of any specific task. Indeed,

2.2. Environmental Complexities 11

the algorithms can be completely separated from the task and quite nicely plugged into
any other task that can be expressed in the form of Equations 2.2-2.6. These equations
describe an interface protocol between robots and environments (i.e., between learning
agents and the tasks they are to learn). Any agent that follows this protocol may be tested
in any environment that also follows it. The interface is very general and applies to any
reinforcement-learning task.?

Presumably, the agent implements some quality of intelligence. This quality can be
tested in different situations by placing the agent in different kinds of environments. The
agent’s performance might vary greatly across these different environments, and may, in
fact, be completely miserable in some. Nevertheless, the agent need not be designed for
a certain task or even for a certain kind of environment in order to be tested on it. As a
result, the simplicity of many environments used in the reinforcement-learning literature is
designed intentionally so as to focus on a particular contribution of the learning algorithm
and to measure the algorithm’s performance with respect to that contribution.

2.2 Environmental Complexities

The environment can be complex in many different ways, some of which are discussed
next. It is important to note, however, that a task may be simple even though it takes place
in a complex environment. Therefore, when discussing the difficulties introduced by a com-
plex environment, the robot’s task is assumed to be a worst-case task: i.e., it is sufficiently
demanding that the robot must resolve the most complex problems the environment can
introduce in order to choose the correct actions.

2.2.1 Varieties of Senses and Actions

The range of possible senses and actions allowed by Equations 2.2 and 2.3 is enormous,
from the simplest to the most advanced, to the futuristic. In the simplest reinforcement-
learning environments, sense vectors explicitly represent the robot’s exact location, and
action vectors produce only a simple set of actions. Sense and action vectors are generally
binary in these cases and are encoded locally. That is, in each vector, exactly one item
(corresponding to the current state) has a value of 1, and all others have a value of 0. These
tasks are helpful for illuminating certain reinforcement-learning algorithms that enlist the
mathematics of dynamic programming, as will be described in Section 5.3. Agents only need
to learn the optimal mapping from the immediate sensory input (which unambiguously
specifies the environmental state) to the best action(s) for that state. (This mapping is
known as the optimal policy.) Since these vectors are orthogonal, they are conveniently
amenable to learning with even the simplest neural networks.

There are many examples of more complicated environments, however, that use dis-
tributed senses [3, 54]. These environments are necessary for testing algorithms that can
learn complicated policies (i.e., complicated sense—action mappings). Even more difficult
(and more realistic) are environments with continuous-valued, distributed sense and action
vectors [3, 5, 72, 92, 107]. Tasks in these environments can be difficult not only because
of the possible complexity of the policies they might require, but also because the action
space is infinite, meaning it is no longer possible to try all actions exhaustively.

2An example system showing the generality of this modularity is described in Section 7.1.

12 Chapter 2. Robotics Environments and Learning Tasks

2.2.2 Markov Environments

Though mappings from the current sense vector to the correct action vector can be arbi-
trarily complex, there are also other dimensions of difficulty in robotics tasks. For example,
there is the problem of sense-disambiguation. An algorithm that can learn perfectly an
arbitrary mapping from the current sense vector to any action vector is not a guarantee of
success, since the best action might also depend on previous sensory inputs.

The simplest environments used to study reinforcement learning are Markovian and do
not have the problem of ambiguous sensory information. A Markov environment is one in
which the sequence of states that the agent visits are Markov chains. Briefly, a Markov
chain can be described as a sequence of discrete random variables &(7) drawn from a set S
representing the state space, and

P(z(t) = s|2(0),...,2(t — 1)) = P(x(t) = s |z(t — 1))

where t > 1 and s € S (see Grimmett and Stirzacker [37, Ch. 6], and Papoulis [70, §15-3]).
The probability of encountering a given state at one point in the chain depends only upon
the last state encountered; the sequences are history independent. Knowledge of previous
items in the chain introduces no further information regarding the probability of the next
state.

A Markov environment® could therefore be described as an environment in which

PIE() = s[(E(0),d(0)), ..., (E(t = 1),a(t = 1))] = PIE(t) = s[(E(t = 1),a(t = 1))],

where, as before, d(7) is the action the robot takes at time 7, and E(7) is the state of the
environment at time 7. Assuming a unique sensory input for each environmental state, the
task described by a Markov environment in terms of Equation 2.1 is therefore

a(t) = f(5(t)), (2.8)

since the correctness of the action chosen at time ¢ can be determined by the sensory input
at time ¢, inasmuch as it can be determined at all.

2.2.3 Markov-t£ Environments

One might at first wonder whether the characteristics of a Markov environment are
shared by an environment in which the probabilities of the next state depend not just upon
the current state and action, but, say, upon the past k state/action pairs. A chain of such
state sequences could be described more formally as

P(z(t) = s|2(0),...,xt — 1)) = P(z(t) = s|a(t —k),...,x{t—1)). (2.9)

A Markov-k sequence such as this, however, is easily converted to a k-dimensional Markov-1
sequence [70, p. 530] and therefore has the properties of a Markov-1 sequence. (The term
non-Markovian, however, generally means “not Markov-1.") A robot that is to negotiate
a Markov-k environment will need to store the past k sensory vectors in order to take the

3Markov environments are also known as Markov Decision Tasks (MDT’s) and Markov Decision Process

(MDP’s).

2.2. Environmental Complexities 13

correct actions. Provided that knowledge of k is known for a given environment, the task
of the learning agent is identical in the Markov-k and the Markov-1 environments. The
learning task is thus described as:

Q)= f(5(t—k+1),5t—k+2),...,51).

However, if k£ is not known, then the robot must learn this as well. Methods for dealing
with this problem are described in Section 4.2.

2.2.4 Finite State Environments

In the real world, contingencies can span unlimited periods of time. If the robot breaks
a vase at one time step, the vase will still be broken forever after that. If a robot that
remembers only its past k senses breaks a vase and then leaves the room for k£ + 1 time
steps, upon its return, it cannot accurately predict its perception of the broken vase. Clearly,
the robot needs memory that will store information for arbitrary periods of time, and it
must be able to use that memory to generate its actions.

A more general task than that of learning a Markov-k environment is that of learning
a finite-state environment. As with a Markov-k environment, a finite-state environment
requires only a fixed amount of information in order to choose the next action. However,
in the case of the finite-state environment, more may be required than simply a fixed-
sized history of the past several sensory inputs. Instead, some information may be needed
from the arbitrarily distant past. These environments correspond to Finite State Automata
(FSA).*

In finite-state environments the current state can be determined if the starting state
is known and a record is kept of all previous actions (state transitions in the FSA). If all
loops are always removed from the record (where a loop is a sequence of transitions that
lead from some state back to itself), then the record will never need to be longer than the
number of unique states in the environment. When the loops are removed, the record may
contain information from arbitrarily long ago, unlike in the Markov-k environment where a
record of just the latest k inputs is sufficient for determining the current state.

2.2.5 Still More Complex Environments

Keeping a record to determine the current state only works for deterministic finite-state
environments, in which the transition taken from a state must lead to a single, specific
next state. A stochastic finite-state environment, however, does not obey this property.
The stochastic finite-state environment corresponds to the non-deterministic finite-state
automata in which a transition taken from a state can result in arrival at different states
in different instances. These environments are a superset of deterministic finite-state en-
vironments. They are also very difficult to negotiate, since one can always determine the
current state of a finite-state environment given a complete model of the environment and
a record of previous state transitions, but this is not the case with stochastic finite-state
environments.

4The states of a finite-state environment correspond to the states of the FSA. The sensory information
emitted by the finite-state environment corresponds to the “outputs” of states in the FSA. The actions
taken by the robot correspond to the transitions of the FSA.

14 Chapter 2. Robotics Environments and Learning Tasks

Even more difficult than stochastic finite-state environments are hidden Markov envi-
ronments, in which an underlying stochastic finite-state automaton (i.e., a Markov chain)
is not observable directly but can only be observed through a stochastic process that gener-
ates the observable phenomena from the actual states [78]. Even if the robot has a correct
model of the underlying Markov environment and perceptual mappings, it still can only
estimate the probability that it occupies a particular state; it rarely knows precisely where
it is, maintaining at best a fuzzy concept of its state.

As difficult as hidden Markov environments might be, further difficulties can be added.
As with finite-state and stochastic finite-state environments, the less knowledge the robot
has, the more difficult tasks in that environment may be. If the robot has no knowledge
of the observation probabilities, the transition probabilities, or the number of states in the
environment, these must also be learned, resulting in the possibility for some excruciatingly
difficult tasks. Nevertheless, even more difficult environments could be created if the un-
derlying model were not finite state. Push-down environments, for example, could require
arbitrary amounts of information to be stored to solve a given task. These then might be
either deterministic or stochastic, etc.

2.2.6 The Effect of Future Activity

Besides the complexities just discussed, there is the issue of reinforcement, which in-
troduces the dimension of future activity in choosing correct actions. These aspects of
complexity have also been discussed by Littman [58], building on the work of Wilson [125].
Littman describes two dimensions: (1) the number of future steps explicitly or implicitly
considered before taking an action (which he labeled 3), and (2) the amount of history
information needed to take the correct action (which he labeled).

The most interesting values of § are f = 0 and # > 0. In the former case, the only
reinforcement of interest is that received immediately upon taking the next action. In the
latter case, the agent must choose actions now in order to achieve reinforcements in the
(possibly distant) future. Besides this major distinction, it is also of some value to charac-
terize specific tasks by the size of 3 (i.e., the maximum distance between a reinforcement
and a state whose best action is affected by that reinforcement). Clearly, the difficulty of
the task increases with .

Littman assumed a finite-state environment and therefore assumed a finite number of
bits, h, could be used to store all the history information needed to achieve maximum
reward,? since only a finite number of labels are needed to uniquely encode all possible
states. But this is not the case in environments that are not finite state, such as push-
down environments and most real-world tasks. Real-world events are only reproducible in
contrived situations, whereas finite-state environments do not change from one iteration to
the next, and events are reproducible: in a given state, the same action will result in the
same next states with the same probabilities. In non finite-state environments, instead of
states, there are regularities: situations that are similar to previous situations in certain
ways.

In non-finite-state environments, one can encounter interesting relationships between
h and reinforcement: the maximum achievable reward might be related to the amount

SMaximum reward is defined in terms of average reward per time step.

2.3. Dimensions of Difficulty

15

Dimensions of Complexity Extreme values

1 | Sense/Action Representation Local vs. Distributed
2 | Individual Sense/Action Values Binary vs. Continuous
3 | Sense—Action Mapping Orthogonal, Linearly-separable, ...
4 | Sense—State Mapping One-one vs. Many-many
5 | State—Action Mapping One-one vs. Many-many
6 | Next State Function Deterministic vs. Stochastic

i.e., (state, action)—state Many-one vs. many-many
7 | Underlying Model Markov, F.S.A., P.D.A., ...
8 | History Information Needed 0...00
9 | Duration History Must Be Kept Fixed vs. Infinite
10 | State/Action—Reinforcement Mapping | Many-one vs. Many-many
11 | Planning Steps for Reinforcement 0...00

Table 2.1: These eleven dimensions of complexity can be used to construct tasks of various
kinds of difficulty. The middle column gives the name of the dimension of complexity. The
right-hand column gives the extreme cases (when possible) from simplest to most difficult
for that dimension. It is conceivable that a particular task may be extremely difficult in
one dimension while being trivial in others.

of information the robot can store. The larger the robot’s h, the better it becomes at
achieving its reward. In these frequent real-world situations (say, taking an exam), reward
is achievable with a small &, but is greater with a larger h. Similarly, reinforcement may
also be related to any of the other dimensions of difficulty described above.

2.3 Dimensions of Difficulty

The result of the preceding analysis is to demonstrate that there are many different
dimensions of complexity present in the robotics tasks of the form given in Equations 2.2—
2.6. Some of these dimensions, given in Table 2.1, are as follows. (1) Sense and action vectors
can be distributed or encoded locally, and (2) they can have binary, discrete, or continuous
values. (3) The mapping from senses to actions may be of any complexity. (4) Senses may
unambiguously represent a state or can be highly ambiguous. (5) In the simplest case,
there might be a unique action for each state, or in the most complicated case, there are
multiple best actions for each state where some states have the same best actions. (6) An
action in a state may or may not completely determine the next state. (7) The environment
may be a Markov, finite-state, or push-down environment, or something still more difficult.
(8) In order to choose the best action, none, some, or all previous sense information may be
required. (9) The length of time any particular piece of history information is needed might
be fixed (as in Markov-k environments) or arbitrarily long, as in finite-state environments.
(10) An action in a state may or may not completely determine the reinforcement to be
received. (11) The best action might depend on the current reinforcement alone, or it may
depend on future reinforcements as well (Littman’s 4 dimension).

As noted earlier, the complexity of the environment is determined by the most difficult
tasks that can be designed for the environment. This in turn implies a required minimal

16 Chapter 2. Robotics Environments and Learning Tasks

degree of sophistication on the part of the agent that performs the task. (If a simple
agent can perform the task, then it’s a simple task.) In general, the greater the skills of
the agent along the above dimensions, the more successful it will be in achieving reward
in environments that contain complexities across these dimensions. An agent capable of
achieving reward in such an environment may achieve greater rewards if its abilities across
the dimensions are more acute. If there is no maximum achievable reinforcement, then
continual improvement leads indefinitely toward greater average reward.

Modeling versus Control. A word should be said about the distinction between modeling
the environment and controlling an agent within it. Many systems, some of which will
be described in Sections 5.3 and 5.4, separate these two aspects of learning. Modeling
the environment consists of predicting what will happen next if a certain action is taken
(including taking no action). The difficulty of the modeling task depends upon dimensions
1,2, 4,6, 7, 8 9, and 10. The control task, on the other hand, is the task of deciding
which action is best. The difficulty of this task depends upon dimensions 3, 5, 6, and 11.
It is convenient to separate control from modeling for several reasons. First, if a controller
has a perfect model, it can choose optimal actions by using the model to search the action
space [108]. Second, once a model of an environment has been learned, it can be used
by many different controllers. Third, the controller may assume as part of its strategy the
burden of improving the predictive power of the model by exploring parts of the environment
in which the model performs poorly [64, 71, 94, 107]. Finally, learning in both the model and
the controller can occur independently but simultaneously, such that incremental advances
in the model can increase the efficacy of the controller and vice-versa.

Since different kinds of learning might be required in the modeling and control tasks,
certain learning strategies might be more useful in one than in the other. In much of the
research on reinforcement learning, some form of neural network is used for one or both
tasks. Part of this is due to the generality of networks and their capabilities of learning
across so many of the dimensions in Table 2.1, and part of it is due to the way in which
search can be done in neural networks by gradient descent. The next chapter is therefore
devoted to a description of neural-network learning.

2.4 Conclusions

In the chapters that follow, different methods will be discussed for addressing the dimen-
sions just described. No method (including that proposed in this dissertation) addresses
all dimensions perfectly. For continual learning, one would like an algorithm whose poten-
tial learning ability is as broad as possible across all dimensions, but which can begin by
learning simple tasks and steadily increase its abilities. Think of Table 2.1 as a wish-list
that should eventually be addressed by a single learning method. In this dissertation, I
discuss a method that does in fact do continual learning, but at the cost of limiting the
agent in terms of the complexities of the tasks that it can learn. In particular, CHILD, the
agent I will describe beginning in Chapter 6 is limited to learning Markov-£ environments.
Improvements discussed in the future work section (Section 8.4) attempt to broaden these
limitations.

3

Neural-Network Learning

“Neural Network” is a broad term covering a large interdisciplinary field. In this chapter
I intend to describe only a large enough part so that the dissertation can be understood.
I will first discuss simple feed-forward systems and some of their limitations. Then I will
present a few constructive algorithms, which build networks as they learn. Finally, I will
offer a brief discussion of higher-order networks.

3.1 Supervised Mappings

In the previous chapter I discussed the importance in a robotics environment of learning
mappings: mappings from senses to states, states to senses, states to actions, etc. An
excellent way to encode and to learn these mappings is with a neural network. Standard
feed-forward neural networks are capable of representing (if not learning) any computable
function mapping [40]. They are not limited to binary- or even discrete-valued inputs or
outputs, or to locally encoded pattern representations. This greatly reduces the amount of
research effort needed to attack the dimensions of difficulty listed in Table 2.1.

The task faced by neural networks is that of learning supervised mappings: given a
training set of input vectors and associated target vectors, learn a rule that captures the
underlying functional relationship from input vectors to target vectors. That is, each target
vector, fp, is a function, m, of the input vector,]_;9:

—

T, = m(]p)-

The task of the network is to learn the function m. This can be achieved by finding
regularities in the input patterns that correspond to regularities in the target patterns. The
network has at its disposal a set of parameters (weights) whose values can be changed to
modify the function m’ computed by the network. The parameters are then modified until
m’ closely resembles m, as measured by its responses to the input patterns of the training
set. The network’s task is not just to store the training patterns for later retrieval, it is to
learn the function m. Learning the function allows the network to generalize what it has
learned to unseen inputs, and to ignore noisy training patterns (input vectors with incorrect
targets).

In robotic’s tasks, a neural network could be used, for example, to learn the function f
in Equation 2.8, where it would take as input the current sense vector and have as a target
the desired action vector. This would be effective in Markov-1 environments.

By now, the mechanics of simple feed-forward neural networks and their gradient-descent
learning algorithms are quite well known — but a brief description introducing terms and
standardizing notation can’t hurt. To learn a mapping from a vector of real-valued inputs
to a vector of real-valued outputs, each element in the input vector is assigned to a unit (or
neuron) in the input layer of the network. Each element of the output vector is assigned to

18 Chapter 3. Neural-Network Learning

a unit in the output layer of the network. Typically there is one other layer of units called
the hidden layer, though there may be any number of hidden layers (including zero), and
each may have any number of units. In the typical single hidden layer scenario, each input
unit is connected to all the hidden units via weighted connections, where the weights are
adjusted by the learning algorithm. Each hidden unit is in turn connected to all the output
units via a different set of connections. The values of the hidden units are computed as:

H' = f(B' + Zwﬁﬁ), (3.1)

where H® is the i** hidden unit, B® is a real-valued bias unit that serves as a threshold, I’
is the 7" input unit, w;; is the weight of the connection from unit j to unit 7, and f* is
an activation or transfer function (usually a sigmoid such as tanh or the logistic function,
which are monotonically increasing and have high and low asymptotes with slope zero).

The outputs are computed in a nearly identical way:

J

where O° is the i** output unit. Learning is done by comparing the output values to the
values they should have been (the targets), and using gradient descent to reduce the sum
squared difference, E:

1 : :
B= Y Y1 - O,
p 2

where T is the :*" target value and p is an index of input- and target-pattern pairs that
are used for training. The weights are the parameters that can be modified by the learning
algorithm to reduce the total error generated over all the patterns.

Back-propagation, a gradient descent algorithm, computes the contribution of every
weight to the total error: Aw;; = %. The weight is changed in the direction opposite to
that contribution: w;; « w;; — nAwij,]Where n, the learning rate, is usually a small fraction
that keeps the weight change from being too large. Gradient descent is a kind of constraint-
satisfaction technique: given one set of inputs and another set of outputs, the weights are
constrained such that they generate the appropriate output for each input. Teaching a
robot the correct action given a particular sense vector (or any of the other mapping tasks
described above) is simply a matter of presenting input patterns and target patterns to the
network time and time again until gradient descent finds weights that satisty the constraints
of the data.

I stated above that neural networks can in principle represent any function that maps
inputs to outputs; however, this applies only to networks with hidden units, and an arbi-
trarily large number of them at that. Furthermore, the hidden units must have non-linear
activation functions (Equation 3.1); otherwise the entire network is no more powerful than
a network with no hidden units, and networks with no hidden units have limited represen-
tational ability (i.e., they can only make linearly separable classifications). Nevertheless,
single-layer systems do have one advantage over networks with hidden units: if the patterns
that it must learn are linearly separable, the network can learn them very quickly using

3.2. Constructive Networks 19

gradient descent in the form of the delta rule [118], or, even more quickly using second-
derivative information (e.g., Conjugate Gradient [77, §10.6], Quickprop [26]).

On the other hand, more powerful activation functions can increase the abilities of the
network, even in the absence of hidden units. As an extreme case, an activation function
could be any Turing computable function. If the input to the function is in a form that
allows identification of the individual input values,! a single node can theoretically make
any classification.

Less extreme cases are higher-order neurons (also called sigma-pi units [88]), which use
multiplicative connections — the input is a sum over products of a single weight and any
number of input units. This is explained in more detail in Section 3.3. For now it should
only be pointed out that even units with a simple, sigmoid activation function can be very
powerful if the input is sufficiently sophisticated: units with higher-order inputs of order &
(where the sum contains products of k inputs), can solve problems of order k. A problem of
order k is one requiring a boolean computation of k variables [62]. (Classification of linearly
separable, binary input patterns is a problem of order one.) This is important because
Temporal Transition Hierarchies (to be introduced in Section 6.2) contain no hidden units,
but do have higher-order units.

3.2 Constructive Networks

A different limitation of neural networks is their fixed architecture. Many algorithms
have been proposed that, like the methods to be introduced in Chapter 6, add new units
during learning. In general, they are not intended to address continual-learning issues, but
rather to address issues of completeness, efficiency, and generalization. If a problem is given
to a specific multi-layer network, the network may be too small to solve the problem (i.e.,
to learn the mapping from inputs to outputs), thus requiring more units before the network
can map the entire training set completely. On the other hand, large networks are capable
of learning simple mappings but are inefficient, and their excess parameters usually result in
poor generalization. In these cases a small network would be more appropriate. To address
these issues, many constructive neural networks have been devised that increase the size of
the network during the course of learning. I will mention a few.

One of the first network-modifying systems, the Upstart algorithm, was proposed by
Frean [31] who suggested adding new hidden units during the course of learning. The
network begins as a single perceptron that attempts to learn the complete mapping, which
must be a binary classification. Eventually, the learning rule (the “pocket algorithm” [32])
will find the best mapping representable by a single perceptron. At that point there may

!This could be done by assigning incoming weights such that the sum in Equations 3.1 and 3.2 can be
separated into the original components. For example, if the input values are binary, then weights with
n

values 2/ (where j is the index of the input unit) will generate a sum: Z?j I’ Since each IV value will

J
take exactly one bit, the value of I/ can be retrieved as the floor of the sum divided by 2/ modulo 2, i.e.

Zn: 29

Il = floor(—L5—) mod 2.
Alternatively, the notion of an “activation function applied to the sum of the weighted input” can simply

be replaced by any function of n parameters, where n is the number of inputs into the neuron.

20 Chapter 3. Neural-Network Learning

remain some misclassified patterns. These patterns are broken into two groups, those that
were classified incorrectly by the parent perceptron as “on” (belonging to the category)
or “off” (not belonging to the category). These groups are called the wrongly-on and
wrongly-off groups. Two new perceptrons are then created, one to learn the wrongly-on
group, and one to learn the wrongly-off group. Strong connection weights are then built
from these daughter units to the parent to override the parent’s misclassification on these
patterns. The network’s performance will always improve whenever new daughter units
are added, since the daughters can always improve the output of the parent (i.e., they can
simply memorize a single pattern from their training sets and ignore all others, reducing
the parent’s misclassifications by two — one for each daughter). Eventually the number of
classification errors will be brought to zero, resulting in complete learning of the training
set.

GAL (for “Grow and Learn” [2]) is a different constructive technique. This method is
similar to ART [38] in that it creates each new hidden node to match a specific training
pattern. When a pattern is given to the system, each hidden unit is activated in proportion
to its Euclidean distance from the pattern that it was created to match. The most highly
activated unit “wins” and activates the output units to which it has non-zero connections.
When an input pattern activates an output unit that is not in the target pattern, a new
unit is then created to match that pattern. The output connections of a new unit are set
to 1.0 for all output units that are “on” in the current target pattern, and are set to 0.0 for
all output units that are “off” in the current target pattern. GAL also allows connection
weights to be modified in a manner similar to that of radial-basis-function networks [63].
When a pattern activates the output units correctly, the hidden unit that “won” is modified
so that it will become even more strongly activated the next time this pattern is presented.
(This is done by modifying the hidden unit so that the pattern it best responds to is closer
in Euclidean distance to the current pattern.) GAL is extremely fast and generally learns a
training set in a few passes. Even the two-spiral problem, a well-known and very demanding
benchmark only requires two passes.

Both the Upstart algorithm and GAL will learn the complete training set, but general-
ization is to some degree sacrificed, due to the ease with which new units can be created
solely for purposes of memorizing a single pattern. Another drawback of GAL and also of
the Frean network is that they only work for binary classifications. If the output is contin-
uous, or even if it is discrete but not binary, then the algorithm fails. A related approach
that does work in the case of non-binary outputs is the Cascade Correlation algorithm [28].
In this algorithm, training is done for just the output units at first, until the network error
is no longer decreasing quickly. (The training algorithm is Quickprop, which does gradient
descent using second-derivative information.) Once this apparent local minimum has been
reached, a pool of candidate units is trained to predict the error of the output units. Even-
tually, training for these candidates also reaches a minimum. At that point, the candidate
best at predicting the error is incorporated into the network as a hidden unit and its input
weights are frozen. The output units are then re-trained using this new hidden unit to help
their prediction. After this has been done, a new pool of candidates are trained, this time
taking their input not just from the input units but from the hidden unit(s) as well. This
process continues until the error of the network is low enough that the (human) trainer is

3.3. Higher-Order Systems 21

satisfied. Because the new units are trained to predict the actual real-valued error of the
output units, the algorithm does not require binary targets.

The Upstart algorithm, GAL, and Cascade Correlation, are somewhat inefficient: they
create new units with random initial weights and simply allow those units to learn appro-
priate values to reduce error. A different approach introduced by Wynn-Jones [127] is to
configure new units to solve specific problems that the network has encountered while try-
ing to learn the mapping. Wynn-Jones’ “Node Splitting” algorithm focuses its attention on
those units whose weights during training are being pulled in conflicting directions. That
is, the learning algorithm sometimes increases and sometimes decreases the weights: some
weights are changed strongly in one direction for some patterns and strongly in the opposite
direction for others (while other input weights to the same neuron are perhaps only mod-
ified slightly). Node splitting monitors the changes that the learning algorithm calculates
for the weights and determines the overall direction of the conflict in n dimensions, where n
is the fan-in of (i.e, the number of inputs to) the neuron whose weights are in conflict. Two
new units are then created to replace the old one. Each new unit’s input weights are then
assigned to one of the two regions in weight space where the weights of the original unit
were being pulled. Training then continues. If the two units were properly placed, their
introduction causes very little initial disturbance to the network, and the network continues
to train. Of course, it’s still possible that these nodes may need to be split as well. As will
be seen in Section 6.2.4, Temporal Transition Hierarchies use a similar method for deciding
when to create new units, though only in one dimension rather than in n.

3.3 Higher-Order Systems

Another way of increasing the power of a network, also used by Temporal Transition
Hierarchies? as mentioned briefly above, is the use of higher-order neurons. A higher-order
neuron has incoming connections that are multiplicative instead of simply additive. That
is, the input to a traditional hidden or output unit is:

inf=8B"+ Z 'wijx],
J

where in‘ is the part in parentheses in Equations 3.1 and 3.2, and 7 is the value of input
or hidden neuron j. On the other hand, the input to a second-order unit is the sum of
second-order products (i.e., each term is the product of a weight and the value of two
units):

ini = BZ + E Z wz-]-k:r:jxk. (33)
j ok
The general case is the sigma-pi unit [88], where the products may be of any order:

ini = Z'wij H xk.
J

keS;

2Transition hierarchies also have a temporal component not present in the feed-forward networks con-
sidered in this chapter. Neural networks that can solve temporal tasks are presented in Chapter 4.

22 Chapter 3. Neural-Network Learning

For each weight, w;;, there is an associated set of units, S;, by which the weight is multiplied.
The maximum number of weights into unit z is equal to the size of the power set of units
that can feed into ¢, since this represents one weight for every possible product.

If the input patterns are binary (even if the output is continuous), sigma-pi units can
learn to compute any arbitrary mapping [29, 30]. It is appealing to use a single unit
instead of an entire network of units, but a fully powerful sigma-pi unit would have 2"
terms if there are n units in the input vector. Two notable solutions have emerged to
the exponential number-of-terms problem. The first solution is the reduction of order in
the sigma-pi units. By limiting them to second-order terms only, functions impossible to
compute with traditional units can be calculated while requiring only n? connection weights.
This approach has been followed by Giles and Maxwell [35] and Pollack [74], described next.
The second solution is the careful selection of terms that generate a neuron’s input, described
in Section 3.3.2.

3.3.1 Second-Order Networks

Giles and Maxwell’s network was composed of zeroth-, first-, and second-order units
expressed as follows:

O = flwi + Y w7+ > winl IF). (3.4)
J J ok

The w; weight is the same as a bias unit since it is not a coefficient of an input variable;
it is the zeroth-order term. The w;; weights are the traditional first-order weights, and
the w;;, weights are the second-order weights as in Equation 3.3.> Giles and Maxwell
discussed a variety of learning rules for this network and observed a number of its interesting
characteristics, for example, its generalization abilities and its invariance under certain
groups of transformations.

Pollack’s system uses back-propagation to calculate weight changes for a second-order
network. His network splits the input into two parts, the standard input units, I*, 12, ..., I™
and the context units, C',C?, ..., C™. The context units are used to calculate the weights
for a second network, i.e., the weights of the second network are computed as linear sums
of the € units:

Wi; = Bij -+ Zwi]-ka, (35)
k

where B;; is a bias unit.

These computed weights, w;;, are then used as the weights of the second network (as
described by Equations 3.1 and 3.2). The input to this second-order network is the vector
of I units. Therefore, inputs to the hidden units of the second network look like this:

H' = f(BZ-—l—ZwZ-]-]j) (3.6)

J

= f(Bi+) (Bi+ wiirC*) 1) (3.7)
= f(Bi+ 3 Byll + 32> wiCl), (3.8)

3The part of Equation 3.4 in parentheses will result from Equation 3.3 by removing the bias unit and
instead adding an extra input unit whose value is always 1.

3.4. Conclusions 23

and these are, of course, the same second-order sigma-pi units of Equation 3.4, except that
not all factors of input units are represented (i.e., there are no C’C* or I’I* products).
Pollack observed enormous speedups over standard first-order neural networks in terms of
the number of epochs seen. The cost of using a second-order network, however, is that the
space and time complexities grow with n® instead of the n* of standard networks (where n
is the number of units).

3.3.2 Partially Connected Higher-Order Networks

The second suggested solution to the number-of-terms problem with sigma-pi units is
to carefully select the terms that generate a neuron’s input. (This method is closest to
the Temporal Transition Hierarchies method, which dynamically adds higher-order units
one at a time.) This solution was suggested by Fahner and Eckmiller [30], who discussed
two approaches toward this end (both called “parsiHON”, for “parsimonious Higher-Order
Neuron”). The first approach is to build a sigma-pi unit with all possible terms, and then to
eliminate unnecessary ones. Though successful on small problems, this method still requires
exponential space and time for the initial setup.

Fahner and Eckmiller’s second method performs a stochastic search to find good sets of
terms to include in the input equation. With this method, the architecture size (number of
weights) is constant — fixed before training begins. A random set of terms is chosen and
gradient descent is done to train the weights. (Training can be done quickly, since there are
no hidden units.) After training, terms are removed according to the size of their weights:
the larger the weight, the less likely it will be removed. This method is appropriate for much
larger problem spaces than the first method and is similar to genetic algorithms [39] (which
were incidentally suggested by Giles and Maxwell as a method of finding appropriate sigma-
pi terms [35]). It is unclear how this method will scale, since the fraction of all possible
terms that can actually be tested in a reasonable period of time shrinks exponentially with
the size of the input space.

Both parsiHON methods resulted in excellent generalization. GAL, for example, which
solved the two-spiral problem so quickly (above), generalized very poorly because it simply
memorized the training set. ParsiHON, in contrast, captures much higher-order information
and learned the spiral pattern (which extends well beyond the area covered by the training
set).

Another technique that choses the number of terms during training and also seems
to demonstrate quite good generalization is the tree-structured method introduced by
Sanger [89]. This constructive approach creates new higher-order units during training
which are combined to form basis functions over the input space. Though developed inde-
pendently, Sanger’s criteria for the construction of new units is much like that of Wynn-
Jones (cf. Section 3.2) and of Temporal Transition Hierarchies (Section 6.2.4). In fact, of all
methods described here, Sanger’s is the most similar to Temporal Transition Hierarchies,
though it is a feed-forward network and has no temporal component.

3.4 Conclusions

The approaches discussed above are effective measures for overcoming problems faced by
simple feed-forward neural networks. Constructive approaches are useful when the optimal

24 Chapter 3. Neural-Network Learning

network size is not known before training begins. Higher-order networks, on the other hand,
learn in fewer training passes than standard first-order networks, and they can demonstrate
improved generalization — but the cost is generally worse scaling behavior.

Table 3.1 summarizes the algorithms discussed in this chapter in terms of the dimensions
of difficulty listed in Table 2.1 together with four characteristics especially descriptive of
neural-network learning algorithms.

Training Algorithm Dg?g?gu?tn of @ &
y S84 4
S D@
112(3] 4 7 189 &L
BP DICIVIM1|M-1 |[O|F]V|x]|x]|Xx
Upstart L|B|Vv|MA|M-1 |O|F|x|V|x]|x
GAL DIB|Vv|MI1|M-1 |[O|F|V]|V]|x]|Xx
Cascade Correlation DIC|Vv|M/1|M-1 |[O|F|x|V]|x]|Xx
2nd order Nets D|C|Vv|IMII|M-1 [O|F|V|x]|V]x
parsHON LIB|+| M1 |M-1 |[0O|F|[x|[V][V]|V
Sanger’s Network D/[C|VIMI1|M-1 [O|F|V|VI|[V]V

Table 3.1: Properties of the neural networks described in this chapter. The first group
of columns corresponds to dimensions listed in Table 2.1, translating “sense” to “input”,
and “action” to “output”. Since that table described environments and not algorithms,
not all dimensions are appropriate. Dimensions 5, 6, 10, and 11 are meaningless for feed-
forward neural networks. For dimension (1), “L” indicates that the algorithm requires
locally encoded inputs or outputs, and “D” means that both inputs and outputs may
have distributed representations. (2) “B” indicates that either the inputs or outputs must
be binary, whereas “C” means that both inputs and outputs can have continuous values.
(3) A check mark “\/” indicates that the algorithm can learn any mapping from inputs to
outputs (possibly by memorization). A plus sign “4” indicates that the algorithm can learn
complex functions from inputs to outputs with particularly good generalization. (4) Since
feed-forward networks have no state, all algorithms are “M/1” (many-one), meaning they
can map many inputs to a single output pattern, but have no way to otherwise disambiguate
the input information. More complex mappings require temporally sensitive networks.
(7) “M-17 shows that the most complex underlying model that these algorithms can learn
is Markov-1, since none of the algorithms retain information from previous inputs. (8) No
history information is kept. (9) “F” indicates a fixed history (fixed at zero in these cases).
The second group of columns is a set of properties descriptive of neural networks, indicating
whether or not they can learn incrementally, build new units during training, have second-
order weights, or have higher-order weights other than second-order. A check mark “y/”
indicates that the property describes the algorithm on that row, and “x” means that it does
not.

4

Solving Temporal Problems with Neural Networks

Standard feed-forward neural networks are insufficient for solving many problems, specif-
ically those with a temporal component. A feed-forward neural network implements a map-
ping from input units to output units, as was described in Chapter 3. In many robotics
tasks, however, the robot’s sensory input alone is insufficient to determine the correct action.
There may be locations in the environment where the sensory information is ambiguous (a
condition termed “perceptual aliasing” by Whitehead and Ballard [117], also known as the
“hidden state” problem). If the environment is more complex than Markov-1, then its state,
E(t) in Equation 2.5, is “hidden,” since it cannot necessarily be deduced from the current
sensory information alone. (Dimensions 4-10 of Table 2.1 are related to the environment’s
state). Those environments with a non-zero, finite number of hidden states are sometimes
called Partially Observable Markov Decision Processes (POMDP’s). A sufficiently demand-
ing task in such environments requires the current state to be disambiguated using previous
sensory information.

Whitehead and Ballard demonstrate how a robot can modify its own perceptual input
by moving its sensors to complement its previous perceptual input with new information
in order to determine its actual state. In many cases Whitehead and Ballard’s technique
is sufficient; however, if the robot is unable to alter its perceptions, or if by altering its
perceptions it is still unable to disambiguate its sensory information, it may need to rely
upon sensory information experienced earlier, much as we may navigate in a familiar house
when the lights are out, or in an unfamiliar environment by remembering recent landmarks.

Another approach is that of Kuipers and Byun [51], whose agent builds an explicit
topological map of its environment to distinguish among ambiguous perceptions. When the
robot is in a position, say position A, and its perception there is identical to a perception
recorded in, say, position B, the agent performs a rehearsal procedure that attempts to
discover whether A is in fact the same position in the environment as B. This procedure
visits neighboring locations in the topological map to test whether they match the neighbors
of position B. If so, they are assumed to be the same. If not, A is incorporated as a new
position in the map. As long as there is at least a single position in the environment where
perceptual data is unambiguous, the agent can always theoretically determine when two
positions are identical. This approach is promising but requires prior knowledge of the
underlying sensorimotor apparatus, though Pierce [73] is making progress in removing this
requirement.

There are also other cases when the robot might require more information than its
current sensory inputs. Even if there are no two locations in the environment with identical
sensory values, the robot’s task may generate ambiguities. For example, the robot might
be given one of several commands, each of which sends it through some common territory
but toward a different goal location. While crossing the intermediate territory, the robot
must remember the command it was given at the outset.

26 Chapter 4. Solving Temporal Problems with Neural Networks

As will be shown in Chapter 6, Temporal Transition Hierarchies solve the hidden-state
problem in Markov-k environments (where k is initially unknown) by building up behaviors
that may last any arbitrary duration. The methods discussed in this chapter are other
neural-network-based solutions to the problem of ambiguous sensory data. They are dis-
cussed here to provide background for later chapters and for purposes of later comparison
with Temporal Transition Hierarchies.

4.1 Delay Lines

Hidden-state issues have been addressed with a variety techniques in the neural-network
literature. The simplest of these is the use of delay lines. With a delay-line neural-network
architecture, a window is kept of the past several sensory inputs from each sensor. If, as in
Chapter 2, the vector of sensory inputs of length n at time ¢ is 5(¢), then the jth component
of 5(¢) is s7(¢). The input to a delay-line neural network is:

St —1), s (t—7),..., 8"t —7),s°(t — T4+ 1), s (t—T+1),...,5"(1),
where 7 is constant. This can also be expressed as

St—7)odt—7+1)o...038(1),

where “0” is the concatenation operator. This architecture was used, for example, by
NetTalk [98], which learned to map text to phonemes. The “sense” vector was a single
binary-coded alphabetic character. In this system, 7 was equal to seven, so seven characters
were given to the system as input at every time step. The network learned to map the middle
character 5(t —4) to its phonemic category using the surrounding six characters as context.

A more sophisticated method for dealing with delay lines is the TDNN (Time-Delay
Neural Network) described by Waibel [110]. This network is a hierarchy of sampled input
over many time steps. The hierarchy is constructed with multiple layers of hidden units.
Each hidden layer receives input from the layers below at the current time step and at the
previous 7; time steps, where 7; can be different for each layer [. Thus, the input to layer [
can be described as:

Wzt —m)od ™ t—m+1Do...of 7t = 1) 0 Z'7H1))

where W is the weight matrix connecting layer [— 1 with layer [, and #'~1(¢) is the vector
of values produced by input or hidden layer [— 1 at time ¢.

The benefit of this kind of architecture is that information spread over many time steps
can be integrated at each level of the hierarchy, allowing the highest levels of the hierarchy
to compute functions over a large span of data. Nevertheless, the output is always a function
of a fixed number of preceding inputs. If there is vital data not visible at the highest level,
it cannot be incorporated into the output.

In robotics environments, delay lines would be useful if the current state could be disam-
biguated by knowing some fixed, finite number of previous states. For example, in Markov-k
environments (see section 2.2.3), the current state of the robot can be identified unambigu-
ously by examining the last k input vectors. Figure 4.1 is a Markov-2 environment. In this

4.2. Learning Time Delays 27

Figure 4.1: A Markov environment that requires the current and previous input to determine
the current state.

environment, there are thirteen different positions in which the robot can land, but there
are only six distinct sense vectors (labeled A-F). Yet if the robot moves from any one cell
to any adjacent cell, its position will be uniquely determined. If, for example, the robot
sees D at one time step and F at the next, it must be in cell twelve. If it were to see A
instead of £ in the second time step, it would be in position one.

If the robot lives in a Markov-k environment (and its task is sufficiently demanding),
then it must have the information from its last k sense vectors to choose the correct action
in all situations. Having less information than this at its disposal would cause ambiguities
and force errors.

4.2 Learning Time Delays

Because there are Markov-£ environments where k is initially unknown, some algorithms
have been developed that learn the amount of history information needed. As mentioned
above, one such algorithm is Temporal Transition Hierarchies, which will be described in
Section 6.2. Another is Bodenhausen and Waibel’s system, Tempo 2 [13]. In Tempo 2,
input units have time delays that can be learned as adjustable parameters. Each input
unit, in fact, has three adjustable parameters for every incoming connection: the weight,
time delay, and width of the time delay’s receptive field. The receptive field is a Gaussian-
shaped “window” in time that responds to input lines at a particular time delay in the
past.

When gradient descent is done and these parameters are modified for each connection,
the network learns to respond to events that occurred in the past and learns for itself how
far into the past it needs to look to get this information. Therefore, if a Markov-k task is
to be learned, this network can theoretically learn to span k steps to compute the proper
output. Furthermore, though initially each unit responds to each input line through a
single window, new windows can be created automatically when needed so that the units
can respond to every input line at any number of time delays.

A related architecture, designed by Day and Davenport [19], responds to discrete inter-
vals of time in the past rather than to intervals convolved with a Gaussian. Their architec-
ture allows a prespecified number of adaptable time delays to appear for any connection in
the network (not just connections to the input units). To develop their network, they also

28 Chapter 4. Solving Temporal Problems with Neural Networks

explicitly formalized the notion of time delays and produced a method for doing gradient
descent with respect to the parameters that specify the delays.

4.3 Recurrent Networks

Like Temporal Transition Hierarchies and the algorithms just mentioned, recurrent neu-
ral networks can also be used in Markov-k environments where k is not specified in advance.
The topology of a non-recurrent network is acyclic. In those “feed-forward” networks, each
unit sends information to other units from which it will never directly or indirectly receive
information. In recurrent networks, on the other hand, there are cycles. Some units send
information to other units that they either directly or indirectly receive information from
themselves. All cases to be considered here are discrete-time networks in which information
is sent over each connection exactly once per time step (i.e., each unit is updated once per
time step). The simplest recurrent networks look just like the feed-forward networks de-
scribed in Chapter 3, except that some hidden units have single, recurrent self-connections,
and there are no other recurrent connections. Examples of these networks will be described
next: First, Mozer’s Focused Back-Propagation network [65] and Bachrach’s Sticky-bit net-
work [4]; and Second, Fahlman’s RCC (Recurrent Cascade Correlation) architecture [27].
After these comes a description of fully connected recurrent networks.

4.3.1 The Focused and Sticky-bit Architectures

The focused architecture uses hidden units with adjustable connections in the hidden
layer to encode a variable decay rate. The output of each unit is described as the squashed
sum of its input plus an adjustable fraction, d of its previous value:

Hi(t) = F(1 (thwy) + dH (1~ 1), (1.1)

where H'(t) is the value of the i:th hidden unit at time ¢, and I’(#) is the value of the jth
input unit at time ¢. A unit keeps a kind of running average of its past inputs, which in
principle allows the network to make use of events that occurred in the arbitrarily distant
past. The focused network operates by keying into certain features of the input and then
remembering these features until later.

The units in Bachrach’s sticky-bits network include the d* H* term within the squashing
function.

H'(t)= f(dH (t— 1)+ > (t)wij). (4.2)
J

Bachrach also uses a sigmoidal activation function with asymptotes at —1 and +1, allowing
the H"s to “stick” at a positive or negative value when the input to the unit is strongly
positive or strongly negative respectively and d* is large. With this architecture, large input
values can cause a hidden unit to “remember” that an event has occurred in the past and
to keep that value available as processing continues until it is needed at the output. Since
it is stable in two possible states, each hidden unit can detect the presence or absence of a
single feature [4].

Learning in both networks is done by gradient descent in the error space with respect
to the modifiable parameters w;; and d* for all 7 and j. The networks are more powerful

4.3. Recurrent Networks 29

than the adaptive delay-line networks (as well as Temporal Transition Hierarchies) in that
they can in principle remember an event over an arbitrarily long time span. The amount of
information that the nets can store is only limited to the number of hidden units.

Unlike delay-line models, the Mozer and Bachrach networks do not store a history of
previous values one after the other to be used at later time steps. For example, say a
network is to be trained to simulate a queue, specifically to produce as output a copy of
the network’s input twenty steps earlier. At every step the input changes, and twenty time
steps later these changes must be reflected in the output (i.e., Output(¢) = Input(t — 20)).
Obviously, a delay-line model is ideal for this task, since it is the nature of delay lines
to reproduce a signal after a certain duration. While the focused network architecture is
theoretically capable of solving this task for arbitrary delays given discrete valued inputs,
weights of arbitrary precision, and a powerful enough transfer function (see Appendix A for
a differentiable solution), such a network is highly impractical and not possible with limited
precision hardware or with monotonic transfer functions.

4.3.2 Recurrent Cascade Correlation

The RCC (Recurrent Cascade Correlation) network resembles the sticky-bit architecture
but is a constructive network that adds units as needed just as the Cascade Correlation
architecture does in non-temporal domains (Section 3.2). The output of the RCC hidden
units is the same as in Equation 4.2, with the decayed value inside the transfer function.
That is, the network’s hidden unit’s receive input from units lower in the network at the
current time step and from themselves at the previous time step. Again, gradient descent is
performed to tune the weights and the decay parameters. However, in RCC, a pool of new
units are trained en masse to predict the output error of the network. The best one is taken
and integrated into the network; its weights are frozen; and its output is made available to
the next group of trainees to assist them in correcting the remaining error. The network
thus grows one hidden layer at a time with a single unit in each layer. The output values
from all units feed into every unit higher in the network.

RCC can learn to extract any arbitrary number of features from the input string, keeping
them for any arbitrary duration. These networks should be able to learn any Markov-k
task where k is initially unknown, since they are capable of storing an arbitrary amount of
past history information. However, there are computations these networks cannot perform.
This has been proven by Chen, et al. [15], who showed that RCC networks using sigmoid or
threshold activation functions are unable to learn certain classes of finite-state grammars.
(This is due to the fact that none of the RCC hidden units have connections downwards,
back to lower units — units closer to the inputs.) Another limitation of RCC is that it is a
“batch” learning algorithm. Training must be done on a fixed set of training patterns and

cannot be done incrementally as new data is presented. (Comparisons with RCC are shown
in Section 7.2.1.)

4.3.3 Fully Connected Recurrent Architectures

In contrast to focused and RCC networks, certain classes of fully connected recurrent
networks (networks that allow cycles in their connectivity besides just self-connections) have
been shown by Minsky [61] to be Turing equivalent. Limited versions of these networks have

30 Chapter 4. Solving Temporal Problems with Neural Networks

been devised by Jordan [43] and Elman [25]. These networks, though capable of computing
functions not computable by focused and RCC networks, nevertheless have limitations in
what they can learn, due to the fact that their learning algorithms only approximate gradient
descent. Other networks do compute the complete gradient and are capable of learning as
well as solving difficult problems. Back-Propagation Through Time and its variants [88,
115, 121] treat the temporal characteristics of sequential tasks spatially. These algorithms
create a very large virtual network by replicating the real network once for every time step
and then attaching these networks together. The outputs of the network at one time step
are fed as inputs to the network at the next time step. At some point — either at the end
of the sequence or after a certain number of time steps — forward propagation through
the chain of networks is stopped, and back-propagation through the entire virtual network
is performed. The weight changes can be applied to the weights immediately or after an
epoch of such sequences.

Back-Propagation Through Time performs exact gradient descent when the virtual net-
work spans the entire sequence. It is not an incremental learning algorithm, and infinite
sequences are therefore impossible to learn. One way to train on infinite sequences is to
back-propagate over only the past n time steps — where n is a carefully chosen integer for
the task to be learned — and to ignore all previous time steps. Williams and Peng [121]
discuss the positive and negative consequences of this approach.

A different, incremental method [85, 114, 123] calculates the complete gradient as a
function of the derivatives computed at the previous time step. This approach, termed
RTRL (Real Time Recurrent Learning) by Williams and Zipser [123], does not require the
large virtual network that grows according to the length of the sequence to be learned. No
values from previous time steps (other than the trace of derivatives) must be stored for
the computation. (Comparisons with this method are shown in sections 7.2.1 and 7.2.2.)
But RTRL requires O(n?) storage space (where n is the number of neurons), and O(n?)
computations at every time step. Other algorithms [95, 102, 121] have been proposed
that attempt to reduce the number of computations per time step to O(r®). Though the
cost of using a fully recurrent network remains high, numerous studies have demonstrated
very intelligent recurrent-network behavior learned via gradient descent [122, 123]. These
networks have been shown capable of solving very difficult temporal tasks, though generally
extremely slowly. They have also been shown to be particularly poor at learning long
temporal contingencies, i.e., long time delays. As will be seen in Section 7.2.2, Temporal
Transition Hierarchies can learn long time delays very quickly.

Multiscale Temporal Networks. To address the problem of learning long temporal con-
tingencies, Mozer [66] created a network that integrated aspects of his focused network into
a fully connected network. These networks added a special connection from each hidden
unit to itself with a built in decay rate. The decay rates were fixed before training. Mozer
found that if the decay rates were set properly, very long delays could be learned. (Compar-
isons with this method are shown in Section 7.2.2.) However, as the time delays increase,
so does the network’s sensitivity to the decay rate.

4.3. Recurrent Networks 31

4.3.4 Second-Order Recurrent Networks

Because of the weaknesses of back-propagation through time, its equivalents, and its
variants, some more powerful recurrent networks have been proposed. In particular, higher-
order recurrent networks can solve very difficult tasks while converging after fewer training
examples than some classes of standard recurrent networks [36, 60, 74]. These networks
not only have additive connections between units, but also have multiplicative connections.
Though these networks do not have a great deal in common with the methods proposed in
this dissertation, they are discussed here for completeness.

The network described by Pollack [76] is given below. There are three differences between
this network and its non-recurrent counterpart [74] described in Section 3.3. First, each
input and output value is time indexed (e.g., O'(t) is the value of output unit O* at time).
Second, the context units of the previous version are now the output units from the preceding
time step. Third, there are no hidden units. Otherwise, there is a direct correspondence
between Equations 3.5-3.8 and Equations 4.3-4.6.

'wij(t) = Zk:‘wijkOk(t—l) (43)
O'(t) = [wi()I(1)) (4.4)
= FOQ w0t = 1)) (1)) (4.5)

— f(Zk: wirOF (t — 1) (1)) (4.6)

(The fact that the non-recurrent network had explicit bias units and the above description
does not is really not a difference, since bias units can be added to the framework above by
simply clamping an input unit and a context unit to 1.0.)

Pollack was interested in the task of learning to recognize finite-state grammars. Giles,
et al. [33], and Watrous and Kuhn [113] both used Pollack’s architecture, augmenting it by
doing full gradient descent in the network’s three-dimensional weight matrix with respect
to the error generated over multiple time steps. In fact, the network used by Giles, et
al., is incremental in that it computes the derivatives of the weights as a function of the
derivatives computed during the previous time step — just as is done by RTRL for first-
order networks. These networks learned to recognize complicated grammars from small
numbers of sometimes ambiguous training sets. The training sets contained both positive
and negative examples and were ambiguous in that they sometimes suggested more than
one correct finite-state grammar. The importance of this work is in the difficulty of the
tasks that were solved. Table 4.1 lists the grammars learned.

Some of these are extremely difficult. Even the first, the simplest, cannot be learned by a
delay-line network, since the network must record whether it has seen a zero and remember
this for an arbitrary period of time.

Bachrach [5] designed a related architecture strictly for the purposes of learning finite-
state automata in a connectionist system. His architecture was modeled after the finite-
state-machine learning algorithm of Rivest and Schapire [84]. Bachrach’s network is capable
of learning some extremely difficult grammars from positive examples only. Bachrach’s
network, named SLUG, has a different weight matrix for every input unit. (Only one

32 Chapter 4. Solving Temporal Problems with Neural Networks

B
(1 0)"
no odd zero strings after odd one strings
no 000’s
pairwise, an even sum of 01’s and 10’s

number of 11’s - number of 0’s = 0 mod 3
0*1*0*1*

Table 4.1: Regular languages from Tomita [109] used by Pollack [76], Giles, et al. [33], and
Watrous and Kuhn [113] for teaching higher-order recurrent networks to recognize finite-
state grammars. Both positive and negative examples were used for training.

input unit can be active at a time.) His network allows recurrent connections, so the
hidden units can propagate their values to each other from one time step to the next
through the weight matrix selected by the input node. Gradient descent is done with a
variant of Back-Propagation Through Time: as in standard Back-Propagation Through
Time, a large virtual network is constructed (Section 4.3.3), but unlike the standard case,
the weight matrices of these networks can be different at different time steps, and weight
changes must be applied to the weight matrix for which they were computed. SLUG, it
turns out, is actually identical to Pollack’s network (and the network that Giles, et al.,
and Watrous and Kuhn have used) except with the explicit restriction that the inputs
are locally encoded (only one is on at a time), and the function f is the identity map.
(This equivalence is shown in Appendix B). Therefore, the results that Bachrach showed
for SLUG — including its relationship to the work of Rivest and Schapire [84] — apply to
recurrent second-order networks in general. In particular, Bachrach compared his system on
difficult tasks to many traditional networks, including recurrent networks that used Back-
Propagation Through Time, and he found a great improvement. The standard networks
were incapable of learning even his simplest tasks. Bachrach suggests in his thesis [,
p. 65], that one of the key advantages of his network is the multiplicative property of the
connections. The conclusion to be drawn from this is that, even though many classes of
recurrent networks can theoretically perform any computable temporal task [23, 61], higher-
order networks seem to be far superior learners of difficult finite-state grammars. Temporal
Transition Hierarchies also have higher-order connections (though they’re not recurrent).
The fast learning times that will be demonstrated in Chapter 7 are in a large part due to
these higher-order connections.

The recurrent second-order networks are very powerful, but they scale very poorly.
Those which implement incremental learning have a space complexity of O(n*) and a time
complexity of O(n®) at each step, where n is the number of units.

Constructive Fully Recurrent Networks. After describing the limitations of the RCC
network, Chen, et al. [15], went on to design a constructive network of their own. Theirs
adds units as learning progresses to a fully connected, second-order recurrent network (that
of Giles, et al. [34, 33], discussed above). Since it is fully connected, it does not suffer from
the problems faced by RCC and is theoretically Turing equivalent, though it still suffers
from the poor scaling behavior of second-order recurrent networks.

4.4. Conclusions 33

Training Algorithm Dg?ﬁ?gu?p of @
y &&AaA
Yy
1/2/3) 4 7 18|19 &L S
TDNN D|C|Vv| MM |M-k [kK|F[]V]|x]|x]Xx
Tempo 2 D/[C|Vv|MM |M-k [kH{F|V[V|x][x
Day/Davenport D/[C|Vv|MM |M-k [kH{F|V][x|x][x
Focused DIC|Vv| MM |[OFSA|k ||V |x |X]|X
RCC DIC|Vv|M/M |OFSA|[kH o| x|V |Xx]X
BPTT DIC|Vv|M/M |FSA [K|o|Xx|[x|x]X
RTRL DIC|V|MM |FSA [k |oo|V|[x|Xx]X
Multiscale DIC|Vv| MM |FSA [k |oo|V][x]|x]X
2nd order Rec.NNs DIC|+|M/M |FSA |k ||V x|V]X
ContructiveRecNNs | D[C|[+ | M/M | FSA [kH o |V |V |V | X

Table 4.2: The characteristics of the temporally sensitive networks discussed in this chap-
ter. The columns are the same as those of Table 3.1, but, since these algorithms can keep
state information, this table has some differences. Dimension (3) indicates the current-
sense—action mapping given that the previous state is known. (4) Since all of these net-
works are capable of using context to map ambiguous sensory inputs to unambiguous state
representations, all are marked “M/M” (many—many). (7) “M-k” means the algorithm can
learn Markov-k sequences; “FSA” means they can represent any FSA; and “CFSA” means
they are more powerful than Markov-k but cannot represent arbitrary FSA. (8) “k+” means
the algorithm can learn for itself the amount of data it needs. (9) “c0” denotes that state
information can be held indefinitely. All other entries are as in Table 3.1.

4.4 Conclusions

The rows of Table 4.2 list the neural-net architectures described in this chapter. The
columns list the important features of those architectures. In general, recurrent networks
and other approaches to learning temporal tasks have great limitations. Specifically, they are
either incapable of solving any but the simplest tasks, or they are dreadfully slow. Second-
order recurrent networks are capable of learning complex grammars, but by sacrificing either
speed or incremental learning. Because of their poor scaling behavior, it is unreasonable to
try using them in problems with more than just a few input and output units.

Temporal Transition Hierarchies, the solution I propose in Chapter 6 is a non-recurrent,
higher-order network that learns temporal tasks quickly and incrementally while construct-
ing new units hierarchically, but the price is its limitation to learning Markov-£ environments
where k is originally unknown.

5

Reinforcement Learning

I discussed reinforcement learning briefly in Section 2.1.3. This chapter contains a
description of the most common reinforcement techniques, which attempt to resolve the
issues surrounding dimensions 10 and 11 in Table 2.1. It begins with reviews of the AHC
(adaptive heuristic critic) [103, 106], and Q-learning [111], though they are both currently
very popular and their details are known to many. Q-learning will be used in Section 7.3
to provide the framework for CHILD. The chapter then describes some research relating
reinforcement learning to dynamic programming, followed by a discussion of reinforcement-
learning research using gradient-descent methods. If you are already familiar with any of
these techniques, you will probably want to skip the corresponding sections. Finally, I will
try to explain the field from a slightly more intuitive perspective and then explore a few
resulting observations.

5.1 The Adaptive Heuristic Critic

Reinforcement-learning tasks assume the existence of an agent. The agent receives
sensory data as input and generates actions as output, just as with the robots described
in Chapter 2. Occasionally the agent takes an action that results in a reinforcement. The
reinforcement is either rewarding or punishing. The AHC is a general architecture that
increases the probability of actions that lead to greatest reward and decreases the probability
of actions that lead to punishment. More formally, the AHC attempts to maximize the
agent’s long-term reinforcement [9, 103, 105]. This architecture divides the agent into two
modules: one that chooses an action and one that estimates the agent’s future reinforcement
given its current input. Thus, in terms of Table 2.1, one part addresses dimension 5,
mapping states to actions, and the other addresses dimension 10, mapping state/action
pairs to reinforcement predictions. The former is called the policy module. The latter is
called the critic module. A picture is given in Figure 5.1.

In a typical AHC task, the agent’s environment is Markov—1; i.e., the agent’s state in
the environment is encoded unambiguously in the agent’s sensory input (see Section 2.2.3).
The input and actions are often encoded locally in a binary vector (exactly one item will
have a value of 1.0, and all others will have a value of 0.0), but this restriction is not
necessary; it merely serves to simplify the learning task and highlight its reinforcement-
learning aspects. Learning without this restriction has also been done [3, 54, 92, 116]. The
only real restriction with the AHC (and with most other reinforcement-learning techniques
as well) is that the learning algorithm used by the policy and critic modules must be
capable of distinguishing the underlying environmental states. That is, besides learning the
state—action and state/action—reinforcement-prediction mappings, it must also be capable
of learning the sense—state mappings.

For simplicity, the following description assumes the state of the agent at the current
time step, s, is given to the agent as input (i.e., s; is the sensory vector, §(¢) in Section 2.1).

5.1. The Adaptive Heuristic Critic 35

Action

[}

Critic

[

State Reinforcement

Figure 5.1: The Adaptive Heuristic Critic [106] has two components, the policy module,
which generates action suggestions from the current senses, and the critic module which
predicts discounted future reinforcements. The policy module produces a value for each
action that determines the probability the action will be chosen. (An action is then chosen
according to these probabilities by an action-selection mechanism.) The current reinforce-
ment plus the discounted critic’s value (multiplied by the discount factor, v) is compared
with the critic’s value at the previous time step (the box labeled “D” delays its input by
one time step); the difference is used to correct the critic and to modify the policy module.
Implementations for this are given in Section 5.1.1.

The AHC works as follows: an agent exists in a state and in that state takes an action.
The mapping from states to their respective actions is called the agent’s policy. If the agent
always takes the same action every time it visits a state, the policy is deterministic. If
in some states the agent instead chooses different actions with different probabilities, the
policy is stochastic. The policy is therefore the function f in Equation 2.8. This function
is implemented by the policy module.

The critic module, on the other hand, predicts the discounted future reward (dfr) for
each state given the current policy. The dfr is the expected sum of all future rewards, each
discounted by a certain amount (the discount factor) depending on how far into the future
the reward will be received following the current policy. That is,

V() = E[g (k)]

where V(z) is the discounted future reward of state xz; E[.] denotes the expected value
(which is necessary for stochastic environments, where the next state is not a deterministic
function of the current state and policy); v is the discount factor; and r(k) is the reward
the agent will receive for taking the k'* policy action after visiting state z.

For example, if the environment and policy are both deterministic, and if by following
a certain policy the agent will receive a reinforcement of 1.0 for taking policy action a in
state z and will receive no other reinforcement, then V(z) will be 1.0. If v = 0.9, then V(y),
where state y leads in one step to state z, will be 0.9; and V(z), where state z leads in one

36 Chapter 5. Reinforcement Learning

step to state y, will be 0.81, and so on. If all reinforcements are finite and 0 < v < 1.0,
then even if the agent continues forever, the discounted reward for every state is finite [9].

A distinction can be made between two types of tasks: those that terminate, and those
that do not. In terminating tasks, the agent is stopped when it reaches a halting state, or
when it executes the task for some predetermined maximum number of time steps. Once
the agent is stopped, it may be started again on the same task. A new trial is said to start
each time the task is begun again. In terminating tasks, the agent can only visit a finite
number of states.

For non-terminating tasks, there is only one trial. The agent is never expected to
complete the task and can therefore reach an infinite number of states (provided the number
of reachable states is infinite). Though non-terminating tasks are closer to the real world,
it is assumed in the following section that tasks are terminating (though they may proceed
for arbitrarily long) and that multiple trials may be performed to train the agent.

The AHC can be trained with the following successive approximation procedure. A
deterministic policy is used. On every trial, the policy is followed and the critic’s value for
each state visited is re-computed. After every action, the critic’s estimate of the previous
state’s dfr is modified to reflect the reinforcement just received together with the critic’s
estimate of the current state’s dfr:

Critic(s;) = r(ss,a¢) + yCritic(sig), (5.1)

where Critic(s;) is the critic’s current estimate of V(s;); r(s:, a;) is the reinforcement re-
ceived for taking action a; in state s;; and “A=B” means that A is modified so as to reduce
|B — Al, the absolute difference between A and B.' This is a form of temporal difference
learning [104]. Over successive trials, the estimates converge under appropriate conditions
to the correct values [112, 22], i.e., the left-hand side of Equation 5.1 will converge to the
expected value of the right-hand side.

Once a critic has been trained the (deterministic) policy can be improved by taking ran-
dom non-policy actions and comparing the discounted future rewards of the states visited.
It the agent takes a non-policy action, a, from state j to state ¢, and the reinforcement
received plus the dfr of state ¢ is better than expected (i.e., r(¢,a) + vV (i) > V(j)), then
action a is better than the policy action. A new policy can then be created that incorporates
the improved action. If the environment is stochastic, the new action must be tried enough
times (in theory, an infinite number of times; in practice, less) to ensure that it actually
improves the policy in the average case. A new critic module can now be trained to predict
the correct dfr values for this new policy. Clearly, only states that lead eventually to state
J will be affected. Once a new critic is in place, more improvements to the policy can be
learned.

The policy can only improve during policy modification (i.e., the mean dfr over all states
can only increase), and, after retraining, the critic module will reflect the actual dfr for the
new policy. Therefore, this process of alternatively improving the policy and the critic never
produces a new policy that had been the policy previously. That is, the process of modifying
the policy always increases the mean dfr until eventual convergence [9, §5.2]. In the final

'How this adjustment is made depends on the mechanism for representing A (e.g., look-up table, neural
network, etc.)

5.1. The Adaptive Heuristic Critic 37

policy, no state—action mapping can be changed to increase the policy’s mean dfr. This
policy is globally optimal and is called an optimal policy.

Instead of adjusting the policy and critic iteratively, these processes can also occur
simultaneously, by randomly taking non-policy moves. In this case, the policy is stochastic,
so a wetght is associated with every action in each state to determine its likelihood of being
chosen. The weight increases or decreases depending on whether this move generates a
higher or lower dfr than the other actions in that state. Therefore, if a move results in a
dfr better than predicted, it becomes more likely to be chosen in that state in the future.
If it results in a lower dfr than predicted, it becomes less likely to be chosen in the future.
The next action is chosen stochastically by the action selector (Figure 5.1) based on the
weights of the actions available from the current state. Unlike the iterative approach, the
simultaneous case has not been proven to converge to the optimal policy.

5.1.1 Implementation

The critic and policy modules are easily implemented as look-up tables. Simultaneous
learning can be done with the following learning rules:

AY r(se, ar) + yCritie(sipr) — Critic(sy)
w(se, ar) — w(sy,ar) + al\,,

Critic(s;) «— Critic(s;) + BA,,,

where w(s;, a;) is the “weight” given to action a; in state s;, « is a learning-rate parameter
for the policy module, r(s;, a;) is the immediate reinforcement the agent receives for choosing
action a; in this state, and 3 is a learning-rate parameter for the critic. These rules state
what was expressed above: the critic is modified so as to predict the dfr better. The
weight for action a; in state s; increases/decreases if the expected dfr is better/worse than
expected. The probability of choosing an action is determined from the weights using the

following Gibbs distribution:
ew(st,a)

E ew(st,a) '

a

P(als;) = (5.5)

The probability of choosing action @ in a state is proportional to the weight of a relative
to the weights of all other actions, where the weights are magnified (exponentially) to
accentuate their differences.

Alternatively, the critic and policy modules are often implemented as neural networks.
Lin [54], for example, used one network for the critic and separate policy networks for each
action. Each network takes the current sensory vector as input. The critic network is trained
to predict the dfr for each input. The policy network for each action is trained to predict the
weight values for that action. This is done by using A,, as the error value to back-propagate
through network a; with s; as the network input. Neural networks are more useful than
look-up tables when the sensory vectors are large and are not locally encoded, and where
the mapping from inputs to actions can support meaningful generalization. Lin’s tasks used
a large, complicated sensory input which allowed many opportunities for generalization.

38 Chapter 5. Reinforcement Learning

5.2 Q-learning

The AHC is capable of learning many difficult reinforcement tasks, but in its standard,
simultaneous form, it has not been proven to converge to the optimal policy. Q-learning [111]
is a reinforcement-learning method that has been proven to converge under certain condi-
tions [112, 111]. It is used in Section 7.3 as the reinforcement learning component of CHILD.

QQ-learning is actually very similar to the AHC. It, in a sense, combines the functions of
the two AHC modules into a single module. The new module makes predictions of the dfr
not for each state, but for each state/action pair. At every step the state/action pairs for
the current state are examined; the action with the highest estimated dfr is the one most
likely chosen. The dfr of the action actually chosen is then increased if the estimated dfr
of the next state is better than predicted and decreased if it is worse. (The dfr of a state is
the mazimum dfr over all actions available from that state.)

The Q-learning update rule is formalized as follows:

Q(st,a1) = (s, ar) + y(max Q(ser1, a)), (5.6)

where (s, as) is the estimated dfr (the “Q-value”) for taking action a; in state s;, the
agent’s state at time ¢. Actions may be chosen again according to the following Gibbs
distribution:
Q(s4,a)
e~ T
Q(sgya) ?
T

Pla|s;) = (5.7)

€
where T' is a temperature parameter that decreases in an annealing process. As T' — oo,
the action selection becomes entirely random; as T' — 0, randomness plays no part and the
choices become deterministic. When table look-up is used and T decreases asymptotically
(to make sure there is always a non-zero chance of trying every action in every state), the
QQ-values are, theoretically at least, guaranteed to converge to their correct values. (In
practice, this would require infinite training.)

QQ-values can be maintained in a look-up table, or, as with the AHC, they can be stored
in a neural network. Lin [54], for example, used a separate network for each action, updating
them with the following learning rule:

AQa, = (st a1) + y(max Q(ser1, a) — Qs1, a)), (5.8)

where AQ),, is the error value to back-propagate through the network corresponding to
the action just taken. Lin found that when implemented with neural networks, the AHC
and Q-learning systems had comparable performance. Though Q-learning is guaranteed to
converge when exact values are stored and retrieved (e.g., lookup tables), no such guarantee
can be made when the values are approximated, as they are with neural networks.

5.3 Dynamic Programming

Both Q-learning and the AHC are grounded in the theory of dynamic programming.
In fact, reinforcement-learning problems can in general be cast as dynamic-programming
problems. The result is that the well understood methodologies of dynamic programming

5.3. Dynamic Programming 39

can be used for reinforcement learning.? This includes all instances of reinforcement learning
with discrete actions, where complete state information is given, and when the environment
is a Markov Decision Process (Section 2.3). One subset of these is the case of finding
the best path from a set of starting states to a set of goal states (similar to traditional
AT heuristic search). These problems — where actions leading to a goal state result in a
positive reinforcement and all other actions receive no reinforcement — are a subset of the
dynamic-programming problems known as shortest-path problems [11, 12ff][12]. Dynamic
programming can apply to much more sophisticated reinforcement schemes than shortest-
path problems, however, including cases where the environment’s transitions are stochastic
and where each action may receive positive or negative reinforcement.

The formula that summarizes dynamic programming is the Bellman Optimality Equa-
tion, which can be stated as:

fr(i) = max |r(i;a)+v > pij(a)f*(5)| . (5.9)

a€A(7) jes

where f*(i) is the optimal evaluation function applied to state ¢; r(i,a) is the reinforcement
for taking action @ in state ¢; A(z2) is the set of actions available in state ¢; v is the discount
factor; and p;j(a) is the probability of arriving in state j after taking action @ in state ¢. In
the deterministic case, the probability of arriving at a particular state given a chosen action
is always 1 or 0. In the stochastic case, taking an action in a state does not necessarily
determine the state that will be reached. The critic is analogous to the evaluation function,
though the critic produces the dfr values for the current policy while the evaluation function
produces the dfr values for the optimal policy.

The Bellman Optimality Equation defines an evaluation function whose value in each
state depends upon its value in other states, thus constituting a set of simultaneous non-
linear equations that can be solved iteratively through a successive approximation proce-
dure. A notion central to the iterative solution of the equation is the idea of backing up a
state. A backup is the re-estimation of a state’s value as a function of the states reachable
from it (i.e., computing new approximations to f*(¢) based on the most recent estimates of
f*(7) for all states j reachable from 7).

In reinforcement-learning tasks, the problem is to decide which actions are the best,
i.e., to determine the optimal policy. This can be done by solving the Bellman Optimality
Equation to determine the evaluation of each state, and then to take the actions that
maximize the expected evaluation of the next state. This is trivial if the evaluation function,
the reinforcements, and the probability distribution are known. The optimal action in state
2, a; 1s simply the action that maximizes the right hand side of Equation 5.9, i.e.,

;= argmax |r(i,a) + 7 X pis(@)£()|
a€ jes
where argmax,(f(a)) returns the argument, a, that maximizes f(a). If more than one action

maximizes the equation, any such action can be chosen. Though an optimal policy can be
determined from the optimal evaluation function, the converse is not the case.

2For more information, see the excellent synthesis given by Barto, Bradtke, and Singh [11].

40 Chapter 5. Reinforcement Learning

One way to discover the optimal policy is through the AHC method discussed above,
which approximates a form of dynamic programming known as policy iteration [105] in that
it successively modifies the policy until the optimal policy is reached. The optimal policy
can also be determined through value iteration methods, such as QQ-learning, which solve
Equation 5.9 by successive approximation. The advantage of policy iteration is that it can
discover an optimal policy long before correctly calculating the optimal evaluation function.
In contrast, value iteration solves Equation 5.9 without recognizing when an optimal policy
has been determined [11]. This should not be construed, however, as indicating that value
iteration offers only one way to solve the equation. Many different methods are described in
the reinforcement-learning literature, each with its own advantages and disadvantages. One
such method is RTDP (Real-Time Dynamic Programming) [11], which backs up the agent’s
current state together with as many other states as time permits at each step. Special cases
of this are the Prioritized Sweeping [64] and the Queue-Dyna [71] algorithms, which at every
step modify the values of those states where the modifications are the largest. The agent
can thus make the best use of its limited time between steps.

5.4 Gradient Following Methods

Dynamic programming methods can be extended with model learning to improve speed,
but it is limited to cases where states and actions are discrete. Gradient-following techniques
for determining the optimal action when the actions are continuous have been explored by
Werbos [116], Munro [68], Jordan and Jacobs [45], Schmidhuber [91, 93], Thrun, et al. [108],
Thrun and Moller [107], Bachrach [5], Linden and Weber [57], and others. These methods
are all based on the concept of using a neural network to learn a model of the environment
and then doing gradient descent in this differentiable model to improve the quality of the
agent’s decisions. There are two clear categories of work done in this way. The first is that
of network inversion, the second is that of controller modification.

Network inversion is the method of using gradient descent to do constraint satistaction
not on the network weights, but on the network inputs. This technique has been used by
Williams [119], Kindermann and Linden [49], Linden and Weber [57], Hwang and Chan [41],
and others, many of whom have independently developed the same technique while trying
to solve the inverse-kinematics problem. The central notion is that of taking the partial
derivative of the error with respect to the network’s inputs, then successively moditying
these inputs to reduce the error until a minimum is reached. The result is a pattern which,
when given to the network as input, will generate an output most closely matching the
target. If, for example, a network can be trained to produce as output the position of a
robot’s hand given as input the joint angles of its arm, then the network can be inverted in
hopes of discovering the joint angles that will put the robot’s hand in a specified location.

There are two unfortunate drawbacks of applying the inversion process, however. The
first is that of spurious local minima [49]. The network may converge to an input that
generates an output not particularly close to the desired output (just closer than any of its
neighbors in input space). The second problem, closely related to the first, is that there is
often a many-to-one relationship between the input patterns and the target patterns. The
inversion of the network averages among these global minima to produce an interpolation
of those that generate this target [41, 44, 46, 56].

5.4. Gradient Following Methods 41

Predicted Next State :

Model

| |

Action

Controller

/ A

Current State Desired State

Figure 5.2: The controller produces an action given the current state and the desired state.
The prediction of the model is then compared with the desired state, and the difference is
back-propagated through the model and into the controller where the weights are changed.

One solution to these problems of multiple minima, proposed by Kindermann and Lin-
den, is to “erase” spurious local minima by adding specially designed training patterns to the
training set. Another solution is to impose extra constraints so that only a single valid input
will be found [41], or so that only one input can minimize all the imposed constraints (a
technique used by Jordan [44] for controller modification but not network inversion). Most
likely, the network inversion problem is inherently intractable: The problem it attempts to
solve is NP-hard.

Network inversion can also be used in reinforcement-learning problems in a straightfor-
ward and elegant way. Given a network model that takes as input the agent’s sensations and
next action and produces as its output a measure of the quality of that action (e.g., the dfr
of the agent’s next state), gradient ascent can be performed in action space to maximize the
model’s output, thus producing the optimal action for that state [5, 57, 107, 108]. When the
dfr is used to measure the quality of the agent’s chosen action, as was done by Bachrach [5],
the result is a continuous-action Q-learning algorithm. Of course, the same caveats apply
here as apply just above for network inversion in general. If the Q-values are linear with
respect to the action space, this problem need not occur since the global minimum of a
linear network can be found quickly (cf. Linden [56]). Thrun, et al. [108] extended this
technique by teaching the actions, once they were determined through gradient descent,
to a controller (policy) network which could then suggest these actions quickly and would
improve over time such that gradient descent was no longer necessary.

Controller modification techniques, also known as distal learning [46], are similar to the
method of Thrun, et al., in that a policy or controller module is trained by doing gradient
descent in the model. The difference is that these techniques do not use gradient descent
to choose actions; they back-propagate the error signal directly into the controller network.
The controller produces actions as outputs, and these are fed as the inputs to the model
network, as shown in Figure 5.2. When the controller chooses an action for which the

42 Chapter 5. Reinforcement Learning

model predicts an undesired result, the difference between the desired and predicted result
is back-propagated through the model and into the controller network where the weights
are modified to decrease this difference. Future actions by the controller should generate
predictions from the model (and therefore reactions from the environment) closer to desired
values. This technique has been used both for supervised learning tasks (training the
controller to produce specific results in the environment) [44, 46, 69], and for reinforcement-
learning tasks (training the controller to maximize the predicted reinforcement) [45, 68, 91,
93, 116]. Several of these designs also include recurrent neural networks (see Chapter 4).
A taxonomy of many of the different neural-network architectures used for reinforcement
learning is given by Lin in his thesis [55], where he describes many different permutations
of critics, models, and policy modules.

One of the benefits of using gradient-following methods to choose actions or to modify
the controller is that the behavior of the system can be highly tailored simply through
modification of the error function. This has been done to model and then to minimize
the agent’s ignorance of its environment [57], to maximize a balance between the agent’s
curiosity with and boredom of its environment [91, 93, 108], and to maximize the smooth-
ness, distinctiveness, and speed of a robot’s movements [44]. The principal disadvantage
of gradient descent techniques is that they are not guaranteed to converge to the optimal
policy, unlike table-look-up dynamic programming.

5.5 Some Geometric Intuition

It is common to display the reinforcement-learning process as the construction and
utilization of a reinforcement landscape. The landscape reflects the “goodness” of each
state. The greater a state’s elevation on the landscape, the better that state is. The
purpose of the critic module or evaluation function is to learn this landscape. Ideally, the
landscape should reflect the environment’s evaluation function.

Figure 5.3a shows an environment with one reward. In this environment (introduced
by Sutton [105]), the agent may move in one of four directions: up, down, left, or right.
Assuming the environment is deterministic and the discount factor is 0.9, the resulting
landscape is presented in Figure 5.3b. The global maximum is positioned where the single
goal is located. (Similar figures are given by Barto, et al. [9].)

If the agent has knowledge of its elevation on the landscape, it can immediately judge
the quality of its moves and therefore learn the optimal policy. The goodness of a move
is determined by the change in elevation plus the immediate reward. If all moves for this
state have the same immediate reward, then the greater the agent’s increase in elevation,
the better the move, and the greater its decrease in elevation, the worse the move. For
shortest-path problems, such as that of Figure 5.3, the optimal policy is the steepest path
on the surface at each point. Learning this policy means learning to take the action that
ascends the surface most quickly.

In general, learning the optimal policy can be done by reinforcing all moves in direct
proportion to their immediate reinforcement plus the change they cause in elevation. This
is not exactly the learning rule employed by the policy module of the AHC. The learning
rule corresponding to the description just given would be:

w(st, a) — w(se,a) + afr(se,a) + E(sip1) — E(st)], (5.10)

5.5. Some Geometric Intuition 43

Figure 5.3: Left (a): A Markov environment introduced by Sutton [105]. The agent begins
in the state labeled “S” and is expected to move to the state labeled “G”, where it receives
a reward of 1.0. All other transitions receive zero reinforcement. The agent may move up,
down, left, or right. Right (b): The corresponding landscape. The highest point represents
the reinforcement at the goal.

where F(s;) is the elevation on the landscape of state s;. If the critic is used as the estimate
of a state’s elevation, then Equation 5.10 is different from the AHC policy update rule
(Equation 5.3) in that there is no discount factor (though the discount factor still appears
in the critic update rule, Equation 5.4). In shortest-path problems, both equations lead to
the same optimal policies. In the general case, however, since v in Equation 5.2 regulates
the tradeoff between immediate reward and long-term payoff, the two equations may lead
to different optimal policies.

Even in shortest-path problems, however, there is another difference: the AHC tends
to favor actions in the future that are preferred currently. For example, it is possible as
the critic is evolving for its estimate of two states, say = and x;, to be fairly accurate while
the estimate of a third state x, is far too low. The policy module may then learn to take
action [in state x because it leads to state z;, instead of taking action r which leads to
state x,. Later, the critic’s estimate of state z,’s elevation might increase to the same level
as x;’s. The agent should learn then that action r is just as good as action [, but it will not.
The reason is that on those rare occasions that action r is selected, the agent will arrive in
state x, and see no more improvement in its elevation than it had expected. The weight for
action r in state x will not change. The effects of this are not clear, though it could cause
state =, to be underexplored. However, if Equation 5.10 is used, then any time the agent’s
elevation changes, the weight to the action responsible will be modified. Thus, in the case
just given, action r will be reinforced every time it is chosen. This modification has been
found to improve performance in at least some cases [53].

The AHC and the method just proposed have a weakness in that weight values reflect
both how good an action is as well as how frequently the action was taken. One way to

44 Chapter 5. Reinforcement Learning

reduce the effects of update frequency is to remove it completely from the equation. That
is, do not make weight changes proportional to the difference in elevation, make the weights
proportional to the difference in elevation:

w(se,a) — w(se, a) + a[r(sy,a) + E(siy1) — E(st) — w(sy, a)l. (5.11)

This equation is extremely similar to that used for Q-learning (Equation 5.6). There is an
important difference: Q-values contain absolute as well as relative elevation information.
The weights in Equation 5.11 contain only relative elevation information (i.e., the differences
in elevation between the current state and those states reachable within a single step).
Absolute elevation information is maintained by the elevation estimator, £(z), which is any
estimator of each state’s “goodness”. This is potentially useful for continual learning when
the environment or just the reinforcements in the environment change slightly. Often in
such cases the absolute elevations may change quite a bit, though little relative information
changes (the best action for each state in the new environment may be the same as in
the old environment). In these situations it could be quite useful to distinguish between
absolute and relative elevation. A similar but more sophisticated method, “Advantage
Updating,” was introduced by Baird [6]. Advantage updating has been proven to converge
to the optimal policy (under appropriate conditions). In simulations it has shown enormous
speedups over Q-learning in finely discretized environments. (Though this method was not
used in the simulations, it will be mentioned again in Section 8.4).

6

The Automatic Construction of
Sensorimotor Hierarchies

The theme of this dissertation is continual learning in reinforcement environments, as
discussed in Chapter 1. The purpose of Chapters 2-5 was to provide a foundation for
understanding this chapter (and those that follow). This chapter offers the primary technical
contribution of the dissertation: a mechanism for addressing the issues of continual learning.
The mechanism is the automatic construction of sensorimotor hierarchies. Two approaches
to hierarchy construction will be discussed. The aspects of continual learning they address
are as follows.

Hierarchical Development. Each hierarchy represents a skill or behavior, and new
behaviors can be constructed from old ones by building onto extant hierarchies. This allows
the agent to encapsulate skills from early learning into a foundation for later learning.

Unlimited Behavior Duration. Behaviors are performed over time and carry some de-
gree of state information. Once begun, they generally continue until completion. Because
new hierarchies are constructed from existing ones, behaviors that span any arbitrary du-
ration can eventually be built.

Intelligent Behavior Acquisition. The agent builds new hierarchies to represent useful
new behaviors. Of the two methods described next, one adds new behaviors to encapsulate
sequences of activities the agent has already found to be useful. The other adds hierarchical
units when it detects ambiguities that need to be distinguished, thereby allowing the agent
to negotiate regions of ambiguous perceptual information.

Incremental Learning. The fabric of the underlying mechanism is a constructive, higher-
order neural network that can learn continuously and incrementally. The neural network
allows structural credit assignment, and its hierarchical aspects allow “vertical” credit as-
signment, i.e., assignment of credit to the appropriate level of the hierarchy.

Autonomous Behavior. As with other neural-network methods, those presented here
can be combined with reinforcement-learning methods. The resulting agent senses its en-
vironment, acts in the environment, and responds to the reinforcement in the environment
through temporal credit assignment.

The following sections describe two distinct methods of hierarchy construction. The
first (Behavior Hierarchies) is a more intuitive approach; the second (Temporal Transition
Hierarchies) while less intuitive, is on the other hand more successful. I will therefore discuss
the first in general terms, outlining its intended behavior from a high-level perspective
(Section 6.1), while the second I will describe in detail (Section 6.2).

46 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

6.1 Behavior Hierarchies

Behavior hierarchies can be described as a system of units in a neural network, where
each unit represents a specific behavior sequence. Some units represent primitive behaviors:
a single sensation or a single action. Other, “high-level” units represent a sequence of two
primitive units, and still higher-level units represent sequences of any two lower units. The
system executes a behavior by choosing the unit that stands for that behavior. If a primitive
action is chosen, the agent executes the action in its environment. If a primitive sensation
is chosen, the system determines whether the sensation is present in the environment. If a
higher-level unit is chosen, it is decomposed into the two units that it represents; then the
first unit’s behavior is executed, followed by the second unit’s. At any time, a new higher-
level skill might be added to the system’s abilities by creating a new unit that represents a
sequence of two units already in the system.

An example should clarify all this. Suppose the system could sense heat and cold, light
and darkness, and that it could move one step north, east, west, or south. Its primitive
sensation units would be: SH (sense heat), SC (sense cold), SL (sense light), and SD (sense
darkness). Its primitive actions would be: MN (move north), ME (move east), MW (move
west), and MS (move south). Now, a new behavior could be created by combining, for
example, ME and SC. The new behavior, “Move east and see if it’s cold,” would be repre-
sented by a new unit called: <ME, SC>. After this unit is created, another new unit might
be formed, for example: <<ME, SC>, MS> (move east and see if it’s cold; if it is, move
south). As can be seen from the last example, the rest of a sequence is executed only if the
part executed so far has been successful. This allows testing the environment and acting
on the result: <SD, MW> (see if it’s dark, and if it is, move west).

Behaviors are chosen randomly at first in an effort to achieve a reward. When a reward is
received, the system learns that the most recently chosen behaviors may be worth repeating.
It is therefore necessary to keep track of the choices made and the level of reinforcement
received for these choice sequences. To do this, the entire system is embedded in a neural
network, where the connections between units record this information. The stronger the
connection from one unit to another, the more likely execution of the first followed by the
second will result in reward. Each unit ¢ has two values: out’(t), the unit’s output value at
time ¢, which is propagated to all other units in the network; and ini(t), the network input
of the unit as it is received from all other units at time ¢ (just as with the neural networks
described in Section 3.3). The output of unit 7 at time ¢, out’(¢), signifies whether or not
the behavior represented by unit ¢ has completed: it is 1.0 if the behavior completed at time
t, and is 0.0 otherwise.! The network input to unit 7 at time ¢, ini(t), is simply a linear sum
of the current output values of all the units in the system:?

in‘(t) = Z wi;out? (t).

As with a standard neural network, w;; is the weight of the connection from j to z. The
input value, in‘(¢), of unit ¢ at time ¢ determines the probability that unit ¢ will be chosen

Tt is possible for more than one behavior to complete at the same time. For example: SC, <ME, SC>,
and <MN, <ME, SC>> would all complete whenever <MN, <ME, SC>> completes.

2This network is therefore limited to making linear discriminations at each time step. However, by
grouping together sensory inputs into high-level behaviors that span multiple time steps, some non-linear
discriminations can be made as well.

6.1. Behavior Hierarchies 47

t-1 t t+1
Just Completed Next Choice Just Completed Next Choice Just Completed Next Choice

AN
N

W
Nz
o

Y

%

N 4|
NN VJ’”)L{‘}(\‘\\‘V

i
i N
/ v’)‘h / ’)‘N \
/0 LA
) O\) 7N\

JIORR
LA

SN\ 1

Figure 6.1: A behavior hierarchy network before high-level units are introduced, shown at
three successive time steps. The black units are off (have values of 0.0). The white units
are on (have values of 1.0). The grey units have various degrees of activation. At time step
t — 1, ME is chosen for execution at step ¢. At time step t, ME completes, and SC is chosen
for execution at step t + 1. At t + 1 SC completes (coldness is sensed in the environment).

for execution at time step ¢ + 1: though stochastic, the unit with the highest input value is
the most likely to be chosen.

6.1.1 Network Example

An example network is shown in Figure 6.1 at three time steps: t—1,¢, and t4+1. At time
step t — 1, the agent senses darkness only. Through forward propagation many output units
are then activated to various degrees. Among these, one is chosen probabilistically: ME.
In the following time step, the agent does indeed move east, and the ME unit generates
a 1.0 as its output value to the rest of the network. After propagating forward again,
another unit is chosen probabilistically: SC, which determines whether coldness is present
in the environment. At the following time step, the agent senses coldness and the SC unit
generates a 1.0 as output.

Figure 6.2 shows an example of the network with a new, hierarchical unit added in
(how new units are added is discussed a little later in Section 6.1.3). In this example when
darkness is sensed at time step ¢t — 1, the <ME, SC> unit is chosen probabilistically. This
causes the agent to move east immediately, and then, in the following time step, sensing that
the agent has moved east, the SC unit is activated automatically (no probabilistic choice is
made). At ¢+ 1, the agent does sense cold, and the <ME, SC> behavior has completed, so
both the SC and <ME, SC> units generate output values of 1.0 to be propagated through
the network.

Now suppose the unit <<ME, SC>, MS> is built. The resulting network is shown
in Figure 6.3. At t — 1 the <<ME, SC>, MS> unit is chosen (probabilistically). This
immediately causes the <ME, SC> unit to be chosen and consequently causes the ME
unit to be chosen as well. As a result, time steps ¢ and ¢ + 1 proceed exactly as in the

48 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

t-1 t t+1
Just Next Just Next Just Next
Completed Choice Completed Choice Completed Choice
SC SC
o] o
sD A Y8 AN sD
\V: [\ y’!’ y/ 17 \) Y/
SH SH
MN MN
ME ME
i RN i
MW V//;;'Iy#%' N fj"‘ﬁ"“%‘ £ MW
T O I
MS 20\ LN /80 MS
)\)0 TN
<ME,SC> ‘ <ME,SC>

Figure 6.2: A behavior hierarchy network with a single high-level unit, <ME, SC>, shown at
three successive time steps. This high-level unit is chosen at time step t —1 and consequently
causes ME to be chosen at the same time step and SC to be chosen at time step £. Since
both ME at ¢t and SC at ¢+ 1 completed successfully, the output value of < M E, SC >is 1.0
at 4 1. (The unit labels are displayed differently from those in Figure 6.1 for compactness
and do not indicate a difference in the network.)

previous paragraph, except that at ¢t + 1, sensing that <ME,SC> has completed, the net-
work automatically activates the MS unit. At ¢ + 2, the agent has moved south, and the
<<ME, SC>, MS> behavior has completed, so the output value generated by both the MS
and the <<ME, SC>, MS> units is 1.0.

6.1.2 Learning
The connection weights are adjusted with the delta rule [118] amplified by the reinforce-
ment signal:

Aw;(t) 2 Rt + r)out! (t)(Ti(t) — in(t)) (6.1
'wij(t) = wi]-(t — 1) + Aw”(t) (62)

The weight change at time ¢ of the connection from unit 5 to unit 2 is equal to the product of
the learning rate 7, the reward-level R(¢+7') when unit ¢’s behavior completes, the current
output of unit j, and the difference between the activation of unit 7 and its target T°().
The value 7° represents the number of time steps it takes unit ¢’s behavior to complete: For
primitive sense and action units, this value is 1; for hierarchical units, it is the sum of the
7 values of the unit’s two children. Unit i’s target value, T"(t), is simply the unit’s output
at its anticipated time of completion, i.e., T%(t) = out(t + 7).

This rule states that if some unit ¢ is chosen after another unit j’s behavior completes,
then the system should wait to see if ¢’s behavior completes. If it does not complete (or

6.1. Behavior Hierarchies 49
-1 t t+1 t+2
Just Next Just Next Just Next Just Next
Completed Choice| | Completed Choice| | Completed Choice| | Completed Choice

SC SC
S IS IS AL IR NS AL SL

N W& N7 N7

\ / \“\u 7 / \ \\“’"ii'r \\\\‘\\‘Q"g’ii’i/
SD %&g}\ el AN SD

NS
SH SH
MN MN
ME ME
MW i MW

RN s
MS RN AN 2 MS

NN NN NI

AN '
<ME,SC> <ME,SC>
<<ME,SC>MS> <<ME,SC>MS>

Figure 6.3: The behavior hierarchy network of Figure 6.2 with an additional high-level unit,
<<ME, SC>, MS>. The new unit is chosen at time step ¢ — 1 and immediately causes
<ME, SC> to be chosen (thus causing ME also to be chosen at time step ¢ — 1, followed
by SC at time step ¢t). When <ME,SC> completes at time step ¢ 4 1, this automatically
activates MS. Both MS and therefore <<ME, SC>, MS> complete at time step ¢ 4 2.

if unit ¢ had not been chosen), then the weight from j to ¢ is decreased by an amount
proportional to the current reward and unit ¢’s input. (The system learns not to expect ¢ as
much following j; and the more highly unit ¢ was expected — i.e., the greater its input —
the greater the resulting change.) But if unit ¢’s behavior does complete, then the weight is
increased by an amount proportional to the reward received and the amount by which the
input to ¢ falls short of its target, 1.0. (The system learns to increase its expectation of ¢
following j; and the smaller the expectation, the greater the weight change.)

6.1.3 An Example of Hierarchy Construction

Figure 6.4 presents an example of how the system could be used. The example is
intentionally made simple for clarity. The agent begins at position 1 in the maze. It
will receive a reward if it moves to the asterisk in position 6. From position 5, ME
should become highly activated because the agent will receive a reward if it moves east.
But how can it tell when it is in position 57 It can tell it is in position 5 if it senses
light. Therefore, since the sequence SL—ME is always followed by reward, the connec-
tion from SL to ME will become strong, and a new unit will be formed, <SL, ME>,
to encapsulate this behavior. As units are used in the same sequence again and again,
the connections between them get stronger, and other new units will be created such as
<SC, <MN, MN>> (useful in position 3), <SH, <MW, MW>> (useful in position 8), and
<<<ME, ME> <SC, <MN, MN>>>_ <SL, ME>> (useful in position 1), for example.

50 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

5 6

light| *

4
1 2 3 7 8
start cold hot

10
dark

Figure 6.4: An environment for an agent. The agent would start in position 1 and would
receive a reward in position 6. Other labels show what sensations the agent would perceive
in different parts of the maze.

The units clearly resemble macro-operators, though they have no explicit goals and are
designed to be used in reinforcement environments.

6.1.4 Reinforcement Learning with Hierarchies

The learning Equations 6.1 and 6.2 do not take advantage of the hierarchical nature of the
system for purposes of reinforcement learning. A modification, however, is straightforward:
simply reward the last several choices made, and even though the behaviors represented by
these choices may span a large period of time, reinforcement is spread smoothly across that
time-span. This is achieved by only updating the weights when choices are made, and then
slightly modifying Equations 6.1 and 6.2 to be:

Awy(t) Y out?()(TH(t) — in'(t)) + o Awy(t — 1)
wii(t) = wig(t = 1) + Rt + ') Awy(t),

where 0 < ¢ < 1 is a decay parameter that discounts previous weight changes in favor
of more recent ones. Each Aw;; is therefore an eligibility trace [8, 50] of weight changes
that decays exponentially. The trace constantly accrues weight changes over time — biased
towards the most recent ones — but the changes are only applied to the weights when a
reinforcement is received. Using an eligibility trace for reinforcement learning, however, is
a weak method, and for sequences of many choices compares poorly to the temporal-credit-
assignment methods described in Chapter 5.

6.1.5 A Different Approach is Needed

There are problems with the behavior-hierarchy approach. First and most importantly,
the behaviors either execute or they do not, and as a result, all units at all levels are binary.
This is a discontinuity that prohibits gradient descent and keeps the delta rule from working
effectively. Learning tends to be chaotic.

Second, it’s possible for multiple behaviors to complete simultaneously, as mentioned
above, but it is not possible for them to begin simultaneously. For example, if many sensa-
tions are impinging on the system at the same time, the sequence in which they are sensed

6.2. Temporal Transition Hierarchies 51

11

10

7 8 9
cold | light
6 12
dark
3 4 5 13
hot | light *
2
1
Start

Figure 6.5: In order to decide whether to move north or south in positions 5 and 9, the
agent must remember whether it sensed heat or cold in the previous time step.

is irrelevant. In these cases many units could be formed that are functionally identical
(grouping together the same sensations), but structurally different (grouping them together
in different orders). It should be possible, therefore, for them all to be sensed simultaneously.

Third and finally, there may be many ways of achieving the same end. A behavior that
takes the agent from home to work, for example, may meet contingencies along the way. A
traffic light may be red when a green light was expected. Yet there is no way to encode this
contingency within a single unit such that one action is taken when the light is green, and
another is taken when the light is red, both ending with the agent arriving at work. If two
behaviors could be chosen at the outset, and in one of these a green light is expected while
in the other a red light is expected, then the system would merely be inefficient, requiring
enormous numbers of units to encode every possible combination of contingencies. But
when only one sequence of behaviors can be chosen at a time, encoding contingencies is
not just inefficient; it’s impossible. A solution to these problems is described in the next
section.

6.2 Temporal Transition Hierarchies

A second method for organizing behaviors hierarchically solves the problems associated
with the first, but is less intuitive. It is a supervised neural-network algorithm that can be
used easily in reinforcement environments by combining it with a reinforcement learning
method such as Q-learning (as will be described in Section 7.3). In the Temporal Transition
Hierarchies network, only the primitive units explicitly represent behaviors. The higher-
level units represent transition strengths between lower-level units. Instead of combining
together behaviors as was done in the last section, these units represent the degree to which
one behavior should follow another at any particular time. A higher-level unit does this by
dynamically modifying the connection weight from one lower-level unit to another.

Figure 6.5 provides an example of how such units could be used. In one case (position 9)
the agent should go south when it senses light, while in another case (position 5), it should

52 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

go north. To decide whether to move north or south after the light, the agent need only
know whether it sensed heat or cold in the previous step. A higher-level unit, <SL, MN>,
can be built to strengthen the connection from SL to MN. The system can then learn to
activate this unit after sensing heat, but weaken it after sensing cold. (As in Section 6.1,
the connection weight from sensory unit j to action unit ¢ indicates the likelihood that the
agent will choose action ¢ upon sensing stimulus 7. Unlike in Section 6.1, however, sensory
units have no input connections, nor do action units have output connections.) Another
unit, <SL, MS>. can be built to increase the weight from SL to MS after sensing cold and
to decrease it when sensing heat. Now, when heat is sensed in position 4, the transition
probability from SL to MN is increased while the transition probability from SL to MS is
decreased. The result is that if the agent senses light in the next time step, it will almost
certainly move north. The opposite occurs when the agent senses cold in position 8.

6.2.1 Structure and Dynamics

Transition hierarchies are implemented as a constructive, higher-order neural network.
The structure of the network can be expressed as follows. Each unit (u') in the network is
either: a sensory unit (s € S); an action unit (a* € A); or a high-level unit (!, € L) that
dynamically modifies w,,, the connection from sensory unit y to action unit z.*> The action
and high-level units can be referred to collectively as non-input units (n* € N). The next
several sections make use of the following definitions:

i
L

= {u'|0<i<ns}
= {u'|ns <1< ns+na}

{u'|ns 4+ na < i < nu}

2 =~ >
|

= {u'|ns <1< nu}

= the value of the ¢th unit at time ¢

o~

~— —
I
5]
S~

T'(t) = the target value for a'(t),
where ns is the number of sensory units, na is the number of action units, and nu is the
total number of units. When it is important to indicate that a unit is a sensory unit, it
will be denoted as s'; similarly, action units will be denoted as «‘, high-level units will be
denoted as ', and non-input units will be denoted when appropriate as n'.

The activation of the units is very much like that of a simple, single-layer (no hidden
units) network with a linear activation function,

n'(t) = Z Wi (t)s(1). (6.3)

The activation of the i** action or higher-level unit is simply the sum of the sensory inputs
multiplied by their respective weights, w;;, that lead into n'. The use of a linear activa-
tion function and the lack of hidden units would normally spell trouble (see Section 3.1).

i

3A connection may be modified by at most one { unit. Therefore I, Ley s

and [, are identical but used
as appropriate for notational convenience.

6.2. Temporal Transition Hierarchies 53

t—-1 t t+1

Senses Actions Senses Actions Senses Actions

Figure 6.6: A transition hierarchy before high-level units are introduced, shown at three
successive time steps (all three are identical). When no high-level units exist, the network
functions the same as a simple feed-forward neural network with no hidden units.

However, these are higher-order connections and are therefore capable of non-linear classi-
fications. (More will be said on this in Sections 6.3 and 7.3.5.) The higher-order weights
are produced as follows:

(1) = w;; + l;;(t — 1) if a high-level unit [;; for weight w;; exists
” w;; otherwise
1] .

(6.4)

If no [unit exists for the connection from ¢ to 7, then w;; is used as the weight. If there is such
a unit, however, its previous activation value is added to w;; to compute the higher-order
weight ;;.*

Figure 6.6 displays an example system at three different time steps. There are m sensory
units, n — m action units, and no high-level units. In this case the network behaves as a
feed-forward neural-network with no hidden units. In Figure 6.7 there is a single high-level
unit, an":_lm. The activation of unit I"** at ¢ — 1 is added at time step ¢ to w,,1+13 — the
weight from unit s* to unit a™*! (Equation 6.4). Activation values for the non-input units
(a™*! through a™ and ["*!) are then computed using these weights. The new activation of
["*t1(t) is then added to w413 at time step ¢ + 1.

4In Section 3.3 it was stated that higher-order connections were multiplicative, whereas the higher-order
connections of Equation 6.4 are additive. However, with a bit of mathematical substitution, it can be seen
that these qualify as higher-order connections in the usual sense. If one substitutes the right-hand side of
Equation 6.3 for /;; in Equation 6.4 (assuming a unit n® = G exists) and then replaces w;; in Equation 6.3
with the result, then

ni(t) = D0 Owi(®) + 38" (¢ = 1) dayr(t — 1))
Dl (wii (&) + 308 (0)s7 (8 — 1) ey (£ = 1))

J J

As a consequence, whenever new units are added igher orders are introduced while lower orders are
))
preserved.

54 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

6.2.2 An Example

Now let us return to Figure 6.5. As described earlier, in position 5 and position 9
the same sense is active, SL, but opposite actions are required. This problem is solved by
creating two high-level units lﬁdN’SL and ZI{/?&SL. (The names SC, SL, SD, SH, MN, ME, MW,
and MS are mnemonic equivalents for units 1-4 — the sensory units — and units 5-8 — the
action units — respectively.) The resulting network is shown in Figure 6.8. At time step
t — 1 the agent is in position 4 and senses heat. Assuming appropriate connection weights,’
this causes the action unit ME and the high-level unit Z&NSL to be positively activated and
the high-level unit l\fs ¢, to be negatively activated. There are two results. The first and
most immediate is that the agent moves east. The second is that at the following time step,
t, the weight of the higher-order connection from SL to MN (wmn gr) is greatly increased
while the weight from SL to MS (wms s1,) is greatly decreased. Then, since after moving east
the agent does sense light at time step ¢, MN is positively activated and MS is negatively
activated.

This method also works for connections into higher-level units. In Figure 6.9, for exam-
ple, Z&NSL and ZI{/?S,SL cannot be correctly activated from the sensation of heat or cold alone
but require knowledge of what happened one step earlier. Thus, two new units might be
built, [§ksy and 113 g, as shown in Figure 6.10. Assuming appropriate connection weights,
the first sets the weight from SH to [Jyy gy, to a negative value immediately following the
sensation of darkness (position 12) and sets it to a high positive value otherwise; the second
sets the weight from SH to l\fg g1, to a high positive value following the sensation of darkness
and sets it to a negative value otherwise.

Clearly, this kind of construction can continue indefinitely. A difficulty presents itself,
however, if the agent encounters a state with no sensory information (such as position 3
in Figure 6.9). Information is only transmitted over time when higher-level units modify
connection weights that affect other units at the following time step. If the agent encounters
a state where there is no input, then there will be no values to propagate to any of the units,
regardless of the weights. The solution to this problem is to introduce a bias unit as an
extra input unit whose value is always 1.0. (The bias unit is not shown in the figures.)

6.2.3 Deriving the Learning Rule

The higher-level units of Section 6.1 were either completely on or completely off, and
as such the network could not be differentiated with respect to the error. The transition
hierarchy units, however, are continuous, and the network is differentiable. A learning
rule can therefore be derived that performs gradient descent in the error space. Since the
activations of the [units at one time step are not required until the following time step,
all unit-activations can be computed in a single forward-propagation. Gradient descent can
also be done much more easily than with recurrent networks (Section 4.3); so, though the
derivation that follows is a bit lengthy, the result at the end is a simple learning rule, easy
to understand as well as to implement.

>The learning method for determining these weights is derived in Section 6.2.3.

6.2.

Temporal Transition Hierarchies

High-Level
Units
n+l

Actions

High-Level
Units
n+1

Q|m+1’3

‘ l m+1,3

t+1
Senses Actions
st O dn*t
S3 8 ‘ am+3
[)
[)
[)
YO O
High-Level
Units
| n+l
O m+1,3

ln-l—l

Figure 6.7: A network with a single / unit. This high-level unit, [, 5, modifies the weight

of the connection from unit s to unit a

m+1

The dotted line represents the association

between 1%111,3 at one time step and weight it modifies (the dashed line) at the next.

t-1

Actions

High-Level

Actions

Units

High-Level
Units

Figure 6.8: This network can solve the task in Figure 6.5. The grey circles denote units
with zero activation levels; the white circles represent positive values; and the black circles
represent negative values. The dark line represents a strong higher-order connection weight
(due to the activation of the weight’s higher-order unit at the previous time step), and the
dashed line is a negative higher-order weight. At time step ¢ — 1, the agent is in position 4
and senses heat. The network responds by positively activating the units ME and ZI%/INSL,
and by negatively activating unit lifs . This increases the higher-order weight from SL to
MN, and decreases the weight from SL to MS. Because the agent senses light at the next
time step, the MN unit is positively activated and the MS unit is negatively activated.

56 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

11

10

7 8 9
cold | light
6 12 13 14
dark | hot | light
3 4 5 15
hot | light
2 16

start

Figure 6.9: In order to decide whether to move north or south in positions 5, 9, and 14, the
agent must remember whether it sensed heat or cold in the previous time step. In positions 5
and 14, it must also remember whether it sensed darkness in the time step before that.

t-1 t t+1

Senses Actions Senses Actions Senses Actions

High-Level High-Level
Units Units
9 9
s ‘ ‘ NS

Figure 6.10: This network can solve the task given in Figure 6.9. At time step ¢t — 1, the
agent is in position 12 and senses darkness. This activates the units ME and l}&SH (causing
the weight from SH to lllv?&SL to be strongly positive at the next time step), and negatively
activates unit lj'sy (causing the weight from SH to [{yy g, to be negative). At the following
time step, ¢, the agent senses heat, activating ME and lb?ss& and negatively activating
ll%/[N,SL' The result at time step ¢t 4 1 is that the agent senses light, and because the weight
from SL to MS is strong and the weight from SL to MN is negative, the agent moves south
instead of north.

6.2. Temporal Transition Hierarchies 57

As is common with gradient-descent learning techniques, the network weights are mod-
ified so as to reduce the total sum-squared error:

E = Y E(t)
t
1 i i
Et) = 32 (T'(t)—d'(t)". (6.5)
In order to allow incremental learning, it is also common to approximate strict gradient-

descent by modifying the weights at every time step. At each time step, the weights are
changed in the direction opposite their contribution to the error, F(t):

Awy(t) < Z_%;%J((?) (6.6)
wii(t+1) = wij(t) = nAwy(1) (6.7)

where 7 is the learning rate. The weights, w;;, are time indexed in Equation 6.6 for nota-
tional purposes only and are assumed for the purposes of the derivation to remain the same
at all time steps (as is done with all incremental neural-network methods).®

It can be seen from Equations 6.3 and 6.4 and from Figures 6.8 and 6.10 that it may take
multiple time steps for a weight to have an effect on the network’s action units. Connections
to the action units affect the action units at the current time step. Connections to the first
level of high-level units — units that modify connections to the action units — affect the
action units after one time step. For example, g si(t), the weight at time step ¢ from SH
to lﬁdN’SL in Figure 6.10, affects the action units at time step ¢ + 1. On the other hand,
w11,8p(t), the weight at time step ¢t — 1 from SD to lé}SH, affects the action units two time
steps later. The “higher” in the hierarchy a unit is, the longer it takes for it (and therefore
its incoming connections) to affect the action units. With this in mind, Equation 6.6 can
be rewritten as: PE()

A (1) &

Ay o E2 65)
where 7¢ is the constant value for each action or high-level unit n* that specifies how many
time steps it takes for a change in unit ¢’s activation to affect the network’s output. Since
this value is directly related to how “high” in the hierarchy unit ¢ is, 7 is very easy to
compute:

(6.9)

1+7% ifn'isa higher-level unit, l;y.

; { 0 if n' is an action unit, a*
T =
The derivation of the gradient proceeds as follows. Define & to be the partial derivative
of the error with respect to non-input unit n’.
def OE(1)

6 (1) = prr— (6.10)

6This derivation is done purely within a supervised-learning framework. In contrast, in reinforcement-
learning tasks (which will be discussed in Section 7.3), the network’s outputs influence what actions the
agent chooses and therefore the inputs and target values that the network receives. In this kind of learning,
Equation 6.7 really only approximates complete gradient descent.

58 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

What must be computed is the partial derivative of the error with respect to each weight
in the network:

JE(t) _ OE(t) on'(t—T)
Owi;(t — 1) Oni(t — 1) Owy(t — 77)
L oont(t— 1Y)
= (t)————. 6.11
()8w”(t — TZ) ()
From Equations 6.3 and 6.4, the second factor can be derived simply as:
on (t—T> Sj(t_Ti)awij(t—T')
awij(t — 7'2) 8wij(t - 7'2)
Alij(t—7i-1) . .
_ Sj(t—TZ) 1 + W if l” exists
1 otherwise.
Because w;;(t — 7°) does not contribute to the value of [;;(t — 7' — 1),
on'(t — 7% i :
— = =5 (t—7"). 6.12
ugi—r) ~ =T (6.12)
Therefore, combining 6.8, 6.11 and 6.12,
JE(t) : : :
Aw;(t) = —————— = 86(t)s’(t — 7). 6.13
0it) = G D = B0 =) (6.13)

Now, 6%(t) can be derived as follows. First, there are two cases depending on whether node
2 is an action unit or a high-level unit:

JE(t)
da*(t — 1)
JE(t)
oL, (t — 1)

if n’ is an action unit, a'
§'(t) = (6.14)
if n' is a higher-level unit, l;y.
The first case is simply the immediate derivative of the error with respect to the action
units from Equation 6.5. Since 7° is zero when n' is an action unit,

JE(t) _ 0E(1)
dai(t —) dai(t)
= a'(t) = T'(1). (6.15)

The second case of Equation 6.14 is somewhat more complicated. First, using Equation 6.4,

OE(t) JE(t) Dby (t — 78 + 1)
Oli (t — 1) Qogy(t —7i+ 1) Dl (t —77)

Since, from Equation 6.4, 8?:“%(3;(_?) =1,
OE(t) OE(t)

Al (t—71) gyt — 70 + 1)

6.2. Temporal Transition Hierarchies 59

This can now be factored as:

N R R e)

Because n' is a high-level unit, 7' = 7% + 1 (Equation 6.9). Therefore,

JE(t) OE(t) on*(t—1T17)
@l;y(t -7 N On®(t — 7%) gy (t — 7%)’

and this can be further reduced using Equations 6.3 and 6.10 as:

OE(1)

ali (t—r) §°()s¥(t — ")

Finally, from Equation 6.13,
JE(t)
oL, (t —7°)
Returning now to Equations 6.13 and 6.14, and substituting in Equations 6.15 and 6.16:

The change Aw;;(t) to the weight w;; from sensory unit s’ to action or high-level unit n'
can be written as:

= Aw,y(t). (6.16)

Aw;;(t) = 5i(t)3j(t — Ti) (6.17)
a'(t) — T'(t) if n'is an action unit, a*

— QI _ b . .
= s'(t—7') { Aw,,(t) if n* is a higher-level unit, I’

M) g;y'

(6.18)

Equation 6.18 is a particularly nice result, since it means that the only values needed to
make a weight change at any time step are (1) the error computable at that time step, (2)
the input recorded from a specific previous time step, and (3) other weight changes already
calculated. This third point is not necessarily obvious; however, each high-level unit is higher
in the hierarchy than the units on either side of the weight it affects: (¢ >) A (¢ > y), ‘v’l;y.
This means that the weights may be modified in a simple bottom-up fashion (described in
Section 6.2.5). Error values are first computed for the action units, then weight changes are
calculated from the bottom of the hierarchy to the top so that the Aw,,(¢) in Equation 6.18
will already have been computed before Aw;;(t) is computed, for all high-level units Z;y and
all sensory units j.

The intuition behind the learning rule is that each high-level unit, l;y(t), learns to utilize
the context at time step ¢ to correct its connection’s error, Awg,(t + 1), at time step ¢ + 1.
If the information is available, then the higher-order unit uses it to reduce the error. If the
needed information is not available at the previous time step, then new units may be built
to look for the information at still earlier time steps.

6.2.4 Adding New Units

New higher-level units are created for reasons different from those of Section 6.1. If one
unit is reliably activated after another, there is no reason to interfere with the connection
between them. Only when the transition is unreliable, that is, when the connection weight

60 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

should be different in different circumstances, is a unit required to predict the correct value.
(This is reminiscent of Dawkins’ “hierarchy of decisions,” cf. Section 1.5.) A unit is added
whenever a weight is pulled strongly in opposite directions (i.e., when learning is forcing
the weight to increase and to decrease at the same time). The unit is created to determine
the contexts in which the weight is pulled in each direction.

In order to decide when to add a new unit. Two long-term averages are maintained for
every connection. The first of these, Aw;;, is the average change made to the weight. The
second, Aw;;, is the average magnitude of the change. When the average change is small
but the average magnitude is large, this indicates that the learning algorithm is changing
the weight by large amounts but about equally in the positive as in the negative direction;
i.e., the connection is being simultaneously forced to increase and to decrease by a large
amount.

Two values, © and €, are chosen arbitrarily, and when

A’IJ)U‘ > ®|ALD”| + ¢, (619)

that is, when the average magnitude of Aw;; is greater than ¢ more than © times the
absolute value of the average change, then a new unit is constructed for w;;.
The long-term averages can be computed as follows. The average change is simply

A‘Lf)ij(t) = O'A‘wi]'(t) + (1 — O')A’Lf)ij(t — 1), 0 S ag S 1,

where the parameter o specifies the duration of the long-term average. A smaller value of
o means the average is kept for a longer period of time and is therefore less sensitive to
momentary fluctuations. Similarly, the average magnitude of change is given by:

ALbZ](t) = O'|A‘wi]'|(t) + (1 — O')A‘Lbij(t — 1), 0 f g S 1.

One problem with this method of adding new units, particularly when the weights are
changed at every time step, is that certain units may frequently have zero error. This means
that their incoming connections would rarely need changes, and this results in long-term
averages close to zero. The problem with this is that new units need to be created when a
connection is unreliable in certain contexts. If the contexts only occur rarely, then it is not
possible to determine this unreliability without extremely low o values. This difficulty is
overcome by updating the long-term averages only when changes are actually made to the
weight. That is:

oy =) Awi(t—1) if Aw;;(t) =0 _
Awg(t) = { oAw;;(t)+ (1 — o)Aw;j(t — 1) otherwise, (6.20)
and
N (1) — 4 Dt = 1) if Aw;(t) =0 _
Auslt) = { o|Awgj|(t) + (1 — 0)Aw;j(t — 1) otherwise. (6.21)

When a new unit is added, its incoming weights are initially zero. It has no output
weights: its only task is to anticipate and reduce the error of the weight it modifies. In
order to keep the number of new units low, whenever a unit [f; is created, the statistics for
all connections into the destination unit (u') are reset: Aw;;(t) « —1.0 and Aw;;(t) < 0.0.

6.2. Temporal Transition Hierarchies 61

A related method for adding new units, but in feed-forward neural-networks, was in-
troduced by Wynne-Jones [127] and was described briefly in Section 3.2. This method,
instead of simply monitoring the statistics for each connection individually, examines all
the incoming connections to a particular unit to determine whether this group as a whole is
being pulled in conflicting directions in the multidimensional weight space. It then creates
a new hidden unit to represent an entire area of this multidimensional space. In contrast,
new units in the transition hierarchy network learn to correct only a single weight’s error.

Even more closely related is Sanger’s (also feed-forward) network [89], which occasionally
creates a new unit to correct the single weight with the greatest variance. However, unlike
temporal transition hierarchies, which can at every time step build units for all weights
meeting a specific criterion (Equation 6.19), Sanger’s network is trained over a fixed training
set until convergence. Only then is a new unit created, and training begins again on the
same or a different training set. Its ability to build new units at every time step allows
temporal transition hierarchies to learn sequential tasks incrementally and very quickly.

6.2.5 The Algorithm

Because of the simple learning rule and method of adding new units, the learning algo-
rithm is very straightforward. The outline of the procedure is as follows:

For (Ever)
1

Initialize values.

¢

(et senses.

N)

Propagate Activations.

Get Targets.

Calculate Weight Changes;

Change Weights & Weight Statistics;
Create New Units.

= oo
R g N N

ot

The second and fourth of these are trivial and depend on the task being performed. The
first step is simply to make sure all unit values and all delta values are set to zero for the
next forward propagation. (The values of the [units at the last time step must, however,
be stored for use in step 3.)

1) Initialize values

Line /* Reset all old unit and delta values to zero. */
1.1 For each unit, u(i)

1.2 u(i) « zero;

1.3 delta(i) « zero;

The third step is nearly the same as the forward propagation in standard feed-forward
neural-networks, except for the presence of higher-order units and the absence of hidden
layers.

62 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

3) Propagate Activations

Line /* Calculate new output values. */
3.1 For each Non-input unit, n(i)
3.2 For each Semnsory unit, s(j)

/* UnitFor(i, j) returns the input of unit /;; at the last time step. */

/* Zero is returned if the unit did not exist. (See Equation 6.4.) */
3.3 1 « UnitFor(i,j);

/* To n'’s input, add s’’s value times the (possibly modified) */

/* weight from j to i. (See Equation 6.3.) */
3.4 n(i) « n(i) + s(§)*(1 + Weight(i, j));

The fifth step is the heart of the algorithm. Since the units are arranged as though the
input, output, and higher-level units are concatenated into a single vector (i.e., Vs*, a?, ' :
k < j < i), whenever a unit l;-k is added to the network, it is appended to the end of the
vector; and therefore (j < 7) A (k < ¢). This means that when updating the weights, the
§Vs and Aw;;’s of Equation 6.18 must be computed with 7 in ascending order, so that Aw,,
will be computed before any Aw;; for unit Z;y is computed.

If a weight change is not zero, it is applied to the weight. If the weight has no higher-
level unit, the weight statistics are updated and checked to see whether a higher-level unit
is warranted. If a unit is warranted for the weight leading from unit j to unit 2, a unit is
built for it, and the statistics are reset for all weights leading into unit :. If a higher-level
unit already exists, that unit’s delta value is calculated.

While testing the algorithm, it became apparent that changing the weights at the bottom
of a large hierarchy could have an explosive effect: the weights would oscillate to ever larger
values. This indicated that a much smaller learning rate was needed for these weights. Two
learning rates were therefore introduced: the normal learning rate, 5, for weights without
higher-level units (i.e., 'wmy|ﬂ5|l;y); and a fraction, 5z, of n for those weights whose values
are affected by higher-level units, (i.e., wg,|37;,).

6.2. Temporal Transition Hierarchies

63

5) Update Weights and Weight Statistics; Create New Units.

Line

5.1
5.2

3.3
5.4

5.6

5.7

5.8

3.9

5.10

5.11

5.12

5.13

5.14
5.15
5.16

5.17
5.18
5.19

/* Calculate §; for the action units, a'. (See Equation 6.18.)
For each action unit, a(i)
delta(i) = a(i) - Target(i);

/* Calculate all Aw;;’s, Aw;;’s, Aw;;’s.

/* For higher-order units I, calculate §%’s.

/* Change weights and create new units when needed.

For each Non-input unit, n(i), with ¢ in ascending order
For each Sensory unit, s(j)

/* Compute weight change (Equation 6.17).
/* Previous(j, i) retrieves s/(t — 7°).
deltaw(i, j) « delta(i) * Previous(j, 1i);

[* If Aw;; # 0, update weight and statistics. (Egs. 6.20 and 6.21).

if (deltaw(i,j) # 0)

/* IndexOfUnitFor(i, j) returns n for {
n < Index0fUnitFor(i, j);

7
L)

/* I I doesn’t exist: update statistics, learning rate is 1.
if (n = -1)

/* Change weight w;;. (See Equation 6.7.)

- or -1 if ij does not exist.

¥/

¥/
¥/
¥/

Weight(i, j) « Weight(i, j) - ETA * deltaw(i, j);

/* Update long-term average, Aw;;. (See Equation 6.20) */
1ta(i,j) « SIGMA * deltaw(i,j) + (1-SIGMA) * 1lta(i,j);

/* Update long-term mean absolute deviation Aw;;. (Eq. 6.21) */
ltmad(i,j) <« SIGMA * abs(deltaw(i,j)) +
(1-SIGMA) * ltmad(i,j);

/* If Higher-Order unit [%; should be created (Equation 6.19) ... */
if (1tmad(i, j) > THETA * abs(lta(i, j)) + EPSILON)

/* ... create unit I}, (where N is the current network size). */
BuildUnitFor(i, j);

/* Reset statistics for all incoming weights. */
For each Semnsory unit, s(k)

lta(i, k) « -1.0;

ltmad(i, k) « 0.0;

/* I 1% does exist (n#—1), store 6" (Equation 6.14 and 6.16).
/* Change w;;, learning rate = g, * 1.
else

delta(n) « deltaw(i, j);

¥/
¥/

Weight(i, j) « Weight(i, j) - L_ETA*ETA * deltaw(i, j);

64 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

6.2.6 Tracing Through the Algorithm

It may be helpful to trace through the algorithm with a simple example. This poten-
tially tedious exercise is done here with about the simplest interesting example: sequential
equivalence (this is the same as XOR, only the opposite). In this supervised learning task,
there are two input units: s' and s*. Exactly one of these has a value of 1.0 at each time
step; the other has a value of 0.0. There is a single output unit, a®. The target at each time
step is supplied by a teacher. The target is 1.0 if the input at the current and previous time
steps were the same (i.e., if s'(¢) = s*(¢ — 1) and therefore s*(¢) = s*(t — 1)). The target is
0.0 if the current and previous inputs were different (i.e., if s'(¢) # s'(¢ — 1) and therefore
(1) # (1 — 1))

The following example uses a very high learning rate so as to accomplish the most
possible in as few pages as possible. It also uses a large o and small © and € values so as to
create units as quickly as possible (for the same reason). These are the parameters used:

n = 0.5
n. = 1.0
c = 0.3
g = 04
e = 0.1

Table 6.1 traces through the training algorithm over the first five time steps. The target
for the first time step is undefined, because there was no previous input to compare the
current input against. The following labeled explanations describe the highlights of the
learning process and correspond to the labeled entries in Table 6.1. References to the
respective line numbers of the algorithm are also given when possible.

Starting with time step 2 (Second column of Table 6.1):

A. Since all weights are initially zero, the output of the network is 0.0 (Line 3.4).

B. The target is 1.0 because the input at time step 1 is the same as the input at time
step 2.

The error value for a® is the output minus the target (Line 5.2).

st(t — 1) = 5'(2) = 0.0, so Awz; = 0.0 % 8% = 0.0 (Line 5.5).

s*(t —73) = s%(2) = 1.0, so Aws s = 1.0 * 6> = —1.0 (Line 5.5).

The value nAwsy = —0.5 is subtracted from the weight (Line 5.9).

Since Aws o was already —1.0, averaging in 6* does not change it (Line 5.10).

Ay < (1 — 0)As s+ o|Aws 1| = .7%0.0 + .3 % 1.0 = 0.3 (Line 5.11).

Since Aws 5 is not greater than this value, don’t build a new unit (Line 5.12).

~EQEED O

Time step 3 (third column of Table 6.1):

A. The output is 0.0 again since one weight is zero and the other is multiplied by s2,
which is zero (Line 3.4).

B. The target is 0.0 because the current input is different from the input at the last time
step.

C. Since the target and output matched, there is no error (Line 5.2).

6.2. Temporal Transition Hierarchies

65

Time Step: 1 2 3 4 5
2) Get Senses.
st 0 0 1 1 0
s 1 1 0 0 1
3) Propagate Activations.
¢® 0.00 0.00 A 0.00 0.00 A 0.50 A
4) Get Targets.
T3: 0.00 1.00 B 0.00 1.00 0.00
5) Update Weights, etc.
§3: 0.00 -1.00 C 0.00 -1.00 B 0.50
Awsy: 0.00 0.00 D 0.00 -1.00 C 0.00
wsq: 0.00 0.00 0.00 0.50 0.50
Awsy: -1.00 -1.00 -1.00 -1.00 -1.00
Ay 0.00 0.00 0.00 0.30 0.30
®|A‘lz?371|—|—6: 0.50 0.50 0.50 0.50 0.50
Awg 0.00 -1.00 E 0.00 0.00 0.50 B
w3 9: 0.00 0.50 F 0.50 0.50 0.25
Awsy: -1.00 -1.00 G -1.00 -1.00 -0.55 C
Ag o 0.00 0.30 H 0.30 0.30 0.36 D
®|A‘IZ?372| + ¢ 0.50 0.50 I 0.50 0.50 0.32 E

Table 6.1: The first five time steps of learning the equivalence function. The time steps
progress from left to right. Stages 2-5 of the learning algorithm progress from top to bottom
at each time step. s! and s? are the inputs to the network. a® is the network’s output. 77

is the target value (for a®). §° is the error value for ¢®. Similarly, the remaining rows are

labeled according to the notation presented in the previous sections. The boldface capital
letters next to some entries refer to corresponding explanations in the text.

Time step 4:

A. The value of the output unit is still zero. (A weight’s value at the current time step
is the value before the weight is changed, and is actually displayed in the previous

column.)

B. The difference between output and target is again —1.0 (Line 5.2).
C. This time, however, s' is 1.0, so w3 is changed (Line 5.5).

Time step 5:
A.
B. s*(t — %)% = 5%(5)6° = 1.0 % 0.5 = 0.5 (Line 5.5).
C.
D.
E.

(1 —0)Aws s+ cAws s = 0.7+ —1.04+ 0.3 *x 0.5 = —0.55 (Line 5.10).

(1 —0)As s+ o|Awsz| = 0.7%0.3 4+ 0.3 * |0.5| = 0.36 (Line 5.11).

Ag 5 1s greater than this value, 0.32, which means that a new unit, Z§72, will be created
for this connection (Line 5.12 and 5.13).

The output is: s' * w3y + s*w39 = 0.0 0.5+ 1.0 x 0.5 = 0.5 (Line 3.4).

66 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

Time Step: 6 7 8 9 10 11
2) Get Senses.
st 0 1 1 0 0 1
st 1 0 0 1 1
3) Propagate Activations.
a’: 0.25 A 0.50 A 0.25 A 0.62 A 0.69 A 0.62
14 0.00 B 0.00 0.00 0.38 B 0.38 -0.31
4) Get Targets.
T3: 1.00 0.00 1.00 0.00 1.00 0.00
5) Update Weights, etc.
6 -0.75 C 0.50 -0.75 0.62 -0.31 0.62
Aws ;: 0.00 0.50 -0.75 0.00 0.00 0.62
wsq: 0.50 0.25 0.62 0.62 0.62 0.31
Awz;: -1.00 D -0.55 -0.61 -0.61 -0.61 -0.24
Atg 1 0.00 D 0.15 0.33 0.33 0.33 0.42 A
®|A‘II}371|—|—6: 0.50 0.32 0.34 0.34 0.34 0.20 A
Awzy: -0.75 E 0.00 0.00 0.62 -0.31 0.00
w3 o: 0.62 F 0.62 0.62 0.31 0.47 0.47
Awzy: -1.00 G -1.00 -1.00 -1.00 -1.00 -1.00
JANTIEPS 0.00 G 0.00 0.00 0.00 0.00 0.00
®|A‘LZ7372| + e 0.50 0.50 0.50 0.50 0.50 0.50
by 4 H 4 4 4 4 4
0t -0.75 1 0.00 0.00 0.62 -0.31 0.00
™1 T 1 1 1 1 1
Awg 0.00 K 0.00 0.00 0.62 C 0.00 0.00
Wy 0.00 K 0.00 0.00 -0.31 C -0.31 -0.31
Awg;y: -1.00 -1.00 -1.00 -0.51 -0.51 -0.51
Aty ;: 0.00 0.00 0.00 0.19 0.19 0.19
®|A‘LE471|—|—6: 0.50 0.50 0.50 0.30 0.30 0.30
Awgz: -0.75 K 0.00 0.00 0.00 -0.31 0.00
Wy o 0.38 K 0.38 0.38 0.38 0.53 0.53
Awgz: -0.92 -0.92 -0.92 -0.92 -0.74 -0.74
Aty o 0.22 0.22 0.22 0.22 0.25 0.25
®|A'Lf)472| + e 0.47 0.47 0.47 0.47 0.40 0.40

Table 6.2: Time steps 6-11 while learning the equivalence function. A new high-level unit,
[3.4, has been added to the network together with its two incoming connections. Again, the
capital letters next to some entries refer to the corresponding explanations in the text.

6.2. Temporal Transition Hierarchies 67

Time step 6 (shown in Table 6.2 where the new unit, /5, can now be seen):

A.

HDO QW

=

Since Z§72 did not exist at the previous time step, it has no effect on «® at this time
step (Line 3.4).

The new unit’s value is zero because the initial weights into a unit are zero (Line 5.13).
The error for a® is computed as before: output minus target (Line 5.2).

These values were reinitialized when I3, was created (Lines 5.15, and 5.16).

Though ws3; now has a high-level unit associated with it, its delta value is computed
as before (Line 5.5).

The weight is changed slightly differently, though. The learning rate is now nz * 5. In
this example, however, because 1z, = 1.0, there is no resulting difference (Line 5.19).
Since the weight already has a high-level unit, its statistics are no longer updated
(Line 5.17).

This merely displays the index of the high-level unit associated with ws ;. This is not
a changeable value. Once a high-level unit is created for a weight, the association
between them is permanent (Line 5.13).

The error value for a high-level unit is the same as the error value of the weight the
unit modifies, Aws s (Line 5.18).

Because unit 4 is a high-level unit, it has a non-zero 7 value. The weight that unit
l§72 modifies, w3 5, feeds into an output unit, a® (which has a 7 value of 0). Therefore
74 =1+ 7 = 1. This value is fixed once the unit is created (Line 5.13).

The weights into I3, are changed the same as any other weight, except that the Aw
values are computed using the input values at time step ¢ — 7% (i.e., time step 5).
The learning rate is 7, since there is no high-level unit [, ; associated with this weight

(Lines 5.5, 5.6, and 5.9).

Time steps 7 and 8:

A. Since l§72 = 0.0 at the previous time step, it has no effect on a® (Line 3.4).
Time step 9:
A. High-level unit l§72 was again 0.0 at the previous time step, so it still has no effect on
a® (Line 3.4).
B. However, l§72 finally has a non-zero value at the current time step (Line 3.4). (s'wy; +
s?wg9 = 0.0 0.0 + 1.0 * 0.38 = 0.38).
C. Weight wy, is changed because the input from s' was non-zero at time step ¢ — 7*

(i.e., time step 8). Awy; = s'(t — 7)6* = s*(8)6* = 1.0 % 0.62 (Line 5.5).

Time step 10:

A.

Because (finally) Z§72 was not 0.0 at the previous time step, it temporarily modifies
w32 and therefore has an effect on @®. As a result, a® = s'ws; + s*(w32 + l§,2) =

0.0 % 0.62 + 1.0(0.31 + 0.38) = 0.69 (Lines 3.3 and 3.4).

Time step 11:

A.

Atbg1 > O|Aws | + ¢, so a new unit is created, /3, (Lines 5.12 and 5.13).

68 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

Time Step: 12 21 22 23 24 25
2) Get Senses.
st 1 0 0 1 1
20 1 1 0 0 1
3) Propagate Activations.
a’: 0.31 A 0.01 1.00 A 0.04 A 0.98 A 0.00 A
*: -0.31 0.58 A 58 B -0.42 B -0.42 0.58
®°: 0.00 -0.41 A -0.41 C 0.55 C 0.55 -0.43
4) Get Targets.
T°: 1.00 0.00 1.00 0.00 1.00 0.00
5) Update Weights, etc.
5% -0.69 B 0.01 -0.00 0.04 -0.02 0.00
Awsq: -0.69 C 0.00 0.00 0.04 -0.02 0.00
w31t 0.66 C 0.45 0.45 0.43 0.44 0.44
Awsq: -1.00 D -1.00 -1.00 -1.00 -1.00 -1.00
Az q: 0.00 D 0.00 0.00 0.00 0.00 0.00
O|A®ws |+ 0.50 0.50 0.50 0.50 0.50 0.50
lLy: 5 E| 5 5 5 5 5
Aws ot 0.00 0.01 -0.00 0.00 0.00 0.00
w3 2: 0.47 0.42 0.42 0.42 0.42 0.42
Awszp: -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
Az ot 0.00 0.00 0.00 0.00 0.00 0.00
O|A®wsz|+€: 0.50 0.50 0.50 0.50 0.50 0.50
Lo 4 4 4 4 4 4
5 0.00 0.01 -0.00 0.00 0.00 0.00
o1 1 1 1 1 1
Awyp: 0.00 0.01 0.00 0.00 0.00 0.00
wg1: —0.31 -0.42 -0.42 -0.42 -0.42 -0.42
Awsq: -0.51 -0.14 -0.14 -0.14 -0.14 -0.10
Aty q: 0.19 0.10 0.10 0.10 0.10 0.07
O|Awsa|+ € 0.30 0.16 0.16 0.16 0.16 0.14
Awy ot 0.00 0.00 -0.00 0.00 0.00 0.00
Wy 2t 0.53 0.58 0.58 0.58 0.58 0.58
Awyp: -0.74 -0.39 -0.27 -0.27 -0.27 -0.27
Ay ot 0.25 0.15 0.10 0.10 0.10 0.10
O|Awsz|+ € 0.40 0.25 0.21 0.21 0.21 0.21
§°: -0.69 F 0.00 0.00 0.04 -0.02 0.00
1 G| 1 1 1 1 1
Awsq: -0.69 H 0.00 0.00 0.00 -0.02 0.00
wy 1t 0.3 H 0.55 0.55 0.55 0.56 0.56
Awsq: -0.91 -0.54 -0.54 -0.54 -0.38 -0.38
Ay q: 0.21 0.19 0.19 0.19 0.14 0.14
O|Aws1|+ € 0.46 0.32 0.32 0.32 0.25 0.25
Aws o: 0.00 0.00 0.00 0.04 0.00 0.00
Wy 28 0.00 -0.41 -0.41 -0.43 -0.43 -0.43
Aws: -1.00 -0.30 -0.30 -0.20 -0.20 -0.20
Ay ot 0.00 0.19 0.19 0.14 0.14 0.14
O|A®s 2|+ € 0.50 0.22 0.22 0.18 0.18 0.18

Table 6.3: A new high-level unit, I3,, has been added to the network. This unit allows the
equivalence function to be learned after some further training (steps 13-20, not shown). By time
step 21, the network’s output is nearly perfect. See text for information about entries labeled with
capital letters.

6.2. Temporal Transition Hierarchies 69

Because of the new unit and its new weights, the remainder of the example is carried out
in Table 6.3. Time step 12:

The output is computed as in the previous steps — unit 13,1 has no effect yet (Line 3.4).
The output unit has an error value as before (Line 5.2).

This connection has a high-level unit, so the learning rate is 5z, *n (Line 5.5 and 5.19).
The statistics for the connection were reset in the last time step (Lines 5.15 and 5.16).
The index of the high-level unit modifying this connection (i3 ;) is 5 (Line 5.7).

The error value for the new high-level unit is the same as that of the weight it modifies,
Aws; (Line 5.18).

™=0,s07°=1+73=1.

Because 7° = 1, the input values used to compute the weight changes at time step 12
come from time step 11 (t —7° =12 — 1 = 11): Awsy = 6° *s'(11) = 0.69 1.0.

STEoOF s

Q2

Though not shown in Table 6.3, training continues to modify the connection weights. At
time step 21, the network outputs are nearly perfect (no additional units are created). Time
steps 22-25 show all four possible cases for the equivalence function.

Time step 21:

A. The value of unit /5, is 0.58, and the value of unit /3, is —0.41. This indicates that
at the following time step, if unit s? is activated, then output unit ¢® should become
strongly activated, but if instead input unit s' is activated, then ® should be weakly
activated.

Time step 22:

A. The value of the output unit at the current time step is:
@(22) = 81 (22)[a(22) + B (21)] + 522)[152(22) + H,(21)]
= 0.0(0.45 — 0.41) + 1.0(0.42 + 0.58)
= 1.0.
B. 31'w471 + 52'w472 =0.0%-0.42 -+ 1.0 % 0.58.
C. 51'w571 + 52w572 = 0.0 % 0.55 + 1.0 x —0.41.

Time step 23:

A. a*(23) = s(23)[ws1(23) + 1371(22)] + s%(23)[ws2(23) + Z§72(22)]
= 1.0(0.45 — 0.41) + 0.0(0.42 + 0.58)
= 0.04.

B. 51'w471 + 52'w472 =1.0%x—-0.4240.0%0.58 = —0.42.

C. stwsy + s?ws2 = 1.0 % 0.55 + 0.0 x —0.41 = 0.55.

Time step 24:
A. 1.0(0.43 + 0.55) 4+ 0.0(0.42 — 0.42) = 0.98.
Time step 25:

A. 0.0(0.44 + 0.55) 4 1.0(0.42 — 0.42) = 0.0.

70 Chapter 6. The Automatic Construction of Sensorimotor Hierarchies

6.3 Conclusions

Two important characteristics distinguish transition hierarchies from behavior hierar-
chies. First, transition hierarchies have no discontinuities. The activation function of the
action and higher-level units is continuous (in fact, it’s linear”), meaning these units do not
need to be completely on or completely off. This not only makes it possible to do gradient
descent, but means that behaviors may be active to varying degrees. Because of this and
because high-level units in a transition hierarchy initially have no effect but only over time
begin to reduce error, the learning curve tends to decrease fairly monotonically, as will be
seen in Section 7.2.

Second, an agent that uses temporal transition hierarchies to choose actions implements
a system of distributed hierarchical control; instead of a single unit encoding an entire
behavior, it is the pattern of activations across input and high-level units that determines
the behavior to be performed. The unit activations represent a set of context-sensitive plans:
sequential plans embedded with contingency information. Each high-level unit represents
a particular modification to make in the network given specific expected and unexpected
input events. If the event is expected, the high-level unit can be viewed as a link in a plan,
carrying from a previous time step to the next the agent’s intention to execute this plan.
If the event is not expected, the unit can be thought of as providing contingencies for the
plan.

For example, let’s say the desired behavior is: move east, and if it’s cold, move south,
but if it’s hot, move north. This can be done by activating all of the following units:
ME, lussc, and lynsn (while negatively activating any conflicting units). The behavior
hierarchies of Section 6.1 encountered problems because only one behavior could be active
at a time. These problems disappear completely in the new system since multiple high-level
units can be activated simultaneously.

Transition hierarchies may also be viewed as a system of continuous-valued condition-
action rules that are inserted or removed depending on another set of such rules that are
in turn inserted or removed depending on another set, etc. When new rules (new units)
are added, they are initially invisible to the system, (i.e., they have no effect), but only
gradually learn to have an effect as the opportunity to decrease error presents itself.

“FEncapsulation” of a behavior, an important concept to the behavior hierarchies of Sec-
tion 6.1 still occurs, but differently. In Temporal Transition Hierarchies, if the weight from
a sense to an action is strong, then the sense—action behavior is effectively encapsulated.
There might be a whole stream of such behaviors that are essentially reflexive; once the
stimulus is perceived, the action occurs. The boundaries between encapsulated behaviors
appear when an immediate response to a stimulus is not known. This is where a new unit
is created to find the context that will determine the correct response. Once the context is
found, the new unit binds together two streams of reflexive responses into a single stream
of responses, thus constituting a newly encapsulated, context-sensitive behavior.

Limitations. One problem with Temporal Transition Hierarchies is that there are no hid-
den units in the traditional sense, and the activation functions are linear. Linear activation

“It can still make non-linear discriminations, however, due to its use of higher-order connections, as
should be clear from the program trace in the last section. This will be shown again in Section 7.3.5.

6.3. Conclusions 71

- i Dimension of
Training Algorithm Difficulty RN

1,2} 3| 4 | 7 |8]09

Temporal Transtion | D | C | LS| MM | Mk |k+ | F |V |V |V |V
Hierarchies

Table 6.4: The characteristics of the Temporal Transition Hierarchy algorithm. The cate-
gories are the same as those of Tables 3.1 and 4.2. “LS” in column 3 indicates that, given
knowledge of the previous state, desired mappings from senses to actions must be linearly
separable. All other notation is identical to that of Table 4.2.

functions sometimes raise a red flag in the connectionist community due to their weak pow-
ers of discrimination in traditional networks (Section 3.1). The same holds for networks
without hidden layers. However, transition hierarchies use higher-order connections, in-
volving the multiplication of input-units with each other (Equations 6.3 and 6.4). This
means that despite the linear activation function and lack of hidden units, the network
can in fact compute non-linear functions and can make classifications that are not linearly
separable. Nevertheless, these mappings are constructed from the inputs at previous time
steps; without previous inputs, the network can only generate linear outputs from its input
at the current time step.

This need not be a problem, however. If the network’s input is repeated over multiple
time steps, the network can compute non-linear mappings from the repeated input data.
In robotics environments this can be done by giving the robot a “stay” action, allowing
the agent to stay in its current position until it has made whatever discrimination it needs
to. This approach is discussed in Section 7.3.5. Different possible solutions are discussed in
Section 8.4.

Another issue is that of unlimited time-delays. The system described above is only
capable of building hierarchies that span a fixed number of time steps. This means it can
only learn Markov-k tasks (Section 2.2.3), though it can learn them when k is unknown.
It cannot learn arbitrary finite-state grammars or any more complicated tasks. A possible
solution for this limitation is discussed in Section 8.4. This is also not necessarily an
enormous drawback, since the algorithm can still learn k& regardless of its size.

A final issue is that of reinforcement learning, which was handled so intuitively in the
case of behavior hierarchies in Section 6.1.4. Since the units of transition hierarchies are
not dedicated to representing entire behavior sequences, the technique used in that section
cannot be used here. Fortunately, standard reinforcement learning techniques may be used.
Since the algorithm of Section 6.2.5 can be used in any supervised-learning task, it can be
used to predict critic values or Q-values as described in Chapter 5. Results with this system
are presented in Section 7.3.

Dimensions of Difficulty. Table 6.4 summarizes the Temporal Transition Hierarchies
learning algorithm in the same form as given in Tables 3.1 and 4.2.

Chapter 7

Simulations

Of the two algorithms presented in Chapter 6, Temporal Transition Hierarchies is clearly
superior. It has been tested on a variety of learning tasks, and the results of these tests are
reported here.

Experimental results are presented in two categories: supervised-learning benchmarks
and continual-learning demonstrations. There are two supervised-learning benchmarks:
The Reber grammar and the Mozer gap task. In these tasks, the learning system is given
a sequence of data for which its task is to predict the next item in the sequence. For both
benchmark tasks the next item cannot be predicted from the current item alone but must
take into account some amount of previous information as well. The amount of previous
history required is not given but must also be learned. One of the supervised tasks, the gap
task, is deterministic; the other, the Reber grammar is stochastic.

The remaining results demonstrate the ability of temporal transition hierarchies to do
continual learning. This is shown through a series of nine small mazes whose states are
ambiguously labeled. The mazes are arranged such that each is somewhat more complex
than its predecessor. As the sequence progresses, the mazes increase in size, but each
preserves the basic structure of its predecessors so that skills learned while solving one
maze can be used for solving the next. Therefore, most units created to learn one maze
should still be useful when learning the next.

The supervised-learning tasks are benchmarks by which Temporal Transition Hierarchies
can be compared with other sequence-learning neural networks. The continual-learning
tasks are original and demonstrate the concept of continual learning while simultaneously
demonstrating the success of Temporal Transition Hierarchies in non-Markovian environ-
ments. Table 7.1 shows how difficult the tasks are according to the eleven dimensions of
difficulty from Table 2.1. All are Markov-k tasks. All contain ambiguous sensory informa-
tion. Only the maze tasks require reinforcement learning. The mazes can all be solved with
a small amount of state information. The difficulty of learning to solve the tasks, however,
is great.

7.1 Description of Simulation System

The simulations described in this chapter were done with a highly modular, object-
oriented architecture. The architecture is designed to allow any combination of environment
and learning agent by providing a common protocol that all environments and agents must
adhere to. The system is diagramed in Figure 7.1. The agent module implements Equa-
tions 2.2, 2.3, and 2.7. The environment module implements Equations 2.4, 2.5, and 2.6.
The centerpiece is the Agent-Environment Interface, which transfers sensory and reinforce-
ment information from the environment to the agent, transfers action information from the
agent to the environment, and mediates in all matters of protocol. The user may specify

7.2. Supervised-Learning Tasks 73

Dimension of Complexity Reber Gap Task Mazes
1 | Sense/Action Representation Local Local Local
2 | Sense/Action Values Binary Binary Binary
3 | Sense—Action Mapping Orthogonal | Orthogonal Orthogonal
4 | Sense—State Mapping Many-Many | One-Many One-Many
5 | State—Action Mapping Many-Many | One-Many Many-Many
6 | Next State Function Stochastic Deterministic | Deterministic

i.e., (state, action)—state

7 | Underlying Model Markov-k Markov-k Markov-k
8 | History Information Needed 7 1 0-1
9 | History Duration 1 2-40 1
10 | State/Action—Reinforcement Mapping | N/A N/A Many-one
11 | Planning Steps for Reinforcement 0 0 8-27

Table 7.1: The three kinds of tasks for which results were obtained are described in terms
of the eleven dimensions of difficulty from Table 2.1. For the gap and maze tasks which are
really sets of different tasks, ranges of values are reported where applicable.

the environment, the agent, parameter settings for each, and parameter settings for the
interface.

The environment’s parameters are environment dependent. They describe, for example,
the environment’s size, its initial random seed (if it is stochastic), the file from which to
retrieve its initial configuration, at what level of detail its activities should be displayed,
etc. The agent’s parameters are agent dependent and might include the agent’s numeric
parameters (e.g., a, (3,7, etc.), its display level, which learning algorithm to use, and the
learning algorithm’s parameters (e.g. 7,0, ¢, display level, etc.). The interface parameters
specify control information such as the maximum number of steps per trial, the maximum
number of trials, and stopping criteria for training and testing. After these parameters are
specified, the interface is called to do the training or testing and can be queried afterwards
for the results.

7.2 Supervised-Learning Tasks

The two supervised-learning tasks reveal the strengths of Temporal Transition Hierar-
chies in two kinds of environments. The Reber grammar [79] demonstrates the reliability
of the algorithm when learning temporal dependencies in the face of noise. It has been
used often in the neural network literature to demonstrate the relative power of various
recurrent-network approaches. The gap task introduced by Mozer [66], demonstrates the
system’s ability to learn long temporal dependencies reliably and quickly.

7.2.1 Reber Grammar

The Reber grammar is a small finite-state grammar with one or two possible transitions
from every state (Figure 7.2). Transitions from one node to the next are made by way of
the labeled arcs. Starting in state 0, training strings are generated by randomly choosing
an outgoing arc from the current state (in states 0 and 7, only one arc may be chosen).
The chosen arc is then traversed to the next state. For example, if the grammar is in

74 Chapter 7. Simulations

User
Environments ‘ Mozer " gap" Tasks results
Reber Grammar ° *
‘ i . Agents Supervised L earner o
‘ Random Grid World
Continual Learning parameters ‘ Q-learner
Mazes
AHC
>_>.E Action
Agent/Environment 5 N
Interface
A !
G| 20—
cement

State Reinforcement

Learning .
Algorithms Look-up Tables

Temporal Transition
Hierarchies

Figure 7.1: The simulator has three primary components: the Agent, the Environment,
and the Agent-Environment Interface. The Agent may make use of one or more learning
algorithms, possibly chosen by the user. The Agent-Environment interface is given all user-
specified options and parameters before training begins, and can be queried afterwards for
the results.

state 1, either arc T or P may be chosen. If T is chosen, state 2 is reached, and from there
either S or X is chosen. This process continues until state 7 is reached. The sequence of
arcs traversed makes up a training string. “BTSXXTVPSE” is a sample string generated
by the grammar.

The task of the network is to predict the next element in the string while the string is
presented, one element per time step, to the network as input. Both inputs and outputs are
encoded locally; so there is exactly one input unit and one output unit for every possible
arc label. This means there are seven input and output units (one each for B, T, S, X,
V, P, and E). One input unit is set to 1.0 at every time step. With the above string, the
first input would be a B (the B input unit would be set to 1.0, all others to 0.0), and the
target would be T (the target value for the T output unit would be 1.0, all others would
be 0.0). The next input is T, and the target is S. The third input is S, and the target is X,
etc. The Reber grammar is difficult for two reasons: (1) because the current state cannot

7.2. Supervised-Learning Tasks 75

Figure 7.2: The “Reber” grammar is the finite-state grammar shown above. Each numbered
state has one or two outgoing arcs. The current state cannot be determined from knowledge
of just the last arc traversed.

be determined from the current input alone, and (2) because the next target cannot be
completely determined from the current state.

The Temporal Transition Hierarchy network was trained on this task using the following
method. Before each training string was presented, the network was reset — the values of all
units were set to zero and the record of previous activations was cleared. A newly generated,
random string was then presented. The network was trained until it had correctly predicted
100 consecutive strings. A string was considered to be correctly predicted if the prediction
at every time step was correct. However, since in most states there are two possible arcs that
can be traversed, the network is considered to have made a correct prediction if its one or
two most highly activated units matched the one or two possible arcs that might have been
generated next. If the initial B were presented from the string above, then the prediction
would have been considered correct if the two most highly activated output units were P and
T (even though the target would be T alone). If only one arc can be traversed from a state,
it must correspond to the single most highly activated unit. (The actual level of activation
is of no consequence; only the relative level of activation among the units was tested.)
When 100 consecutive sequences were correctly predicted, training was stopped. These 100
strings may be thought of as a validation set in which training continues. (The number 100
was chosen more or less arbitrarily, but large enough to ensure good performance on the
test set). The network was then tested on a set of 128 freshly generated sequences. (This
number was chosen for easy comparison with Recurrent Cascade Correlation).

Table 7.2 presents the results of 100 different learning episodes, where an episode is the
entire training process as just described. Each episode uses different randomly-generated
strings (i.e, the random number generator was seeded differently for all 100 episodes). The
table shows the number of strings seen by the network during training including the 100
correctly classified consecutive validation strings. The mean performance, best performance
and standard deviation are shown, together with the number of units created and average
percent of testing strings correctly predicted. Also shown are the corresponding values
(when available) of other systems, quoted from reports published elsewhere (in most cases
by the system’s inventors).

An Elman-type recurrent network was able to learn this task after 20,000 string pre-
sentations using 15 hidden units [17]. (The correctness criteria for the Elman net were

76 Chapter 7. Simulations

Elman Temporal

Algorithm: || Network | RTRL | RCC | Transition

Hierarchies
Training Strings (Best): || 20,000 | 19,000 - 127
Training Strings (Mean): - - 125,000 167.7
Standard Deviation: - - - 35.1
Hidden or High-Level Units: 15 2 2-3 40
Percent Testing;: 100% 100% | 100% 100%

Table 7.2: Temporal Transition Hierarchies are compared against recurrent networks on
the Reber grammar. The results for the recurrent networks are quoted from other sources
[17, 27]. The mean and/or best performance is shown when available. RTRL is the Real-
Time Recurrent Learning algorithm [123]. RCC is the Recurrent Cascade Correlation algo-
rithm [27].

slightly more stringent than those described in the previous paragraph: the output units
corresponding to the one or two possible next arcs had to have an activation level of at least
0.3). Recurrent Cascade Correlation (RCC) was able to learn this task using only two or
three hidden units in an average of 25,000 string presentations [27]. The transition hierarchy
system learned the task in an average of 167.7 strings, but had to be constrained not to
create more than forty units. Had no constraint been imposed, the system would have con-
tinued to add new units in an effort to better predict the randomly selected arcs. In other
words, it would have spent limitless resources trying to predict the random number gener-
ator. This is an unavoidable situation, since there is always the possibility that some input
from the arbitrarily distant past will finally make predictable a previously random-seeming
event.

The parameters used for the results in Table 7.2 were: n = 0.06, n; = 0.15, ¢ = 0.25,
© = 0.9, ¢ = 0.0. Considerable efforts were made to optimize these values. The system
was trained repeatedly on a fixed training set using a multidimensional direction set method
(Powell’s method [77, §10.5]) — an optimization technique for use in the absence of gradient
information. The technique can be used to find very good parameter settings without the
hassle and distress that tend to accompany a manual search for good values. I recommend
this technique to all my friends.!

Typically, the optimization routine tests many hundreds, sometimes thousands of pa-
rameter combinations. For every parameter combination in the Reber grammar task, the
network was trained twenty times. The average number of strings seen before passing the
100-consecutive-strings criteria was then added to the number of higher-level units created.
This sum was the value the optimization routine tried to minimize.

The optimization routine could be used because, fortunately, the transition hierarchies

1This method is also very computation intensive, and can really only be used with very fast learning
algorithms (or very easy learning tasks). Though the direction set method is very useful in optimizing
parameters, its usefulness is due mostly to its convenience. It has no magical abilities to find exceptionally
good parameters. It simply carries out automatically what one would normally do by hand, and it gives
one confidence that the space has been searched adequately. The best improvement I've seen this method
find over a coarse manual search is about 20%.

7.2. Supervised-Learning Tasks 77

20% | 50% | 90% | 99% | 100% | 101% | 110% | 200% | 500%
n | 19/0] 63/0|-23/0]00/0]00/0]-07/0]|-09/0] 56/3] 570/ 7
me || -2.9/1|-54/0|-12/0|00/0|0.0/0]| 00/0]| 05/0| 06/0| 7.3/0
o |l 23/0|-24/0|-3.0/0|00/0|0.0/0]| 06/0]|-0.9/0| 100/ 3 | 440/14
© || 310/11 | 39/3|-4.0/0|06/0|00/0]| 00/0|-1.5/0|-35/0]| 4.2/0
05] 02] 0.1] 001 00] +001] 401 +02] +05
¢ |[260/9 | 36/2| 34/1[0.1/0|00/0]|-02/0|-04/0| 20/1 | 740/25

Table 7.3: The impact of changes in the parameters while training on the Reber grammar.
The middle column, labeled 100% shows the result of training on the parameters found
through optimization. The other columns each display the effect of modifying the parameter
named in the left column by the amount shown in the column heading. The values listed
show the percent effect on training performance. Because € had an optimized value of 0.0,
it is changed to the shown value rather than being modified by a certain percentage. The
second value in each column is the number of training episodes that did not achieve pertect
testing.

algorithm is very fast. On a Sparc 10, the average amount of time spent for one complete
episode of training and testing on the Reber grammar (as described above) was 0.70 seconds
(when the average number of strings used for training was 167, and the number of testing
strings was always 128). However, doing this twenty times for each parameter setting still
takes quite a while. When optimization finally stopped, the resulting parameters were used
to train and test the system 100 times on newly generated data. These are the results that
appear in the table.

Parameter Sensitivity. One drawback of automatic parameter search is that the sensi-
tivity of the algorithm to changes in parameters becomes somewhat hidden. In order to
give at least some feeling for this algorithm’s parameter sensitivity, it was trained on the
Reber-grammar task with a barrage of different settings. These are shown in Table 7.3.
Only one parameter is changed at a time; all others are kept at their optimized values.
The table shows the effect of modifying each parameter. For each setting, the network was
trained on the Reber grammar 25 times and the performance was averaged. Performance
was measured in terms of the number of strings seen by the network up until 100 consecu-
tive strings had been correctly classified. The value displayed is the percentage difference
from the performance of the network with all parameters optimized. Also displayed is the
number of training episodes (out of 25) that did not result in perfect testing. The testing
set, as before, consisted of 128 randomly generated strings.

The sensitivities are varied, but in general the algorithm is quite robust with respect to
its parameters. For example, reducing n by a factor of five (to 20% of its optimized value)
results in only a 19% slow down. (Though increasing it by a factor of five results in a slow
down of 570%.) With less extreme changes, however, the slow downs are very reasonable.
Even a factor of two change in either direction did not result in more than a factor of two
slow down for any of the parameters. With changes of as much as 10%, the differences
are negligible. (The reason that some parameter settings performed even better than the
optimized values is because they were not tested on the same training data, and differences
in training data can have a noticeable effect on performance).

78 Chapter 7. Simulations

Progress of Testing Performance During Training

Mean Test Performance

100.00 e S b

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

coOo —A—"—171-— @ Ttgeraeeeeee...

Training
10 20 30 40 50 60 Strings

Figure 7.3: The horizontal axis shows the number of training strings seen by the network.
The vertical axis shows (1) the mean percent correct, and (2) the standard deviation on
randomly generated test sets over 100 networks.

Performance Improvement During Training. The progressive performance of the net-
work can be seen by testing it after every 10 training strings. A graph displaying this in-
formation is shown in Figure 7.3. The graph shows the mean performance of 100 training
episodes. Performance was measured as the percentage of the testing set correctly predicted.
The test set consisted of 128 randomly generated strings. On average, the network can pre-
dict 43% of the testing set correctly after 20 training strings. After 40 training strings, the
average performance is 99% correct. After 50 training strings this value is 99.9%, and the
network achieves 100% after 60 training strings. The standard deviations are shown in the
lower curve. (The network seems to perform better in Figure 7.3 than in Table 7.2 because
the validation strings are included in the latter’s values.)

As stated previously, the network’s error tends to decrease fairly monotonically. This
can be seen (with eyes squinted) in Figure 7.4. Training is not epoch-wise, but is done
on-line as strings are presented, so the RMS error is shown for each string. Because of this
and because of the stochasticity in the environment, (i.e., the strings are of many different
lengths) this is about as close to a monotonic decrease as one could expect. In a non-
stochastic environment with a fixed training set, a less chaotic graph emerges, as is shown
in the next section.

7.2.2 The Gap Task

Temporal Transition Hierarchies have also been tested on the gap tasks introduced by
Mozer [66]. These tasks test the ability of a learning algorithm to bridge long time delays.

7.2. Supervised-Learning Tasks 79

RMS Error for Reber Grammar

RMS Error

0.40

0.38

0.36 \1
0.34 V\
0.32 \ ‘
0.30 V vJ 'AVA
0.28 \I\

Wit L 1

W 40 T T T T T
BT iR o

Training Strings
o 50 100 150

Figure 7.4: A typical graph of RMS error while learning the Reber grammar. In this training
episode, the algorithm saw 166 strings. It predicted the last 100 strings correctly.

Each task consists of a two-string training set such as that shown in Figure 7.5. Each string
consists of a series of forty-three input elements. As with the Reber-grammar strings, the
network must learn to predict the next element of the sequence. Each string is presented to
the network one input at a time (with the following input as the target) until the network can
predict both sequences correctly. A sequence is predicted correctly if the highest activated
output unit corresponds to the next item in the sequence for every element after the first.

The gap task is difficult because the two sequences are nearly identical. Only one item
distinguishes them: the initial input element (an X or Y), which is presented again after a
gap of several other inputs. In order to predict its second appearance, the initial element
must be remembered across this gap while the other items are presented. The task can
be made more difficult by increasing the size of the gap. In Figure 7.5 the gap is two, in
Figure 7.6 the gap is 8. Other than the placement of the X’s and Y’s, the strings are identical

time step: 0 1 2 3 4 5 6 7 8 9 10
Sequence I: X a b X ¢ d e f g h i
Sequence2: Y a b Y ¢ d e f g h i

Figure 7.5: An example of a gap training set [66]. One item is presented to the network at
each time step. The target is the next item in the sequence. Here the gap is two because
there are two items in the sequence between the first X or Y and the second X or Y. In
order to correctly predict the second X or Y, the network must remember how the sequence
began.

80 Chapter 7. Simulations

time step: 0 1 2 3 4 5 6 7 8 9 10
SequenceI: X a b ¢ d e f g h X i
Sequence2: Y a b ¢ d e f g h Y i
Figure 7.6: An example of the gap task with a gap of 8.

in all tasks. The inputs are locally encoded (one input unit for each unique sequence item).

Results of the gap tasks are given in Table 7.4. The values for the standard recurrent
network and for Mozer’s own variation are quoted from Mozer’s paper [66]. Mozer, whose
network was specifically designed to learn long temporal dependencies (Section 4.3.3), re-
ported results for gaps up to ten, and he also stated that the network had scaled linearly
even up to gaps of 24. His network required different parameter settings for each gap size
and found that the parameters needed very precise tuning for the largest gaps. The pa-
rameter settings for transition hierarchies, on the other hand, were constant across all gap
sizes. For the results in Table 7.4, they were: . = 0.8, = 0.0l,0 = 0.5,0 = 1.0,
and € = 0.1. No bias unit was used.

A graph of the RMS error for gaps of two, ten, twenty, thirty, and forty is displayed in
Figure 7.7. Unlike with the Reber grammar, the gap tasks are deterministic, and a fixed
training set is used. This allowed the fast, monotonically non-increasing RMS error. All
gap sizes plateau at an RMS minimum until the last needed units are finally built. At this
point the error suddenly dives again.

With a gap of two, the following high-level units are created after seeing both patterns
once:* I x, 1%, and [3 . The first and third of these helps the network to predict whether a
or ¢ will appear after X or Y is seen. The second helps decide whether X or Y should follow
b. After the next pass through the training set, four new units are created: I y, 13, 2y and
l;a. units 4 and 6 will work in cooperation with units 1 and 3: units 1 and 4 will allow the
network to predict whether a or ¢ should follow X; units 3 and 6 do the same for Y. Unit 5
does for Y what unit 2 did for X. Unit 7 is now the next stage in the chain that will reach
back to the initial X and Y. It will determine whether unit 2 should be activated after a is
seen. If activated, unit 2 will predict X if b is seen. In the next pass, only one new unit is
created: (%, which does for Y what unit 7 does for X. Now all needed units are in place,
and only the weights need to be trained, which they do in two more passes. The final effect
is that there is a strong connection from X to unit 7, which causes unit 2 to be activated,
which then predicts X following b. Likewise, a strong connection develops from Y to unit 8,
which causes unit 5 to be activated, which then predicts Y following b. Meanwhile, units 4
and 6 get a strong weight from b, while units 1 and 3 develop negative weights from b, so
that ¢ is predicted following the second appearance of X or Y (and « is predicted following
their initial appearance).

a’

The above was with a gap of 2. With a gap of 4, nearly exactly the same thing happens,
only the names are changed. d and e, the letters immediately preceding and following the
second occurrence of X and Y, replace b and ¢ in the above paragraph. (This takes care of
units ['-1°.) Higher-level units 7 and 8 are slightly more complicated, but, just as in the last
paragraph, they are the first link in the chain back toward the beginning of the sequence.

2To reduce confusion, I will label these [units beginning with the index 1, though in practice, the first
[unit will actually have an index equal to that of the final output unit plus one

7.2. Supervised-Learning Tasks 81

Mean Number of Training FEpochs Units Created by
Gap Standard Mozer | Temporal Transition | Temporal Transition
Recurrent Net | Net Hierarchies Hierarchies

2 468 328 4 8

4 7406 584 6 12

6 9830 992 8 16

8 > 10000 1312 10 20

10 > 10000 1630 12 24

24 - - 26 52

40 - - 42 84

Table 7.4: The Temporal Transition Hierarchy network is compared on the “variable gap”
task against a standard recurrent network [88] and a network devised specifically for learning
long time delays [66]. The comparison values are quoted from Mozer [66], who reported
results for gaps up to ten.

RMS Error for the Gap Tasks

RMS Error
Gap =2
0.12 * EGap:lO
0.11 Gap = 20
Gap=30"
0.10 \ S T A0
0.09 \
0.08 \
0.07 \
0.06 \
0.05 k
0.04
0.03 X oy L3 >
Y \ \ \
\ “‘ \‘ \ \
0.02 L s
0.01
0.00
Epoch

(0] 10 20 30 40

Figure 7.7: The RMS error while learning five different gap tasks is monotonically non-
increasing. Gaps of two, ten, twenty, thirty, and forty are shown. Note the highly uniform
behavior among all gap sizes. Training stopped once the entire sequence (except for the
first element) was correctly predicted.

82 Chapter 7. Simulations

Thus, with a gap of four, they are [, and [$.. Still more units are needed to reach back
to the beginning. Two more are created: (2, and g}, which extend the chain back to b.
After another pass, the final two units are in place: [g', and /i3 ,. After two more passes,
the weights are correct: X activates unit 11, and Y activates unit 12. Then, when at the
beginning of the sequence, the a at time step 1 activates either unit 9 or unit 10, so that in
the next step, either unit 7 or 8 gets activated, then 2 or 5 in the following time step, and
finally at the end of the chain, output unit X or Y gets activated and accurately predicted.

With larger gaps these chains must grow longer. The bridge grows by two units with
every pass through the training set, thus extending both chains (one bridging the gap from
X to X, the other from Y to Y) one step backwards with each pass. With a gap of n, this
requires n passes through the training set. Add to this the last two passes needed to adjust
the weights, and the results in Table 7.4 should now be completely explained.

The temporal transition network scaled linearly with every gap size — both in terms of
units and epochs required for training — for all sizes tested up to a gap of forty. Because
these tasks are not stochastic, the network always stopped building units as soon as it had
created those needed to solve the task.

Why does the algorithm learn so quickly? The reason seems to be the specificity with
which problems are addressed. The weights of the network are constantly trying to establish
reliable temporal relationships between events. Each connection is attempting to answer
the question: to what extent does event 2 follow event 17 (Where event 1 is represented by
the connection’s input-unit, and event 2 is predicted by the connection’s output unit). If a
prediction cannot be made, this is manifested through the inability of a weight to determine
this relationship. Fortunately, these situations can be detected quickly and easily, and a
new unit can be built to help establish the circumstances under which event 2 does follow
event 1. The new unit is dedicated to the single narrow purpose of trying to discover
information — from the previous time step only — that will answer this question. If the
needed information does exist at the previous time step, then learning is very fast, since
it is single-layer learning (i.e., there are no hidden units between the inputs and the new
high-level units). In contrast, the hidden units of traditional neural networks must perform
a complex balancing act: they have no single, specific, easily identifiable purpose. Rather,
they must cooperate with many other units, searching together in a constraint-satisfaction
process through a vast space for a set of weights that, when taken together, will allow the
network as a whole to solve its task. Even RCC, which also trains hidden units individually
instead of in a cooperative constraint-satisfaction process, does not build them to solve such
specific problems as those for which transition-hierarchy units are built.

7.3 Continual-Learning Results

The objective of this section is to illustrate the strengths and practicality of continual
learning in reinforcement environments. This is done by introducing CHILD, an agent
capable of continual, hierarchical, incremental learning and development. CHILD combines
an incremental, hierarchical learning algorithm (Temporal Transition Hierarchies) with a
reinforcement-learning method (Q-learning).? Temporal Transition Hierarchies serve as the

3In early comparisons between Q-learning and the AHC, Q-learning was generally superior when used
with Temporal Transition Hierarchies.

7.3. Continual-Learning Results 83

8 9 10 11 12 13 14 15

Figure 7.8: There is a unique label for every possible configuration of walls immediately
surrounding the agent. “0” means that there are no walls; “17 means there is a wall
immediately north of the agent, “2” means there is a wall immediately west of the agent,
etc.

supervised learning algorithm with which a Q-learning reinforcement system is constructed.
Its capacity to learn in environments with ambiguous sensory information as well as its
capacity to do continual learning in those environments is demonstrated in nine successively
more difficult maze environments.

In the “maze” environments that follow, there are always four possible actions: move
north, move east, move west, and move south. In each state there are senses corresponding
to the walls immediately surrounding that state. Thus, there are sixteen possible wall
configurations and therefore sixteen unique senses, as shown in Figure 7.8. (Nearly the
same sensory system was used by McCallum [59].) Since “15” only occurs if the agent is
completely boxed in, it is of little use and does not appear in any of the environments below.
Because the Q-learning system has four actions and fifteen senses, the transition hierarchy
network therefore must have four output units and fifteen input units.

Learning works as follows. The agent “begins” a maze under three possible conditions:
(1) it is the agent’s first time through the maze; (2) the agent has just reached the goal in
the previous trial; or (3) the agent has just timed out (i.e., the agent took the maximum
number of actions allowed for a trial without reaching the goal).

Whenever the agent begins a maze, the learning algorithm is first reset, clearing its
short-term memory. In the case of Temporal Transition Hierarchies, this means resetting
all unit activations and erasing the record of previous network inputs. A random state in the
maze is then chosen and the agent begins from there. Upon arriving in a state, the agent’s
sensory input from that state is given to the network as input. The network propagates
forward to produce a QQ-value for each action. The Q-learning system uses these and the
current temperature to form a Gibbs distribution (see Section 5.2, Equation 5.7) with which
the next action is chosen. The temperature is initially set to 1.0, but its value is decreased
at the beginning of each trial to be 1/(1 +nAT'), where n is the number of trials so far and
AT is a user specified parameter. The network is updated using the same AQ values as
given by Lin [54] (Equation 5.8).

The nine mazes are shown in Figure 7.9. Barriers are in black and may not be entered
by the agent. Nor may the agent move beyond the boundaries of the maze. The agent
receives a reinforcement of 1.0 when it reaches the goal (denoted by the food dish) and
receives a reinforcement of 0.0 otherwise. Every state is labeled with the sensory input the
agent receives in that state, determined according to Figure 7.8.

84 Chapter 7. Simulations
1 2 3 4
5 6 7
3 i 1 i 5 7 3J 115 7
o] I N T]
2j0T0\9\4 210 4 6
o gl s| [oTors 4
A S B] fif+f]
2] 01| 4 6 2 | 0' 4 6
I] A B -]
0812 6 21 0] 4 6
o [0 s |l
9! 9109 1; 67
&) %)% 9]
ol 999 12
8 9
]] |
3 1 5 7 3 1 5 3 1'5 7
A] A B - 1 _]
2/ 0] 4 6 21 0] 4 210 4 6
— = ot —t+— —1
0,0 2 ‘ O‘ 0'!9 O‘ O‘ 0'9' 4
77777 M B
I]
0] 4 6
o B
77777 2 B
~
olololg 9lologli
) I e e U N B
Figure 7.9: These nine mazes form a progression of reinforcement-learning environments

from simple to more complicated Each maze is similar to but larger than the last, and each
introduces new state ambiguities — more states that share the same sensory input. The
digits in the maze represent the sensory inputs as described in Figure 7.8. The goal (a
reward of 1.0) is denoted by the food dish in the lower left corner.

7.3. Continual-Learning Results 85

Each maze is more difficult than its predecessor, having both more states and more
state ambiguities. Though a perfect agent could solve any of these mazes with a very
small amount of state information, actually learning the mazes, particularly the last, is
quite difficult. Consider, for example, the fact that when the agent attempts to move into
a barrier, its position does not change, and it again receives the same sensory input. It
is not in any way informed that its position is unchanged. Yet it learns to stop running
into barriers nevertheless. On the other hand, in the bottom row of Maze 9 the agent
must continue to move east, though it repeatedly perceives the same input. In general,
what makes this task difficult is that it is Markov-k only after it has been learned. Once
the agent’s actions are perfect, it can be sure that its previous k senses are sufficient for
determining what action to take. Before then, the agent may follow paths that do not
preserve needed information (e.g., by moving in small circles). On top of this, the agent has
no prior knowledge of the task, including the topology of the mazes, the number of states,
what senses each state may have, or what the effects of its actions might be.

7.3.1 Continual Learning vs. Learning From Scratch

CHILD was tested on the nine environments above in two ways: (1) learning each maze
independently from scratch, and (2) using continual-learning. In the first case, different
agents learn the different mazes independently. In the second, each agent begins in the first
and is trained on the others in sequence.

Learning from Scratch. This first set of results demonstrates CHILD’s ability to learn
in reinforcement environments with ambiguous sensory information. For each environment,
multiple agents were created, trained, and tested, and their performance was averaged.

Each agent was given 500 trials to learn a maze and was allowed up to 1000 steps for
each trial. After training, the agent was tested for 100 trials. Testing was done without
stochastic action selection (i.e., the most highly activated action-unit was always chosen),
which brings out any obvious flaws in the agent’s policy. If, for example, the agent learned
to move in a circle, this would not be apparent if it could occasionally take non-policy
actions. If its actions are deterministic, however, such a flaw will keep the agent from ever
reaching the goal. The average number of steps to the goal was computed for the training
phase — timeouts count as 1000 steps. The same was done for the testing phase. (The
former measures how quickly the agent learned the task; the latter measures how well.)
The former plus the latter, plus the number of units created during training constitute a
measure of performance, P. Ten agents were created and tested on each maze with different
random seeds, thus creating ten performance measures, Py — Py. The average of these was
used to indicate the quality of a set of parameters. This was the value that Powell’s method
tried to minimize. All seven modifiable parameters were optimized for these results. They
are given in Appendix C.

As with the supervised tasks, optimized parameter settings for these agents were de-
termined through extensive testing using Powell’s method (cf. p. 76). With the optimized
parameters for each maze, 100 agents were individually created, trained, and tested in every
maze, all with different random seeds. Training was done as follows: each agent was trained
for 100 trials and then tested. The agent was considered to have learned the maze if it
reached the goal on every testing trial. If the agent did not learn the maze, it was trained

86 Chapter 7. Simulations

Mean number of:
Maze | Training | Units Testing Failures
Steps | Created | Steps/Trial
1 1,620 2.61 5.15 0
2 2,362 3.51 5.93 0
3 3,717 3.92 6.66 0
4 6,283 5.58 8.02 0
5 8, 856 6.28 9.22 0
6 13,880 7.97 10.75 0
7 13,529 13.93 13.22 0
8 17,833 14.42 14.59 0
9 41,031 21.04 20.73 5

Table 7.5: Results of training and testing 100 agents in each of the nine maze environments
shown in Figure 7.9. The first column shows the average number of training steps taken
before testing succeeded. The second column gives the average number of units created
during training. The third column reports the mean number of steps per testing trial for
those cases where training succeeded. The fourth column lists the number of agents that
failed to test successfully after 1000 training trials. Only agents that tested successfully
were used to calculate the averages in the first three columns.

for 100 more trials and tested again. This process continued until testing succeeded, or
until the agent was trained for a total of 1000 trials. The total number of training steps was
averaged over all 100 agents in each maze and is reported in the first column of Table 7.5.
The average number of [units created is given in the second column, and the average num-
ber of testing steps for the last 100 testing trials is given in the third column. There were
five failures — five cases where 1000 training trials did not achieve successful testing. All
failures occurred while learning the ninth maze. When a failure occurred, the values for
training steps, testing steps, and number of units were not averaged in.

The Continual-Learning Case. Rather than learning each maze from scratch, a contin-
ually learning agent accumulates what it has learned in each maze to help learn the next.
Once an agent has been trained in a maze, it is transferred to the next and training resumes.
This is a potentially difficult learning problem. The first maze is relatively easy, since there
are only two ambiguous states: those labeled “12.” After learning the first maze, the second
maze is more difficult for two reasons: (1) there are more ambiguous states (labeled “97),
and (2) many states have changed their distances from the reward, thus requiring slightly
different Q-values. These two properties continue to hold for all mazes as each progresses
to the next. However, each maze preserves the basic structure of its predecessors so that
skills learned while solving one are still potentially useful for the next.

To optimize parameters for this task, ideally several agents would be trained on the first
maze, transferred to the second, trained again, etc., until the last maze was learned, and then
an average score for these could be minimized with Powell’s method. However, the extreme
amount of computation required for this procedure effectively precluded optimization. The
parameters used are therefore not optimal nor likely even close to optimal, but the results are

7.3. Continual-Learning Results

87

Mean number of:
Maze | Training | Cumulative | Units Testing Failures
Steps Steps Created | Steps/Trial
1 2,300 2,300 1.46 5.19 0
2 936 3,236 5.13 6.19 0
3 903 4,139 7.46 7.03 0
4 1,306 5,446 10.77 8.21 0
5 3,145 8,592 15.59 9.59 0
6 489 9,081 16.12 10.98 0
7 3,901 12,983 20.72 12.24 0
8 103 13,086 20.83 13.32 0
9 1,139 14,225 21.73 18.85 2

Table 7.6: Results of continual learning in the environments shown in Figure 7.9. After
learning one maze, the agent was put into the next and tested. If testing failed the agent
was trained on the new maze and tested every 100 trials. If 1000 trials were reached without
successful testing, training was stopped, the training was counted as a failure (fifth column),
and the number of steps taken was not averaged into the totals in the other columns. A
single, non-optimized set of parameters was used throughout training. The first, third, and
fourth columns correspond to the first, second, and third of Table 7.5. The second column
shows the cumulative number of training steps.

favorable nevertheless and indicate the clear superiority of the continual-learning method.

To compare continual learning to learning from scratch, Table 7.6 presents continual-
learning results just as Table 7.5 presented learning-from-scratch results. Exactly the same
method was used to produce these, except for two differences: (1) after learning one maze,
the agent was transferred to the next maze in the series, and (2) an agent was tested in the
new maze before training; if the agent already met the testing criteria, it was not trained
but went immediately to the next maze. T was reset to 1.0 when training began in a new
maze. This regime was applied 100 times and the results were averaged (as in Table 7.5).
There were two failures in the continual-learning case. Both occurred in the ninth maze,
where the agent did not learn the maze despite 1000 training trials.

Three graphs comparing the performance of continual learning and learning from scratch
are given in Figure 7.10. In all cases there are two lines, one for continual-learning and one
for learning from scratch. In Figure 7.10A, there is a third line showing the cumulative
number of steps taken by the continual-learning agent since the beginning of training, i.e.,
the values from the second column of Table 7.6.

The parameters for all mazes were: n = 3 =0.3, 5y, = 0.09, 0 = 0.3, © = 0.56, ¢ = 0.11,
~v=10.91, AT = 2.1.

Analysis. The graphs clearly demonstrate the advantages of continual learning. The
learning-from-scratch agents outperformed the continual-learning agents on the first maze
due to the optimized parameters. After the first maze, however, the continual-learning
agents always learned faster. In fact, after the third maze, despite the disparity in pa-
rameter optimality, even the cumulative number of steps taken by the continual-learning

88 Chapter 7. Simulations

Continual Learning vs. Learning From Scratch

Average Training steps

Scratch
40,000 Continual™
Cumul.” ™"~
30,000
A
20,000
10,000
0
1 2 3 4 5 6 7 8 9 Maze
Average Number of New Units
25 Scratch
Continual™
20 R L i A
B 5 —F—— /.’—/'(
10
>
5 e /n’/./‘
0
1 2 3 4 5 6 7 8 9 Maze
Average Number of Test Steps Per Trial
25 Scratch
Contintai™
20 /
15 e
10
5
0
1 2 3 4 5 6 7 8 9 Maze

Figure 7.10: Graph (A) compares Learning from Scratch with Continual Learning on the
nine Maze tasks. The middle line shows the average cumulative number of steps used by
the continual-learning algorithm in its progression from the first to the ninth maze. Graph
(B) compares the number of units created. The line for the continual-learning case is, of
course, cumulative. Graph (C) compares the testing performance of both methods. The
values shown do not include cases where the agent failed to learn the maze.

7.3. Continual-Learning Results 89

agent was less than the number taken by the agent learning from scratch. By the ninth
maze the difference in training became drastic. The number of extra steps needed by the
continual-learning agents was tiny in comparison to the number needed without continual
learning. The cumulative total was about a third of that needed by the agents learning from
scratch. Furthermore, the trends shown in the graphs indicate that as the mazes get larger,
as the size and amount of ambiguity increases, the difference between continual learning
and learning from scratch increases drastically.

It would not be too surprising if the cumulative training figures for the continual-learning
agents were comparable with the training figures of the learning-from-scratch agents, (and
it would also not be too surprising if the earlier learning had interfered and caused the
continual-learning agents to be slower). But the earlier training significantly enhanced the
performance of the later learning. This demonstrates not only that, given a sufficiently
sophisticated agent, continual learning can dramatically reduce the training required for
complicated tasks, but also that CHILD is able to take advantage of such training procedures
and is truly capable of continual learning in reinforcement environments.

Besides training, testing also compares favorably for the continual learner: after the
sixth maze, the continual-learning agent found better solutions as well as finding them
faster. This is perhaps attributable to the fact that, after the first maze, the continual-
learning agent is always in the process of making minor corrections to its existing QQ-values,
and hence to its policy. The corrections it makes are due both to the new environment
and to errors still present in its Q-value estimates. The number of units needed seems to
escalate at first for the continual-learning case, but then levels off after a while, showing
that the units created in the first eight tasks were mostly sufficient for learning the ninth.
The fact that the learning-from-scratch agent created about the same number shows that
these units were also necessary.

It is extremely common for comparisons to be done between two methods where one is
the favorite and the other is a straw man waiting to be shown up by the favorite. Achieving
good results in this situation is usually not difficult, but also rarely reliable or scientific.
Even if one tries to be fair, the straw man is always too easy to blow over. I’ve tried to avoid
that by using an objective source to make the contending approach (in this case, learning
from scratch) as strong as possible. The optimization method is unbiased in its pursuit of
good parameters, and in my experience it has always done somewhat better than the best

I could do by hand.

7.3.2 Proprioception

In order for CHILD to learn a policy for an ambiguous environment, say Maze 8, it
must use previous sensory information, since current sensory data is insufficient. Take for
example position (3, 5) in Maze 8 (three places from the left, five from the bottom). The
sensory input is the same as that in the squares immediately south and immediately north.
If the agent’s current input is 4, how can it predict what it will see if it takes a step north
or south? Even more difficult: if its previous two inputs were also both 4, what can it
predict? If its previous actions are not also known, it has no way of discriminating (3, 4)
from (3, 5) and (3, 6). The agent can in general only make these predictions if its actions
are consistent; i.e., if having seen two successive 4’s the agent always moves north, then
upon seeing a third, it can assume its last move was a move north.

90 Chapter 7. Simulations

Mean number of:
Maze | Training | Units Testing Failures
steps Created | steps/Trial
1 2,984 5.92 6.21 0
2 5,707 9.84 7.26 0
3 4,440 4.74 7.59 0
4 5,111 6.78 9.11 0
5 8,146 5.72 11.25 1
6 14,537 8.92 13.70 0
7 9,980 10.02 14.64 3
8 14,350 12.75 16.46 0
9 38,153 14.51 24.82 1

Table 7.7: Results of using proprioception when training Mazes 1-9 from scratch. The
meanings of the columns correspond to those in Table 7.5.

To help CHILD better predict its Q-values, its actuators were made proprioceptive; i.e.,
its last action as well as its current environmental stimulus were given to the agent as input.
This way, its predictions are based upon a better representation of its previous experiences
and can therefore be more accurate. With proprioception, the inputs were still encoded
locally; with 15 senses and four actions there were 60 network inputs, only one of which was
active at a time. As with the non-proprioceptive case, optimization was done for Mazes 1-9
individually but not for the continual-learning case.

Tables 7.7 and 7.8, like Tables 7.5 and 7.6, compare the performance of the learning-from-
scratch agent and the continual-learning agent. The parameters are given in Appendix C.

Figure 7.11 compares the continual-learning and learning-from-scratch data graphically,
just as was done in Figure 7.10. Here, the continual-learning case failed once in Maze 1
(which consequently made learning impossible in all later mazes); the learning-from-scratch
case failed once in Maze 5, three times in Maze 7, and once in Maze 9.

Mean number of:
Maze | Training | Cumulative | Units Testing | Failures
steps Steps Created | steps/Trial
1 4,808 4,808 6.48 7.19 1
2 635 5,443 10.14 8.11 0
3 36 5,479 10.18 8.62 0
4 1,362 6,842 15.76 10.00 0
5 3,010 9,853 21.27 11.48 0
6 754 10,607 22.16 13.21 0
7 1,388 11,996 23.86 14.03 0
8 0 11,996 23.86 15.60 0
9 126 12,122 24.02 22.09 0

Table 7.8: Results of continual learning in Mazes 1-9 when using proprioception. The
meanings of the columns are the same as those in Table 7.6.

7.3. Continual-Learning Results 91
Continual Learning vs. Learning From Scratch
Average Training steps
Scratch
40000 Continual ™
Cumul.” """
30,000
A
20,000
10,000 ——————1—————— == _ /K‘ ———— S G
S
0
1 2 3 4 5 6 7 8 9 Maze
Average Number of New Units
- Scratch
T ‘Continual ™
20 < f—
15
B]
10—
5 /‘\/
0
1 2 3 4 5 6 7 8 9 Maze
Average Number of Test Steps Per Trial
o5 Scratch
, Continual ™
20 '
15
C
10
5
0
1 2 3 4 5 6 7 8 9 Maze

Figure 7.11: These graphs are organized like those of Figure 7.10. This time proprioception
is used while learning, and the data from Tables 7.7 and 7.8 are used.

92 Chapter 7. Simulations

Comparing the learning-from-scratch and continual-learning results reveals no significant
difference until Maze 9. As before, continual learning is superior in terms of training, but
by less than in the non-proprioceptive case. In terms of testing, the margin is greater than
before.

The clearest change over the non-proprioceptive case is the number of new units, which
is higher for continual learning but lower for learning from scratch. The reason for this
is not clear, but is most likely a combination of the following two factors. First there is
less ambiguity in the proprioceptive case. Without proprioception, inputs are ambiguous
both because the same sensory information is shared by several states, and because there
are several ways of reaching each state. Proprioception resolves the second problem by
identifying the way each state is entered. It also helps to resolve the first problem, since
identification of the way a state was entered can also help identify what the current state
might be. Entering a state labeled 4 from the north, for example, always means a move
south is best (assuming the last move was the best), whereas entering it from the south
means a move north is best. In the non-proprioceptive case, without knowledge of the last
action, this determination would require previous sensory information, thus necessitating
more units.

Second, the continual-learning case probably built extra units due to the non-optimal
parameters. Nevertheless, the graph does seem to level off starting at Maze 5, indicating
that those units already created were enough to learn the rest of the tasks. This leveling
off also suggests the possibility that yet more challenging (but similar) mazes might require
a small number of additional units.

The anomalously high value for the sixth maze while learning from scratch is probably
due to poor parameter optimization for this maze, perhaps a result of using random seeds
during parameter optimization that did not generate representative training samples.

What’s interesting about the proprioceptive results is how well training transferred with
continual learning in the later mazes. Very little extra training was generally required. In
fact, Maze 8 never required any training in all 100 episodes, and in many cases the agent
tested successfully on Mazes 5-9 after having been trained only on Mazes 1-4. More inter-
esting is that the proprioceptive results are not greatly better than the non-proprioceptive
ones. This indicates the ability of the agent to deal with highly ambiguous information that
evolves and improves over time (as the agent’s path becomes more consistent).

7.3.3 Hierarchy Construction in the Maze Environments.

It is interesting to examine what CHILD learns: when and which new units are built,
and what hierarchies are constructed during the continual-learning process. In an actual
example of continual learning from the set of 100 reported in the first (non-proprioceptive)
case above, the following progression occurred during training. For the first maze, only one
unit was constructed: [ffy ;5. This unit resolved the ambiguity of the two maze positions
labeled 12. With the unit in place, the agent learned to move east in the position labeled 10.
It then could move north in position 12 if it had seen a 10 in the previous step, but west if
it had seen a 6. Thus, the weight from s° to Zl%/?w,m was positive, and the weight from s!°
to Zl%/?w,u was negative. The weight from s° to Zl%/?w,m was also negative, reflecting the fact
that, though the optimal route does not involve moving south from the position labeled 0,
during training this would often happen anyway. For the same reason, there was also a

7.3. Continual-Learning Results 93

negative weight from s to [{f\y ;,. If the agent was placed in one of the two positions
labeled 12 at the beginning of the trial, it would move north, since it had no way of
distinguishing its state. (It would then move south if it saw a 6 or east if it saw a 0.)

The second maze contains two new ambiguities: the positions labeled 9. Two new units
were created: ll%/}w,m and lﬁ/fmu. The first, ll%/}W,Qv clearly, was needed to disambiguate the
two 9 positions. It had a strong positive weight from s'?. The second, lﬁfNﬂ, complemented
ll%/?w,u- It was apparently needed during training to produce more accurate)-values when
the new 9 position was introduced.

The third maze introduces another position labeled 9. This caused a strong weight
to develop from s” to [{fyy¢. Only one new unit was constructed, however: [35,,. The
usefulness of this unit was minimal: it only had an effect if in a position labeled 12, the
agent moved south or east. As a consequence, the unit had only a single weak negative
connection from s'°.

The fourth maze introduces new ambiguities with the additional positions labeled 0
and 9 and two new labels, 1 and 8. No new units were constructed for this maze. Only the
weights were modified.

The fifth maze introduces the additional ambiguities labeled 0 and 4. The label 4
definitely requires disambiguation, since the agent should choose different actions (MN and
MS) in the two positions with this label. Since the agent can still move to the goal optimally
by moving east in all positions labeled 0, no unit to disambiguate this label is necessary.

Five new units were created: [Rfs,, 137,155 o, [56 9, and [tz o. The first disambiguates the

0

positions labeled 4. It has a positive weight from s? and negative weights from s°, s* and s'2.

The second, third, and fourth new units, 137 5,135 o, and I3¢ 4 all serve to predict the Q-values
more accurately in the states labeled 9. The last new unit, lﬁ/}gﬂg, also helps nail down these
QQ-values and that of the upper position labeled 9.

The above example was one of the agent’s more fortunate, though quite typical training
runs. After learning Maze 5, CHILD tested perfectly in the remaining mazes without further

training.

7.3.4 Non-Catastrophic Forgetting

Continual-Learning is a process of growth. Growth implies a large degree of change
and improvement of skills, but it also implies a certain amount of skill retention. There
are some skills that we undoubtedly lose as we develop abilities that replace them (how
to crawl efficiently, for example, or, in general, how to act like a beginner once one has
become a master). One would assume, however, that these abilities could for the most part
be regained with less effort than they had originally demanded. This often tends not to be
the case with neural networks in general, but it does seem to be the case with CHILD.

To test its ability to relearn long forgotten skills, CHILD was trained 100 times on the
nine mazes (using continual learning without proprioception). Each time, after learning the
last maze it was transferred back again to the first. The average number of training steps
it needed to relearn Maze 1 was about 20% of the number it needed when it had had no
previous training. The network built on average less than one unit to do this. However, its
average testing performance was 20% worse than when the maze was first learned. Given the
large difference in size and complexity between the first and last maze, it is quite surprising
that in fully two-thirds of the cases, no retraining of any kind was required.

94 Chapter 7. Simulations

7.3.5 Distributed Senses

It was pointed out previously that because of its lack of traditional hidden units the
Temporal Transition Hierarchies network could not make non-linear discriminations of its
current input data. This is not necessarily a problem, however, since it can make such
distinctions if the current data is repeated over several time steps. In reinforcement envi-
ronments, this can be accomplished by giving the agent a “stay” action that leaves it in
the same state. The agent can then stay in the same position for several time steps until
it has made the necessary non-linear discrimination of its input data. This is a satistying
solution, since it more accurately simulates the temporal process of perception than does
the traditional one-step, feed-forward mapping of neural networks.

This method worked in the mazes shown above. The sense vector consisted of five units:
bias, WN (wall north), WW (wall west), WE (wall east), and WS (wall south). The bias
unit was always on (i.e., had a value of 1.0). The other units had a value of 1.0 if there
was a wall immediately to the corresponding direction of the agent; otherwise, they had a
value of 0.0. For example, in positions labeled 12, the bias, WE, and WS units were on; in
positions labeled 7, the bias, WN, WW, and WE units were on, etc. The agent was able to
learn the first maze using distributed senses, but the cost was much higher training times
than with local senses (averaging nearly 6000 steps).

It turned out, however, that the “stay” action was not needed and was rarely used,
since the agent had other methods at its disposal. Removing the stay action still allowed
the agent to learn the mazes effectively. In all positions except those labeled 0, the effect
of the stay action could be achieved simply by moving into a barrier. (The 0 position on
the other hand is uniquely labeled as the only state where the bias unit is the only active
sensory unit.)

Furthermore, the agent can often make the necessary discriminations simply by using
the context of its previous senses. Whenever it moves into a new state, information from
the previous state can be used for disambiguation (just as in the locally encoded cases
above). Now, however, previous sensory information is used to disambiguate states that are
in principle unambiguous, but which are in practice difficult to discriminate. This surprising
result shows that CHILD was able to learn to disambiguate its senses to only the extent
needed to solve the task.

After the agent learned the first maze, it was transferred to the second in the same
continual-learning process as described above. One outcome was that CHILD was able to
generalize far better, and in some training episodes was able to solve all the mazes after
being trained on only the first two! In order to do this it learned a modified right-hand rule,
where it learned to follow the border of the maze around in a clockwise direction until it
reached the goal; or, if it first hit a state labeled 0, it would instead move directly east. This
is especially interesting when one considers the agent’s primitive action apparatus. Had the
agent been given a set of actuators that allowed it to move in a “forward” direction and
then to turn when needed, such wall-following behavior would be less surprising. Though
CHILD’s action apparatus recognizes no distinction between its four sides, its behavior as it
negotiates the walls gives one the distinct impression that it is moving forward and turning
where appropriate. This seems in essence to be the effect of the hierarchies that CHILD
evolved: a more resilient action apparatus. In one case, CHILD did this having created

7.3. Continual-Learning Results 95

Figure 7.12: This environment was introduced by McCallum [59]. It works just like the
maze environments of the previous sections with two exceptions: (1) if the agent attempts
to move into a barrier, it receives a reinforcement of —1.0, and (2) the agent receives a
reinforcement of —0.1 for all other actions that do not lead to the goal. As before, the agent
receives a reward of 1.0 for taking the action that leads to the goal.

only six higher-level units. CHILD also often learned more direct, close to optimal routes
to the goal, but the cost was the creation of more units (usually 15-20).

Generalization was clearly better with the distributed approach. There was a price,
however. Frequently, solutions were not found to all the mazes, even after 1000 trials. This
was in part because the parameters were not optimized for these simulations, but mostly it
was due to the additional complexity of the task.

7.3.6 Other Reinforcement-Learning Methods

There are other methods that have been used for reinforcement learning in non-Markovian
domains. One of these, McCallum’s Utile Distinction Memory (UDM) [59] is based on Chris-
man’s Perceptual Distinctions Approach (PDA) [16], which is a constructive Hidden Markov
Model (HMM) method. Both approaches build units to represent states explicitly. Both use
traditional HMM training methods (i.e., the Baum-Welch procedure [78]) to estimate state
occupation probabilities and to adjust observation and state-transition probabilities, and
both combine these methods with Q-learning to learn action-utility values and to choose
actions.

Results are given by McCallum [59] for his method in the environment shown in Fig-
ure 7.12. The Utile Distinction Memory approach consistently learned the maze in 2500
training steps. Transition hierarchies learned this task in an average of under 500 steps,
indicating a factor of five speedup on this particular task. The parameters used were:
n=p3=06,n,=047, 0 =0.16, 0 =0.28, e = 0.2, vy =0.74, AT = 1.9.

It’s difficult to say how the two methods would compare on more complex tasks, though
UDM scales approximately with the square of the number of states. In larger state spaces,
such as Maze 9 above, transition hierarchies can make do with a small number of units
— just enough to disambiguate which action to take in each state — whereas the HMM
approaches need to represent most or all of the actual states. (Approximately two units
were created on average to learn this task. UDM, in contrast, created between six and nine
state units.) Also, both UDM and PDA must label every combination of sensory inputs
uniquely (i.e., senses must be locally encoded). This greatly limits generalization such as
was shown by Temporal Transition Hierarchies in the previous section.

Chapter 8

Synopsis, Discussion, and Conclusions

This chapter ties together the ideas raised throughout the dissertation. It begins with
a discussion and interpretation of the results from Chapter 7. Next is an analysis of the
contributions and deficiencies of CHILD and Temporal Transition Hierarchies. It closes
with proposals for future work and some final thoughts.

8.1 Discussion of Results

Temporal Transition Hierarchies are clearly very fast compared to the networks measured
against them in Section 7.2. In terms of the number of training patterns seen, they exhibit
a speedup of more than two orders of magnitude. Considering the simplicity of the learning
algorithm and its demonstrated speed (Section 7.2.1), the difference in computation time
is probably even greater. It might be argued that some of the other algorithms in the
comparison are more powerful, not being limited to Markov-k tasks. However, Markov-k
tasks are interesting and important. Solving these quickly is necessary for dealing with
many real-world problems, and such a sizable difference in speed gives one a certain degree
of confidence in the general transition-hierarchy approach. It might also be argued that
judging the performance of an algorithm requires more than two comparisons. Undoubtedly,
more will be learned with further testing; however, the tasks used in the supervised-learning
section of Chapter 7 cover a broad range of difficulties. One task deals with large numbers
of context-sensitive events, one with small. One is stochastic, the other deterministic. One
deals with large values of k (large time delays), and the other with small values. The fact
that the same parameters were used across all values of k& (in the gap task) reveals the
stability of the algorithm and the reliability of the results. And finally, it’s hard to ignore
a two-orders-of-magnitude improvement.

After demonstrating the power of transition hierarchies, it remained to be shown that
(1) the algorithm could be used for continual learning, and (2) that continual learning is
a useful technique. Fortunately, these could both be done with a single set of tests. The
tests compared the algorithm against itself, in one case with continual learning, and in the
other case without. Temporal Transition Hierarchies were combined with Q-learning to
produce a reinforcement-learning agent, CHILD. The agent was trained in several different
environments many times and its performance was measured and averaged. The results
proved that CHILD could learn complicated reinforcement-learning tasks quickly.

Continual learning was tested by first training CHILD on a simple task before training
it on the next-most complicated one. A progression of nine such tasks was employed.
By the end, the continual-learning case showed substantially better performance in the
complicated environments than when no previous training had been done. There was no
sign of catastrophic interference from earlier learning. In fact, the agent was able to return
to the very first task of the series after having progressed to the last, and in two-thirds of
the cases was still able to solve the task without retraining. When retraining was required,

R.2. Deficiencies 97

substantially less was needed than when the task had first been learned. Taking an algorithm
with already excellent performance and greatly improving it through continual learning
shows two things. It shows that the algorithm is capable of taking advantage of and building
onto earlier training, and it shows the usefulness of continual learning in general.

It would be interesting to test other amenable learning algorithms on the continual-
learning environments of Section 7.3 and measure to what extent they are helped or hindered
by earlier training. Nevertheless, comparing CHILD against itself to prove the feasibility
of continual learning seems well-justified for several reasons. First, the system allows incre-
mental hierarchical development, which is critical to continual learning. Second, it handles
reinforcement-learning problems with ease, since it can be used for predicting continuous
values in noisy domains. Third, it’s very fast. With a slower algorithm, a good comparison
might not be computationally feasible.

Given an appropriate underlying algorithm, and a well-developed sequence of environ-
ments, the effort spent on early training more than pays for itself later on. But continual
learning is not just a means of shaping an agent toward solving a difficult task. It is mo-
tivation for training an intelligent agent when there is no final goal or task to be learned.
If an agent is trained for a particular task, its abilities may someday need to be extended
to include further details and nuances. For example, the agent might initially be trained
only up to the eighth maze of Figure 7.9 (its training thought to be complete), but later
the trainer might need an agent that can solve the ninth maze as well. Perhaps there will
continue to be more difficult tasks after the ninth one too.

One anticipated result was that the agent developed skills helpful to its later learning.
Before training began, what those skills would be was not known. One such skill was a
small dance that the agent always performed upon beginning a maze in certain ambiguous
positions. The dance is necessary since in these ambiguous states, neither the current state
nor the correct actions can be determined. Once an agent performed the dance, it would
move directly to the goal. Sometimes the dance was very general, and it worked just as
well in the later mazes as in the earlier ones. In fact, it was very common for the agents
to learn by Maze 4 the behaviors necessary to solve all remaining mazes without further
training. Frequently, however, the skills did not generalize so well, and the agent had to
be trained in each of the later environments. Before training began, however, it would
have been extremely difficult for the trainer to know which skills would be needed. In any
real-world task, it will be even more difficult to know beforehand which skills the agent will
need. This is precisely why continual-learning is necessary — to remove the burden of such
decisions from the concerns of the programmer/designer/trainer.

8.2 Deficiencies

Most of the weaknesses of the Temporal Transition Hierarchy approach were discussed
in Section 6.3. In particular, the version of the algorithm used to produce the results is poor
at classifying patterns from a single time step. In order to classify complicated patterns, it
must enlist higher-order units. However, these units only receive information from previous
time steps and help little in the classification of the current time step. The only way the
agent can classity a complicated sensory pattern is by staying in the same position for

98 Chapter 8. Synopsis, Discussion, and Conclusions

several time steps. This turned out not to be a particularly serious problem, however, and
agents were in fact able to learn to do exactly that.

A second problem is that the original version of the algorithm can only solve Markov-&
tasks. The system cannot remember events for any arbitrary duration, but only for specific,
already-learned durations. This means that the network could not learn, for example, an
embedded Reber grammar (a grammar in which the Reber grammar appears as a subcom-
ponent [17], and which requires information to be remembered for an indefinite duration).
A variation on the algorithm that could conceivably solve this problem is discussed in the
future-work section, Section 8.4.

Another deficiency of transition hierarchies is their proclivity for creating new units.
When the parameters are properly set, usually only the needed units are created. In some
circumstances, particularly with poor parameter settings, more units can be created than
are really necessary. The extra units slow down the operation of the system. This would
not be a particularly serious problem if there were a way to get rid of those that are not
needed. This has proven to be fairly difficult, however.

Besides the fact that it is based on Temporal Transition Hierarchies which are limited to
Markov-k environments, CHILD has other weaknesses — due to its use of Q-learning. One
of the limitations of Q-learning, or any other of the reinforcement-learning methods based on
dynamic programming is that it requires a fixed number of actions. Continuous actions are
still not generally feasible. Another problem with reinforcement-learning methods based
on dynamic-programming is their assumption of a fixed reinforcement landscape. If the
reinforcements in the environment changes, the computations must be done anew. Ways of
circumventing this problem are discussed in Section 8.4.

8.3 Contributions

CHILD has taken a successful first step towards continual learning. The problems it
solves are difficult; it solves them quickly; and it solves them even more quickly with contin-
ual learning. The strengths of Temporal Transition Hierarchies make this possible. Among
these strengths is their ability to handle a large degree of stochasticity in early stages of
reinforcement learning and again whenever a new environment is introduced. (When be-
ginning in a new environment the temperature is reset to 1.0, and new Q-values must be
learned because the Q-values do not transfer, even though the policy based on them might.)

A second strength is that learning is the same at all levels of the hierarchy. There is
no distinction between learning complex behaviors and learning simple ones, or between
learning a new behavior and subtly amending an existing one. This is what is meant by
hierarchical development: New behaviors are composed from variations on old ones (as was
seen in Section 7.3.3). A third strength is the fact that the algorithm is incremental: it
does not need a fixed set of data from which to learn but can learn from the environment
in whatever order data is encountered.

Another strength of the algorithm is that in general, only skills needed for the task are
acquired. New units are added only for strongly oscillating weights. Since the network
is learning to predict QQ-values, large oscillations in the weights reflect large differences in
QQ-value predictions, which reflect large differences in potential reward. Predictions vary
the most in states where prediction improvements lead to the largest performance gains.

R.3. Contributions 99

And this is exactly where new units will first be built. When weights are not varying much,
this indicates that predictions are close to correct or that the Q-values are small; these are
places where improvements in prediction have little impact on performance, and where new
units are less likely to be created. (This approach to unit creation is done more explicitly by
McCallum [59]). The new units extend the agent’s current repertoire of skills by modifying
its behavior (i.e., revising the Q-values on which its policy is based) to take advantage of
current contextual information. The contextual information, furthermore, can eventually
extend into the past for any arbitrary duration, creating behaviors that can also last for
any arbitrary duration (another strength).

8.3.1 Distributed Hierarchical Control

One of CHILD’s most important strengths is the distributed nature of its hierarchical
control. At its inception, a complex behavior is encoded into the units of a Temporal
Transition Hierarchy network as a distributed pattern of activation. The pattern specifies
a plan of future activity where all anticipated contingencies are specified in advance. Each
high-level unit is a link in that plan and carries the agent’s intentions through time for cases
where the exact sequence of future events is not certain. Take, for example, a behavior
such as the following (left column) that might be activated by the input “0” in Maze 9
(Figure 7.9).

Move east. ME,
If the input there is "0",
move east again. <0, ME >,
If the input is "4'", however,
move north, then <4, MN >,
if the next input is "4",
move north again, <4,<4, MN >>,
but if the input is "5",
move south and then <4,< 5, MS >,
move south again upon seeing "4". <4,<5,<4, MS>>>

This behavior can be encoded by a set of activations across all appropriate units, such as
the units for “move east”, “move east after sensing 07, etc., as shown in the second column
above. (In order to correctly predict Q-values, however, these units must not simply be
activated, but be activated to a specific degree.) Besides these, units that conflict with the
intended behavior must get zero or negative activation.

These kinds of “rules” are constructed during learning through the creation of new units.
After a unit is built, its weights attempt to learn the rule’s applicability (i.e., under what
conditions and to what degree the rule should be used).

A behavior ends when an input is not anticipated and the appropriate action is unclear,
i.e., when the agent has no most-highly activated action unit. These occasions are opportu-
nities for extending the just-completed behavior. Extending a behavior does not necessarily
require a new unit. If a behavior is viewed as a policy — a mapping from specific inputs
to specific responses — extending a behavior can be done simply by learning a new policy
move at the point where the next action is unclear.

100 Chapter 8. Synopsis, Discussion, and Conclusions

Policy 1

Policy 2

Figure 8.1: In order to reach the goal (g) the agent must have a different policy in the
shaded region from that in the unshaded region. Letters represent sensory input, and
arrows indicate optimal policy moves.

So when is a new unit needed? When the agent’s input is ambiguous and no single
policy move for that input is optimal. This situation requires a context-sensitive policy,
and Temporal Transition Hierarchies provide a hierarchical, context-sensitive policy. This
is perhaps CHILD’s strongest contribution. Each level of the hierarchy enables a different
policy in different contexts. In the environment shown in Figure 8.1, the agent needs a
different policy in the shaded region (Policy 1) from that in the unshaded region (Policy 2).
In particular, in the shaded region the input “b” should prompt the agent to move north,
and “c” should prompt it to move west; whereas in the unshaded region, “b” demands a
move east, and “c” demands a move north. A hierarchical, context-sensitive policy would
activate Policy 1 when “a” was encountered and keep it active until “d” was encountered.
At that point, Policy 2 would be activated until the goal, “g.”

specified at the second level of the hierarchy as a new higher-level policy: “a — Policy 1,

was reached. This would be

d — Policy 27. Still higher-level policies could be formed, if, for example, “a” in some
contexts invoked Policy 1 but in other contexts invoked a different policy, Policy 3.

Context-sensitive policies as just described are very similar to Dawkins’ “hierarchy of
decisions” (Section 1.4.1). Temporal Transition Hierarchies do nearly exactly this, with a
couple of exceptions. First, with Temporal Transition Hierarchies, a context-sensitive policy
is in effect for only a fixed number of time steps. If the agent gets stuck in the same region
for too long, it will forget which policy it should be following (a weakness that seems to
occur in humans too). A possible solution to this problem, recurrent transition hierarchies,
is suggested in Section 8.4. Second, the difference between Policy 1 and Policy 3 might be
only a single response to a single stimulus. Temporal Transition Hierarchies focus on only
the differences, never forming concrete concepts for Policy 1 or Policy 2; which are instead
encoded as patterns of activation across the higher-level units. This distributed approach of
transition hierarchies is a far more efficient way of encoding context-sensitive policies than
forming an entirely new policy for every tiny difference.

Building context-sensitive, hierarchical policies automatically while learning continuous,
context-sensitive Q-values is an approach quite different from any hierarchical reinforcement-
learning method proposed previously. The two greatest distinctions are: (1) it is context
sensitive and can handle ambiguous perceptual information, and (2) the hierarchies are
constructed automatically in a bottom-up fashion, instead of top-down and by hand. This is
in marked contrast to the approaches of Dayan and Hinton [21], Jameson [42], Kaelbling [47],

R.4. Future Work 101

Dimension of Complexity CHILD
1 | Sense/Action Representation Distributed
2 | Sense/Action Values Continuous
3 | Sense—Action Mapping Linearly-separable
4 | Sense—State Mapping Many-many
5 | State—Action Mapping Many-many
6 | Next State Function Stochastic

i.e., (state, action)—state (Many-many)

7 | Underlying Model Markov-k
8 | History Information Kept Any Fixed Amount
9 | Duration History is Kept Fixed
10 | State—Reinforcement Mapping || Many-one
11 | Reinforcement Planning Steps | Any Positive Value

Table 8.1: The eleven dimensions of difficulty from Table 2.1 and how CHILD measures up.

Lin [55], Singh [100], and Wixson [126]. These methods also combine multiple policies, but
they require complete state information and architectures pre-designed for a particular task.

In all hierarchical architectures there is the issue of “vertical” credit assignment: assign-
ing credit to the correct level of the hierarchy. In most systems this can be a very tricky
issue. In Temporal Transition Hierarchies it occurs automatically as part of the learning
process. Assignment of credit is done by calculating the gradient of the error with respect
to the weights, no matter where in the hierarchy they lie. Since standard reinforcement-
learning methods already solve the difficult task of transforming reinforcement signals into
error signals, vertical credit assignment in reinforcement-learning environments is straight-
forward.

8.3.2 Rating CHILD with the Dimensions of Difficulty

Using the dimensions enlisted in previous chapters to measure the difficulty of environ-
ments and the capabilities of learning algorithms, CHILD is described in Table 8.1 in terms
of the environments it can learn. CHILD mostly has limitations along Dimensions 3, 7,
and 9. Some of these limitations may be alleviated by possible modifications mentioned in
the next section.

Not all attributes of a continual-learning agent are readily apparent from the table.
Among these, signified by Dimension 8, is the need for continuous growth in the amount
of history information the agent can keep. Also not obvious from the table is the fact that
continual learning should not be limited to finite environments where exact situations are
repeatable, but should instead participate in non-repeatable, real-world environments where
no regularities can be absolutely guaranteed.

8.4 Future Work

CHILD provides a strong foundation for continual learning, but it does not address
every issue that may be required. Some extensions are immediately obvious. Two of these
are (1) the use of transition hierarchies in non-temporal domains and (2) the addition of

102 Chapter 8. Synopsis, Discussion, and Conclusions

recurrent connections. These will be explored in the following two subsections. After these
discussions come some other extensions eagerly waiting to be addressed.

8.4.1 Stationary Mappings

Just as Temporal Transition Hierarchies can make non-linear discriminations if an input
is repeated over multiple time steps, the transition-hierarchy approach can be extended
to non-sequential data. A purely non-temporal, feed-forward network can be constructed
by removing time dependencies from the algorithm of Section 6.2.5. The derivation of a
learning rule for this variation is given in Appendix D. This derivation is nearly identical
to that of Section 6.2.3. The major difference is that computation of the unit’s activation
values must begin at the highest unit and work top-down instead of bottom-up. This is
necessary since the high-level units would otherwise have no effect on lower units. Without
time dependencies, the algorithm strongly resembles that of Sanger [89] and Sanger et
al. [90].

8.4.2 Recurrent Connections

One obvious drawback of Temporal Transition Hierarchies is that they can only learn
Markov-k tasks (learning k in the process; see Section 2.2.3). One problem mentioned over
the previous chapters has been the arbitrary-duration problem: how a piece of information
can be kept for an unspecified period of time. Temporal Transition Hierarchies always keep
information for a specific and precise period of time. (Unit n' holds information that will
have a discernible effect on the outputs of the network exactly 7¢ time steps into the future.)
One simple way of overcoming this limitation is to allow high-level units to have output
activation values. That is, the network could be made fully connected, so that higher-level
units have outgoing weights to the rest of the network and thus serve as hidden units as
well as higher-order connections. High-level units could then make use of their own previous
values as well as the values of other high-level units. These new recurrent connections could
in principle allow information to be stored by the network for as long as needed.

The learning algorithm would have to be modified to make use of the recurrent con-
nections, but it is conceivable that the network might form long-lasting representations
even without such modifications. The networks proposed by Jordan [43] and Elman [25],
for example, are capable of learning to store information over several time steps without
performing gradient descent on their recurrent connections (Section 4.3.3). Unlike these
networks, however, the units of transition hierarchies have specific roles in that they must
generate exact values that reduce the error of their respective connections. In the process
of doing this, they may learn to detect features that can then serve as reliable inputs to
other units of the network, including themselves.

Though it seems inappropriate to do complete gradient descent with respect to recurrent
connections in the higher-order system presented above — which would cause each unit to
share responsibilities as a higher-order connection and as a hidden unit — there is an
agreeable compromise. The problem addressed by the recurrent connections is that of
allowing a higher-level unit (and thus the weight it modifies) to retain its value for an
arbitrary length of time. This, however, can be solved without doing complete gradient
descent in a fully-connected recurrent network. Instead, the network could have just a

R.4. Future Work 103

single recurrent connection from each high-level unit to itself and then perform gradient
descent with respect to these connections. This is the same elegant approach used by
Bachrach [4] and by Mozer [65] (Section 4.3.1). Using Bachrach’s approach, these units can
keep their values for any arbitrary duration. This enables each high-level unit to tune in
to precisely those signals that should cause it to change its activation value, regardless of
when those signals occur. It can then keep that value for as long as necessary.

The derivation of the learning rule for transition hierarchies with single self-recurrent
connections is somewhat different from that of the non-recurrent system. Because the units
have self-connections and can retain information without explicit use of time delays, unit
activations can be computed top-down as with the stationary network (highest [units first,
down through lower-level [units, terminating with the output units). This means that all
weights contribute to the output at every time step, which in turn implies that, just like
with the stationary network above, non-linear discriminations could be made in a single
forward propagation. The derivation of a learning rule for this kind of architecture is given
in Appendix E.

Recurrent connections might extend Temporal Transition Hierarchies in useful ways, but
even more powerful memory extensions will eventually be needed — a dynamically acces-
sible short-term memory, for example. Some everyday tasks often require the temporary
memorization of a few basically random pieces of information, such as one’s shopping list,
or what the next few words in one’s sentence will be. Once such information is used it can
immediately be forgotten. This kind of memorization can be implemented using some kind
of push-down automaton. Neural-network algorithms that learn to use a stack [67, 101] do
exist. Integrating these into a reinforcement learning environment would be a good next
step. Making them amenable to continual learning will be more difficult.

8.4.3 The Changing-Reward Problem

Another problem faced by CHILD in Chapter 7 was that the environments kept chang-
ing. The tests were implemented this way to replicate aspects of shaping. Shaping is the
technique of training an animal to perform a complex skill through successive approxima-
tion (very much like continual learning except that there is always a definite, specific, final
behavior to be learned). A pigeon might be trained, for example, to peck Button A by
rewarding it whenever it crosses into the half of its cage where Button A is located. After
it has learned to stay in that half of the cage, the reward area could be reduced from one
half to one quarter, etc., until the pigeon stays near Button A. Rewards could then be given
whenever the pigeon’s beak moves toward the button, and so on. This requires constant
modification of the reward landscape, however, which means that a pigeon implemented
with Q-learning will be re-learning most or all of its Q-values again and again.

One possible solution to the problem of a changing reinforcement landscape is simply
not to use Q-learning. If the AHC were used instead (Section 5.1), then the agent could
transfer its skills to a similar domain easily. The critic module might need quite a bit of
modification while the policy module might need very little. If the policy values were to
change slowly, but the critic values changed quickly, then the critic could be straightened
out before the policy had been changed much. Another possible solution is to pursue the
notion introduced in Section 5.5: the absolute reinforcement elevation (the “goodness” of
each state) could be separated from the relative elevation (the difference in “goodness”

104 Chapter 8. Synopsis, Discussion, and Conclusions

between a state and its neighbors). The absolute elevation values would still need to be
relearned whenever the environment or reward position changed slightly, but most of the
relative values would not. The last absolute-elevation prediction could also be supplied as
an extra input. Its new value could then be calculated from its last value and from the
relative elevation values (instead of being re-calculated at every time step from sensory
input alone). Defining policies in terms of relative elevation allows skills to be more easily
transferred to environments with slightly different rewards (and therefore slightly different
absolute reinforcement elevations).

There are two alternative approaches to shaping, however, that are less confusing to the
pigeon. One would be to start the pigeon with its beak right next to Button A, rewarding
it when it inevitably hit the button, and then moving it successively farther away. This
has the advantage of keeping the environment and reinforcement landscape more or less the
same (except for the person holding the pigeon). It may not always be effective, though, as
can be seen from Maze 9 in Figure 7.9. Had the agent first learned that it should absolutely
always move west given an input of “9,” it would have had great difficulty learning to move
east given an input of “9” when it finally reached the two doorways.

The final and probably best alternative to the changing-rewards problem is just to come
up with a single, intelligent reinforcement landscape and then to leave it alone! What’s
needed is a smart, layered reinforcement scheme. Here’s an example. Let’s say a mouse
should learn to walk around a maze in search of cheese. Assuming the agent has real and
not simulated legs and no knowledge of its sensors or effectors, it needs first to learn to move
its limbs in a controlled way. It should therefore be given a reinforcement when it does so.
Once it has learned to move its legs about without damaging itself, all such movements will
result in equal reward and will therefore become equally probable. If organized movements
of its legs at some point result in the agent moving forward, then it will receive extra
reinforcement in addition to what it receives for the controlled limb movements. A large
set of “good” action sequences will be narrowed down to a smaller set of “better” sequences
without modifying the reinforcement landscape. As the agent gets better and better at
moving forward, it will get a higher density of reward per action and will eventually be
moving around constantly. Sooner or later it will find some cheese, and it will get a really
big reinforcement. Whenever the agent discovers a source of reinforcement higher than it
is used to, it will modify its behavior, increasing its average reinforcement to a new level
until, adept at the new behaviors and used to the new level, it stumbles upon a still higher
reinforcement. This method fits in best with the philosophy of continual learning in that
there need not be a maximum achievable reinforcement — continual improvement leads
indefinitely toward greater average reward.

The process of continually increasing the reinforcement level as the complexity of the
behavior increases is quite satisfying and seems very realistic. It requires access to an intelli-
gently constructed reinforcement landscape, however, which may be hard to supply. Perhaps
the agent might eventually be allowed to construct its own system of short-term rewards in
order to better teach itself skills that will bring it greater long-term reinforcement [20].

Even the layered-reinforcement method is limited, though, because it assumes a single
(though possibly very complicated) task. This is the case in shaping, but since it is not the
case in continual learning, a different approach may be needed. One option is to train the
agent to seek different goals in different contexts, i.e., to develop a different context-sensitive

R.4. Future Work 105

policy for each goal, provided the goal is specified in advance (like the tasks considered by
Singh [99]). Another very promising option would be to use Temporal Transition Hierarchies
to learn a model of the environment (Section 5.4), inverting the model to choose good
actions or to train a controller. This is advantageous in that a model maintains information
about the environment that is equally valuable when the goals change. Also, a model
and controller work well together in continuous domains, which is otherwise difficult for
QQ-learning. Learning a model of the environment still involves learning the reinforcement
landscape, however, no matter how temporary that landscape might be, and a new controller
must be trained whenever the landscape changes.

A method that avoids retraining with changing goals is to train on all possible goals
simultaneously (cf. Kaelbling [47, 48]). This method is highly promising in that it merges
controller and model together into an expanded model of the environment. Models usually
represent mappings of the form:

(state, action) — next-state.

Given the current state and intended action, the next state is calculated. This can be used
for single-step lookahead or potentially for a deeper search, but is usually used for training
a controller. An “all-goals” model, on the other hand, could learn mappings of the form:

(state 1, state 2) — (action, cost),

mapping every pair of states to (1) the best initial action when moving from the first to the
second, and (2) the expected cost of the journey. Learning this mapping can be done with a
simple dynamic-programming-style algorithm that allows the agent to change goals without
retraining. Finding the best action is computed instantly without an expensive search or
constraint satisfaction process. The method’s drawbacks are its O(n?) space requirement,
and the fact that it needs full access to the agent’s state at all times. The second require-
ment makes its conversion to non-Markovian environments challenging. Nevertheless, the
potential payoff of an all-goals continual-learning algorithm in non-Markovian environments
makes this research quite compelling.

8.4.4 Practical and Theoretical Work

Other important areas of future work range from the very practical to the very theoret-
ical. On the practical side, a method needs to be developed that allows useless units to be
pruned from the transition-hierarchy network. The difficult part, of course, is identifying
which units are useless. This is more complicated than the problem of weight elimination in
standard neural networks. A large hierarchy may be very vital to the agent, and the lower-
level units of the hierarchy may be indispensable, but before the hierarchy is completed, the
lower units may serve no purpose. How to identify these units as potentially useful seems
a very tricky issue, particularly in stochastic domains.

Another of the practical issues is simply that of testing the network and its variations
further. Many tasks would likely benefit from the transition hierarchy approach, such as
time-series prediction, speech recognition, speech production, and other context-sensitive
serial tasks.

106 Chapter 8. Synopsis, Discussion, and Conclusions

On the theoretical front are two issues related to dynamic programming. The first
is how learning a context-sensitive policy can be integrated into the standard dynamic-
programming framework. Interest is rising among reinforcement-learning researchers in
the area of partially observable Markov decision processes (POMDP’s), which are already
described by a broad theory of dynamic programming in hidden Markov environments.
Applying this theory to transition hierarchies is a large but promising project.

Another, much larger issue related to dynamic programming is that of regularity and
iteration. Existing reinforcement-learning theories do not apply to environments such as
the real world that cannot be perfectly modeled or reset and iterated for a countless number
of trials. A theory for measuring regularity and maximizing future reinforcement based on
these regularities will someday need to be developed. There is still much groundwork that
must first be laid for such an ambitious project, however.

8.5 Closing Thoughts

Continual learning is the learning methodology that makes the most sense in the long
term. We know this clearly from our own experience. We do not begin our education by
working on our dissertations. It takes (too) many years of training before even beginning
a dissertation seems feasible. It seems equally unreasonable for our learning algorithms to
learn the largest, most monumental tasks from scratch, rather than building up to them
slowly.

Implicitly, we all understand the significance of continual learning. We do it without
thought. It simply happens. Even when we continue the process in overt ways, we sometimes
fail to see its presence in our actions. Our very acts of producing technology, building
mechanisms, writing software, is to make automatic what we can only do slowly and with
the agony of constant attention. The process of making our behaviors reflexive is onerous;
one can in fact learn to do arithmetic as quickly as a calculator, but writing a program
to do our calculations for us is much easier. We build our technology, particularly our
software, as extensions of ourselves. Just as we develop skills, stop thinking about their
details, and then use them as the foundation for new skills, we develop software, forget
about how it works, and use it for building newer software. We do the thinking, then make
our software do what we've figured out how to do automatically. Building robots to do
our manual work may be more efficient than doing it ourselves, but we cannot continue to
design specific solutions to every complicated, tiny problem. As efficient as programming
may be in comparison with doing a task ourselves, it is nevertheless difficult, tedious, and
time-consuming; and program modification is even worse. We need robots that learn tasks
without specially designed software solutions. We need agents that learn and don’t forget,
keep learning, and continually modify themselves with newly discovered exceptions to old
rules.

Continual learning makes shaping a reality, and goes beyond it. Continual learning is
learning on top of learning. It is what we do when we learn to read, when we learn to
write. When we learn to read music, we first learn what notes are, then their names, what
they sound like, how to reproduce them; then we learn simple rhythms, simple sequences
of musical intervals, more complicated rhythms, more complicated musical intervals, differ-
ent keys, different clefs, different speeds, different notations, more and more complicated

8.5. Closing Thoughts 107

sequences of intervals and rhythms, and on and on. And towards what end? Does anyone
ever finish learning to read music? Do we finish learning how to write or do research? Do
we ever learn anything completely? Or do we just keep getting better than we were before?

Appendix A
Simulating a Queue With a Focused Network

It is not difficult to devise an activation function that would allow a Bachrach [4] or
Mozer [65] network to simulate a queue (i.e., to produce time-delayed output) given discrete
inputs. One way to do this with differentiable transfer functions is as follows.

Without loss of generality, assume the input to each input unit is binary. Allow one
hidden unit for every input unit. There will also, clearly, be the same number of output
units as there are input units. The 7** input unit is s*; the ¢"* hidden unit is A’; and the 7*
output unit is o'. Use the following differentiable functions for each hidden unit, A*:

W) = fa(X (0wl + b 1)
fu(z) = x—%sinQ(ﬂ'x),

and use the following differentiable functions for each output unit, o':
o'(t) = Jo(Q M (t)wf)
J
fo(z) = sin®(rz).

Should the network have the following hidden-layer weights (w®), output-layer weights
(w?), and self-connection (decay) weights (d), it will be able to store an arbitrary number,
D, of input tokens into the hidden units to be retrieved D time-steps later by the output

units.
1
d = —
2
oH - 2P-1 if i =
A 0 otherwise
WO = % ifie=y
i 0 otherwise.

See Pollack [75, Ch. 4] for the clearly related technique that inspired this one.

Appendix B

Equivalence of SLUG and
Second-order Recurrent Networks

The equivalence of SLUG and the other second-order recurrent networks presented in
Section 4.3.4 becomes clear once SLUG is formalized. The following equation describes
SLUG [5]:

o(t) = Wypolt — 1),

where 0(1) is the vector of hidden-unit outputs at time ¢; a(t) is the single action taken at
time ¢; and W, is the weight matrix corresponding to action a(t). Therefore,

oi(t) = Z'wij(t)oj(t - 1), (B.1)

where w;;() is the jth weight in the ith column of matrix W,). Because only one action is
taken at a time, the actions may be encoded locally as a unit vector, @(t), with the number
of dimensions equal to the number of actions. A third-order tensor, W, can be constructed
such that when it is multiplied by the vector @(t), it produces the matrix W,).

W) = a(t)W,

Let each element i, 7, k of W be written w; ik, then

Therefore, from B.1,

By rearranging W into W’ as follows:
w;jk = wi; Vi, j,k,

Equation B.2 can be rewritten to be precisely Equation 4.6 (provided the function f is the

o'(t) = Ek: 'w;jkok(t — D’ ().

identity map):

Appendix C

Parameter Values for the Maze Tasks

The parameters for the learning-from-scratch maze simulations (Section 7.3.1) are plot-
ted in Figure C.1 to show their changes as the mazes become more complex. It seems
reasonable that 4 should increase as the mazes grow larger, since this allows the reinforce-
ment at the goal to spread more evenly back towards the most distant reaches of the maze.
It also seems reasonable that o should decrease while # should increase as the mazes get
larger. The effect is to impede the creation of new units. (Increasing e will have the same
effect.) As the mazes grow in size, more training needs to be done before it can be reliably
established which connections are oscillating due to insufficient information. During early
training, there will initially be a significant amount of noise due to changing Q-values even
in states that are not ambiguous. Eventually, the Q-values will stabilize to their correct
values wherever possible, and the remaining probabilistic effects noticed by the learning

Optimized Parameters when Learning From Scratch

Parameter Value
AT — AT
2.0
15
e e B B e B — y
R ERREREEE e
yiii‘ﬁ77>;;““ 77‘_77///,
@ - 7 coTTooooooooooo
05 I S M R
o R I
r] \"\n *************** (e)
€ AH>”*“'\»~i‘*’f’\i:’4”ri B e e R €
0.0 T e e I E— Lﬂ
1 2 3 4 5 6 7 8 9 Maze number

Figure C.1: All seven parameters for the nine mazes are shown with their optimized values.
The horizontal axis shows the maze number. The vertical axis measures the value of each
parameter.

111

Optimized Parameters when Learning From Scratch
with Proprioception

Parameter Value
AT
2.0
AT
15
90— i —
7777777777777777 - | ©
vl - e
Cl RS e e
pITTI B
Ob-- - |- _. e /’\T\\\ i'f,',’,‘ ,,,,,,,,,,,,,,,, . /,f,/, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, B!n
0.5 — = i Ee—
L T I
n/// ,,,,,, T L
BN JSS S S E R I N)
P I
0.0
1 2 3 4 5 6 7 8 9 Maze number

Figure C.2: All seven parameters for the nine mazes are shown with their optimized values
when trained with proprioception. The horizontal axis labels the maze number. The vertical
axis measures the value of each parameter.

algorithm will be due completely to state ambiguities. Therefore, in large and complex
mazes — where there will initially be a great deal of unpredictable behavior — it is best for
unit creation to occur slowly, allowing the weights to settle to their correct values wherever
they can. In small, simple environments, aggressive unit creation may be acceptable, since
the weights should converge fairly quickly to their optimal values anyway. The reasons that
the creation of new units is apparently favored while training Maze 6 is not clear.

The parameters for the proprioceptive learning-from-scratch simulations of Section 7.3.2
are shown in Figure C.2. Drawing conclusions from this graph is not as straightforward as
the previous case, though the trend in v is the same.

Appendix D

Derivation of Learning Rule
for Non-Temporal Network

The following derivation is nearly identical to that given in Section 6.2 but has been
altered to remove the temporal component. It can therefore be used for static classification
tasks, and very closely resembles the network of Sanger [89]. The equations below have
nearly a one-to-one correspondence with (and are therefore numbered to correspond with)
those of Section 6.2 and may be viewed side by side with them for greater clarity.

s {u']0 <i<ns}

A Y {u'|ns <i < ns+na}

L Y {u'|ns +na < i < nu}

N Y {u'|ns <i < nu}

s € 8

a' € A

l,, € L

n € N

; = Z ‘UAJZ']'Sj (D3)

J
by = { wij+1; ifa hlgh—level unit /;; for weight w;; exists (D.4)
Wy otherwise

The total error is now the sum of the errors over all patterns in the training set. The
index p is used to denote patterns from the training set:

E=Y E"
P

In this derivation the error will be accumulated throughout a training epoch.

o= %Z(Tfp—afpf (D.5)
DEY

Aw?. D.

o Y o (0.6)

p

113

For the remainder of the derivation, it will be assumed that all variables are indexed with
respect to p, the current pattern.

def @E
Aw;; =
v ! aw”
; def aE
—— .
on’ _
OF _ OF on'
8wij N 8n2 8w”
S on'
8wi]-
8ni B ja‘Ui’i]‘
8wij N awz-]’
_ 1+ ilui; it [;; exists
1 otherwise

(D.8)

(D.10)

(D.11)

Because VI : (z > i) A (z > j), and since activation values are computed top-down, n® is
computed before n', so [}. does not receive input directly or indirectly from unit :. Its value

is therefore not in any way a function of w;;.

on' i
= s
awij
oF iy
Aw;; = Duos =0's’
orE ., .. . o
- ai if n* is an action unit, a'
o =N oE . |
ol if n* is a higher-level unit, [
oF : :
. = t_m
dat “
oL OF O,
ot Oy 0L,
_0F
T Oty
_ OF On®
COn" Oy,
= 6%sY
= Awgy,.

(D.12)

(D.13)

(D.14)

(D.16)

Returning now to Equation D.13, and substituting in the results from Equations D.15
and D.16, the change to the weight can be written as:

A’wi]' =

6's?

114 Appendix D. Derivation of Learning Rule for Non-Temporal Network

(D.17)

o a' — T if n’ is an action unit, a'

Awgy, if n" is a higher-level unit, [}, .

If a fixed number of training patterns is given in advance, adding new units is also

slightly different. In particular, long-term averages are not needed since exact averages can
be computed.

Appendix E

Derivation of Learning Rule for Recurrent Network

The derivation of the learning rule for transition hierarchies with single recurrent self-
connections is somewhat different from that of the non-recurrent system. Because the
units have self-connections and can retain information without explicit use of time-delays,
unit activations can be computed top-down as with the stationary network (Appendix D).
Highest high-level units are computed first, down through lower-level [units, terminating
with the action units. This means that all weights contribute to the network output at
every time step. As in Appendix D, the equations here are (at least at first) labeled to
correspond with those in Section 6.2.

Because of the self-connections, the input to the high-level and action units is:

n'(t) = yu(t)n'(t — 1) + Z Wi (t)s?(t — 1) (E.3)

For notational convenience, the current value of sensory unit j is now written s/(¢ — 1)
instead of s/(t). The definition of the higher-order connections is unchanged:

(1) = { w;j + l;;(t — 1) if a high-level unit /;; for weight w;; exists (E.A)

w;j otherwise

As before, the weights are changed in the direction opposite their contribution to the
error, F(t). Because all weights contribute to the output at every time step, the w;;’s no
longer need to be time-indexed. For the purposes of the derivation, the weights are assumed
to remain the same at all time steps, though gradient-descent can still be approximated by
making small weight-changes at every step.

Awij(t) = 5 (EG)

A weight w;; is said to affect a unit u* if w;; either directly feeds into u* (i.e., k = i) or
w;; feeds into a high-level unit Z;,y, where w,, affects u*. Because each non-input unit has a
self-connection, when a weight affects a unit at one time step, that effect influences the unit
in the following time steps as well. Because of this, the derivation diverges at this point

from that of Section 6.2.3:
0E(t) ¥ IE(t) da*(t)
N dak(t

wig

~—

(9w2»]- ’
Each weight affects only one action unit, so

JE(t) OE(t) da*(t)
Jwi; — dak(t) dwi; (E.7)

where a* is the action unit that w;; affects.

116 Appendix E. Derivation of Learning Rule for Recurrent Network

A new value qbf] is enlisted into the derivation to hold the running contribution of weight
w;; to unit n*. From Equation E.3:

def onk(t
D
ij
. 812)kk(t) k 8n’“(t— 1)A a‘ﬁ)k]'/(t) '
= au}” n (t 1) -+ aw” ukk(t) —I-; a‘wij S (t 1)

If k = i, then w;; feeds directly into u*, so
. nF(t— 1)+ @5 (t — Dabpe(t) +0 if k=3
(1)

0+ ¢5;(t — Ddpr(t) + s7(t — 1) if kb #j
= ¢p;(t — Dib(t) + v/ (t — 1). (E.8)

If k& # ¢, however, then w;; affects a high-level unit (say [f,,) that modifies weight wy,, into
unit k, then in this case:

Ol (1)

n*(t—1)+ ¢5(t — Dbe(t) + 0 if k=m
8'wz-j

¢Z‘(t> = P
0+ 5 (t — 1)ibii(t) + o (?)sma —1) itk#m

dw;
= (/Z)Z(i — 1)) + qbf](t)um(t —]1),Where w;; affects [, (E.9)
Therefore, combining Equations E.8 and E.9,
wl(t —1) if k=1
fj(t) = ¢’]1§j(t — 1) (t) + u™(t — 1)¢%(t) Otherwise, (E.10)

where w;; affects (7, .

From Equations E.6, E.7, and E.10:

Awij(t) =

8ak(t) 8w”
= (a"(t) = T*(1)) 5 (1),

where a* is the only action unit affected by w;;, and the variable qbf](t) holds the derivative
of unit k& with respect to weight w;; for all patterns seen up to time ¢.

The qbf] values must be maintained and calculated at every time step. They are similar
to the pfj values of the RTRL algorithm as presented by Williams and Zipser [123]; though
not so many of these values are required, since the network is not fully recurrent. However,
it is because of this extra overhead that the recurrent variation of the algorithm lacks the
elegance of the Temporal Transition Hierarchies network. For each weight, w;;, the number
of qbf] values that must be stored is equal to the height of w;; in the hierarchy (the same as
7' in Section 6.2.3 for weight w;;). The number of gbfj values that must be stored therefore

117

scales with HN,,, where H is the height of the highest unit in the hierarchy and N, is the
number of network weights. The total number of operations required per network cycle also
scales with HN,,. While this is better than the scaling behavior of the RTRL algorithm, it
is not as good as Bachrach’s, Mozer’s, or Fahlman’s algorithms [4, 27, 65] (Section 4.3).

One advantage of the recurrent version of transition hierarchies is that it does not
require a record of previous activation values. (In the non-recurrent version such a record
is required, and its length grows with the height of the hierarchy.) All values needed to
compute the weight changes in this version are target or activation values from the current
time step, or they are values held over from the previous time step only.

Bibliography

(1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

J. S. Albus. Mechanisms of planning and problem solving in the brain. Mathematical
Biosciences, 45:247-293, 1979.

Ethem Alpaydin. GAL: Networks that grow when they learn and shrink when they
forget. Technical Report 91-032, International Computer Science Institute, Berkeley,
California, May 1991.

C. W. Anderson. Learning and Problem Solving with Multilayer Connectionist Sys-

tems. PhD thesis, Department of Computer and Information Sciences, University of
Massachusetts, 1986.

Jonathan Richard Bachrach. Learning to represent state. Master’s thesis, Department
of Computer and Information Sciences, University of Massachusetts, Amherst, MA

01003, November 1988.

Jonathan Richard Bachrach. Connectionist Modeling and Control of Finite State
Environments. PhD thesis, Department of Computer and Information Sciences, Uni-
versity of Massachusetts, February 1992.

L.C. Baird, III. Advantage updating. Technical report, Wright Laboratory, Wright—
Patterson Air Force Base, OH, November 1993.

Avron Barr and Edward A. Feigenbaum. The Handbook of Artificial Intelligence,

volume 1. William Kaufmann, Inc., Los Altos, California, 1981.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuron-like elements that can
solve difficult learning control problems. IEEFE Transactions on Systems, Man, and

Cybernetics, 13:835-846, 1983.

A. G. Barto, R. S. Sutton, and Christopher J. C. H. Watkins. Learning and sequential
decision making. Technical Report COINS Technical Report 89-95, University of
Massachusetts at Amherst, Department of Computer and Information Science, 1989.

Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Real-time learning and
control using asynchronous dynamic programming. Technical Report 91-57, Com-
puter Science Department, University of Massachusetts at Amherst, August 1991.

Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using
real-time dynamic programming. Submitted to Al Journal special issue on Compu-
tational Theories of Interaction and Agency, January 1993.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-hall, Englewood Cliffs, NJ, 1989. Secondary source, from [11].

Bibliography 119

[13]

[14]

[15]

[16]

[17]

[18]

Ulrich Bodenhausen and Alex Waibel. The Tempo 2 algorithm: adjusting time-
delays by supervised learning. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky,
editors, Advances in Neural Information Processing Systems 3, pages 155-161, San
Mateo, California, 1991. Morgan Kautmann Publishers.

Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2(1):14-23, March 1986.

D. Chen, C. L. Giles, G.Z. Sun, H. H. Chen, Y. C. Lee, and M. W. Goudreau.
Constructive learning of recurrent neural networks. In IEEE Proceedings of the ICNN,
1993.

Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual
distinctions approach. In Proceedings of the National Conference on Artificial Intel-
ligence (AAAI-92), Cambridge, MA, 1992. AAAI/MIT Press.

Axel Cleeremans, David Servan-Schreiber, and James L. McClelland. Finite state
automata and simple recurrent networks. Neural Computation, 1(3):372-381, 1989.

Richard Dawkins. Hierarchical organisation: a candidate principle for ethology. In
P. P. G. Bateson and R. A. Hinde, editors, Growing Points in Ethology, pages 7-54,
Cambridge, 1976. Cambridge University Press.

Shawn P. Day and Michael R. Davenport. Continuous-time temporal back-propa-
gation with adaptable time delays. Submitted to: IEEE Transactions on Neural
Networks, August 1991.

Peter Dayan, May 1994. Personal Communication.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In C. L. Giles,
S. J. Hanson, and J. D. Cowan, editors, Advances in Neural Information Processing
Systems 5, pages 271-278, San Mateo, California, 1993. Morgan Kaufmann Publishers.

Peter Dayan and Terrence J. Sejnowski. TD()A) converges with probability 1. Sub-
mitted to Machine Learning, 1993.

Kenji Doya. Universality of fully-connected recurrent neural networks. Submitted to

[EEE Transactions on Neural Networks, 1993.

Gary L. Drescher. Made-Up Minds: A Constructivist Approach to Artificial Intelli-
gence. MIT Press, Cambridge, Massachusetts, 1991.

Jeffrey L. Elman. Finding structure in time. CRL Technical Report 8801, University
of California, San Diego, Center for Research in Language, April 1988.

Scott E. Fahlman. Faster learning variations on back-propagation: An empirical
study. Technical Report CMU-CS-88-162, Carnegie Mellon University, School of
Computer Science, September 1988.

120

Bibliography

[27]

28]

[29]

[30]

31]

37]

[38]

[39]

Scott E. Fahlman. The recurrent cascade-correlation architecture. In R. P. Lippmann,
J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing
Systems 3, pages 190-196, San Mateo, California, 1991. Morgan Kaufmann Publishers.

Scott E. Fahlman and Christian Lebiere. The Cascade-Correlation learning archi-
tecture. Technical Report CMU-CS5-90-100, Carnegie Mellon University, School of
Computer Science, February 1990.

Gerald Fahner. A higher order unit that performs arbitrary boolean functions. In
Proceedings of the International Joint Conference on Neural Networks, volume III,

pages 193-197, 1990.

Gerald Fahner and Rolf Eckmiller. Structural adaptation of parsimonious higher order
neural classifiers. Technical report, Department of Neuroinformatics, University of
Bonn, Bonn, Germany, 1992.

Marcus Frean. The Upstart algorithm: a method for constructing and training feed-
forward neural networks. Preprint 89/469, Department of Physics and Centre for
Cognitive Science, Edinburgh University, 1989.

Stephen 1. Gallant. Three constructive algorithms for network learning. In The
FEighth Annual Conference of the Cognitive Science Society, pages 652-660. Lawrence
Erlbaum, August 1986.

C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C. Lee. Extracting
and learning an unknown grammar with recurrent neural networks. In J. E. Moody,
S. J. Hanson, and R. P. Lippman, editors, Advances in Neural Information Processing
Systems 4, pages 317-324, San Mateo, California, 1992. Morgan Kaufmann Publishers.

C. L. Giles, G. Z. Sun, H. H. Chen, Y. C. Lee, and D. Chen. Higher order recurrent
networks & grammatical inference. In David S. Touretzky, editor, Advances in Neural
Information Processing Systems 2, San Mateo, California, 1990. Morgan Kaufmann

Publishers.

C. Lee Giles and Tom Maxwell. Learning, invariance, and generalization in high-order

neural networks. Applied Optics, 26(23):4972-4978, December 1987.
Mark W. Goudreau, C. Lee Giles, Srimat T. Chakradhar, and D. Chen. First-order

vs. second-order single layer recurrent neural networks. IKFEFE Transactions on Neural

Networks, 1993.

G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford
University Press, New York, 1985.

Stephen Grossberg. A theory of human memory: Self-organization and performance
of sensory-motor codes, maps, and plans. In R. Rosen and F. Snell, editors, Progress

in Theoretical Biology, Vol. 5, pages 223-374. Academic Press, New York, 1978.

J. H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Michigan, 1975.

Bibliography 121

[40]

[41]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural

Networks, 4(2):251-257, 1991.

Jeng-Neng Hwang and Chi H. Chan. Iterative constrained inversion of neural networks
and its applications. In The 24th Conference on Information Systems and Sciences,

pages 754-759, Princeton, March 1990.

John W. Jameson. Reinforcement control with hierarchical backpropagated adaptive
critics. Submitted to Neural Networks, March 1992.

Michael 1. Jordan. Serial order: A parallel distributed processing approach. ICS
Report 8604, Institute for Cognitive Science, University of California, San Diego,
May 1986.

Michael 1. Jordan. Generic constraints on underspecified target trajectories. In Pro-
ceedings of the International Joint Conference on Neural Networks, volume I, pages

217225, 1989.

Michael I. Jordan and Robert A. Jacobs. Learning to control an unstable system with
forward modeling. In David S. Touretzky, editor, Advances in Neural Information
Processing Systems 2, pages 324-331, San Mateo, California, 1990. Morgan Kaufmann
Publishers.

Michael 1. Jordan and David E. Rumelhart. Forward models: Supervised learning
with a distal teacher. Cognitive Science, 16:307-354, 1992.

Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary re-
sults. In Machine Learning: Proceedings of the tenth International Conference, pages

167-173. Morgan Kaufmann Publishers, June 1993.

Leslie Pack Kaelbling. Learning to achieve goals. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, pages 1094-1098, Chambéry,
France, 1993. Morgan Kaufmann.

J. Kindermann and A. Linden. Inversion of neural networks by gradient descent.

Journal of Parallel Computing, 14(3), 1990.

A. H. Kloptf. The Hedonistic Neuron: A Theory of Memory, Learning, and Intelli-
gence. Hemisphere, Washington, 1982.

Benjamin J. Kuipers and Yung-Tai Byun. A robust, qualitative method for robot
spatial learning. In The Seventh National Conference on Artificial Intelligence, 1988.

John E. Laird, Paul S. Rosenbloom, and Alan Newell. Chunking in soar: The anatomy
of a general learning mechanism. Machine Learning, 1:11-46, 1986.

Thibault Langlois and Stéphane Canu. Control of time-delay systems using rein-
forcement learning. In Igor Alexsander and John Taylor, editors, Artificial Neural
Networks, 2: Proceedings of the 1992 International conference on Artificial Neural

Networks (ICANN-92), pages 607-610, Amsterdam, 1992. North-Holland, Elsevier
Science Publishing.

122

Bibliography

[54]

[55]

[61]

[62]

[63]

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning

and teaching. Machine Learning, 8:293-321, 1992.

Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis,
Carnegie Mellon University, 1993. Also appears as Technical Report CMU-CS-93-103.

Alexander Linden. On discontinuous Q-functions in reinforcement learning. In
H. J. Ohlbach, editor, Proceedings of the German Workshop on Artificial Intelligence.
Springer Verlag, 1993.

Alexander Linden and Frank Weber. Implementing inner drive through competence
reflection. In J. A. Meyer, H. Roitblat, and S. Wilson, editors, From Animals to Ani-
mats 2: Proceedings of the Second International Conference on Simulation of Adaptive

Behavior, pages 321-326. MIT Press, 1993.

Michael L. Littman. An optimization-based categorization of reinforcement learning
environments. In J. A. Meyer, H. Roitblat, and S. W. Wilson, editors, From Animals
to Animats 2: Proceedings of the Second International Conference on Simulation of

Adaptive Behavior, pages 262-270. MIT Press, 1993.

R. Andrew McCallum. Overcoming incomplete perception with Utile Distinction
Memory. In Machine Learning: Proceedings of the Tenth International Conference,

pages 190-196. Morgan Kaufmann Publishers, June 1993.

Clifford B. Miller and C.L. Giles. Experimental comparison of the effect of order in
recurrent neural networks. International Journal of Pattern Recognition and Aritifi-
cial Intelligence, 1993. Special Issue on Applications of Neural Networks to Pattern
Recognition.

Marvin Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

Marvin L. Minsky and Seymour A. Papert. Perceptrons. MIT Press, Cambridge, MA,
1969.

John Moody and Christian Darken. Fast learning in networks of locally-tuned pro-
cessing units. Neural Computation, 1(2):281-294, 1989.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement
learning with less data and less real time. Machine Learning, 13(1), 1993.

Michael C. Mozer. A focused back-propagation algorithm for temporal pattern recog-
nition. Technical Report CRG-TR-88-3, Department of Psychology, University of
Toronto, June 1988.

Michael C. Mozer. Induction of multiscale temporal structure. In John E. Moody,
Steven J. Hanson, and Richard P. Lippmann, editors, Advances in Neural Information
Processing Systems 4, pages 275-282, San Mateo, California, 1992. Morgan Kaufmann
Publishers.

Bibliography 123

[67]

[68]

[69]

73]

[74]

[75]

[76]

[77]

(78]

[79]

Michael C. Mozer and Sreerupa Das. A connectionist symbol manipulator that dis-
covers the structure of context-free languages. In C. L. Giles, S. J. Hanson, and J. D.
Cowan, editors, Advances in Neural Information Processing Systems 5, pages 863870,
San Mateo, California, 1993. Morgan Kaufmann Publishers.

Paul Munro. A dual back-propagation scheme for scalar reward learning. In The
Ninth Annual Conference of the Cognitive Science Society, pages 165-176, Hillsdale,
NJ, 1987. Lawrence Erlbaum.

Derrick Nguyen and Bernard Widrow. The truck backer-upper: An example of self-
learning in neural networks. In W. Thomas Miller, ITI, Richard S. Sutton, and Paul J.
Werbos, editors, Neural Networks for Control, chapter 12, pages 288-299. MIT Press,
1990.

Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes.

McGraw-Hill Series in Systems Science. McGraw-Hill, 1965.

Jing Peng and Ronald J. Williams. Efficient learning and planning within the Dyna
framework. In J. A. Meyer, H. Roitblat, and S. Wilson, editors, From Animals to Ani-
mats 2: Proceedings of the Second International Conference on Simulation of Adaptive

Behavior, pages 281-290. MIT Press, 1993.

David Pierce and Benjamin Kuipers. Learning hill-climbing functions as a strategy
for generating behaviors in a mobile robot. In J. A. Meyer and 5. W. Wilson, edi-
tors, From Animals to Animats: Proceedings of the First International Conference on

Sitmulation of Adaptive Behavior, pages 327-336. MIT Press, 1991.

David Pierce and Benjamin Kuipers. Learning to explore and build maps. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI-94), Cambridge,
MA, 1994. AAAI/MIT Press. To appear.

Jordan B. Pollack. Cascaded back-propagation on dynamic connectionist networks.
In The Ninth Annual Conference of the Cognitive Science Society, pages 391-404,
1987.

Jordan B. Pollack. On Connectionist Models of Natural Language Processing. PhD
thesis, Computer Science Department, University of Illinois, Urbana, 1L, 1987.

Jordan B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:227—
252, 1991.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C. Cambridge University Press, 1992.

Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, T7, 1989.

A. S. Reber. Implicit learning of artificial grammars. Journal of Verbal Learning and

Verbal Behavior, 5:855-863, 1967. Secondary source, from [17].

124

Bibliography

[80]

[81]

[33]

[89]

[90]

Mark B. Ring. Incremental development of complex behaviors through automatic
construction of sensory-motor hierarchies. In Lawrence A. Birnbaum and Gregg C.
Collins, editors, Machine Learning: Proceedings of the Eighth International Workshop
(ML91), pages 343-347. Morgan Kaufmann Publishers, June 1991.

Mark B. Ring. Learning sequential tasks by incrementally adding higher orders. In
C. L. Giles, S. J. Hanson, and J. D. Cowan, editors, Advances in Neural Information
Processing Systems 5, pages 115-122, San Mateo, California, 1993. Morgan Kaufmann
Publishers.

Mark B. Ring. Sequence learning with incremental higher-order neural networks.
Technical Report AT 93-193, Artificial Intelligence Laboratory, University of Texas at
Austin, January 1993.

Mark B. Ring. Two methods for hierarchy learning in reinforcement environments. In
J. A. Meyer, H. Roitblat, and S. Wilson, editors, From Animals to Animats 2: Pro-
ceedings of the Second International Conference on Simulation of Adaptive Behavior,

pages 148-155. MIT Press, 1993.

R. L. Rivest and R. E. Schapire. A new approach to unsupervised learning in deter-
ministic environments. In Pat Langley, editor, Proceedings of the Fourth International

Workshop on Machine Learning, pages 364-375, Irvine, CA, June 1987.

A. J. Robinson and F. Fallside. The utility driven dynamic error propagation net-
work. Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering
Department, 1987.

H. L. Roitblat. A cognitive action theory of learning. In J. Delacour and J. C. S Levy,
editors, Systems with Learning and Memory Abilities, pages 13-26. Elsevier Science
Publishers B.V. (North-Holland), 1988.

H. L. Roitblat. Cognitive action theory as a control architecture. In J. A. Meyer
and 5. W. Wilson, editors, From Animals to Animats: Proceedings of the First Inter-
national Conference on Simulation of Adaptive Behavior, pages 444-450. MIT Press,
1991.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Fzplorations in the Microstructure of Cognition. V1:
Foundations. MIT Press, 1986.

Terence D. Sanger. A tree structured adaptive network for function approximation
in high-dimensional spaces. [EEE Transactions on Neural Networks, 2(2):285-301,
March 1991.

Terence D. Sanger, Richard S. Sutton, and Christopher J. Matheus. Iterative con-
struction of sparse polynomial approximations. In J. E. Moody, S. J. Hanson, and
R. P. Lippman, editors, Advances in Neural Information Processing Systems 4, pages

1064-1071, San Mateo, California, 1992. Morgan Kaufmann Publishers.

Bibliography 125

[91]

[95]

[96]

[99]

[100]

[101]

Jurgen Schmidhuber. Making the world differentiable: On using self-supervised fully
recurrent neural networks for dynamic reinforcement learning and planning in non-
stationary environments. Technical Report FKI-126-90 (revised), Technische Univer-
sitat Munchen, Institut fir Informatik, November 1990.

Jurgen Schmidhuber. Networks adjusting networks. Technical Report FKI-125-90
(revised), Technische Universitat Miinchen, Institut fiir Informatik, November 1990.

Jurgen Schmidhuber. Adaptive confidence and adaptive curiosity. Technical Report
FKI-149-91 (revised), Technische Universitat Miinchen, Institut fiir Informatik, April
1991.

Jurgen Schmidhuber. A possibility for implementing curiosity and boredom in model-
building neural controllers. In J. A. Meyer and 5. W. Wilson, editors, From Animals to
Animats: Proceedings of the First International Conference on Simulation of Adaptive

Behavior, pages 15-21. MIT Press, 1991.

Jiirgen Schmidhuber. A fixed size storage O(n?) time complexity learning algorithm
for fully recurrent continually running networks. Neural Computation, 4(2):243-248,

1992.

Jurgen Schmidhuber. Learning unambiguous reduced sequence descriptions. In J. E.
Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural Information
Processing Systems 4, pages 291-298, San Mateo, California, 1992. Morgan Kaufmann
Publishers.

Jurgen Schmidhuber and Reiner Wahnsiedler. Planning simple trajectories using neu-
ral subgoal generators. In J. A. Meyer, H. Roitblat, and S. Wilson, editors, From Ani-
mals to Animats 2: Proceedings of the Second International Conference on Simulation

of Adaptive Behavior, pages 196-199. MIT Press, 1993.

Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to
pronounce english text. Complex Systems, 1:145-168, 1987.

Satinder Pal Singh. Transfer of learning by composing solutions of elemental sequen-
tial tasks. Machine Learning, 8, May 1992.

Satinder Pal Singh, Andrew G. Barto, Roderic Grupen, and Christopher Connolly.
Robust reinforcement learning in motion planning. In Jack D. Cowan, Gerald Tesauro,

and Joshua Alspector, editors, Advances in Neural Information Processing Systems 06,

pages 655662, San Mateo, California, 1994. Morgan Kaufmann Publishers.

G. Z. Sun, H. H. Chen, C. L. Giles, Y. C. Lee, and D. Chen. Connectionist push-
down automata that learn context-free grammars. In Proceedings of the International
Joint Conference on Neural Networks, pages 1-577-580, Hillsdale, NJ, 1990. Erlbaum

Associates.

126

Bibliography

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Guo-Zhen Sun, Hsing-Hen Chen, and Lee Yee-Chun. Green’s function method for fast
on-line learning algorithm of recurrent neural networks. In J. E. Moody, S. J. Hanson,

and R. P. Lippman, editors, Advances in Neural Information Processing Systems /,
pages 333-340, San Mateo, California, 1992. Morgan Kaufmann Publishers.

Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhD the-
sis, Department of Computer and Information Science, University of Massachusetts,

Ambherst, MA 01003, 1984.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Ma-
chine Learning, 3:9-44, 1988.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Bruce W. Porter and Ray J. Mooney,
editors, Proceedings of the Seventh International Conference on Machine Learning,
pages 216-224. Morgan Kaufmann Publishers, June 1990.

Richard S. Sutton. Reinforcement learning architectures for animats. In J. A. Meyer
and 5. W. Wilson, editors, From Animals to Animats: Proceedings of the First Inter-
national Conference on Simulation of Adaptive Behavior, pages 288-296. MIT Press,
1991.

Sebastian B. Thrun and Knut Moller. Active exploration in dynamic environments.
In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural Infor-
mation Processing Systems 4, pages 531-538, San Mateo, California, 1992. Morgan
Kaufmann Publishers.

Sebastian B. Thrun, Knut Moller, and Alexander Linden. Planning with an adaptive
world model. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances
in Neural Information Processing Systems 3, San Mateo, California, 1991. Morgan
Kaufmann Publishers.

M. Tomita. Dynamic construction of finite-state automata from examples using hill-
climbing. In Proceedings of the Fourth Annual Cognitive Science Conference, pages
150-108, Ann Arbor, MI, 1982. Secondary source, from [76].

Alex Waibel. Modular construction of time-delay neural networks for speech recogni-
tion. Neural Computation, 1(1):39-46, Spring 1989.

Christopher J. C. H Watkins. Learning from Delayed Rewards. PhD thesis, King’s
College, May 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8:279-292, 1992.

Raymond L. Watrous and Gary M. Kuhn. Induction of finite-state languages using
second-order recurrent networks. In J. E. Moody, S. J. Hanson, and R. P. Lippman,
editors, Advances in Neural Information Processing Systems 4, pages 309-316, San
Mateo, California, 1992. Morgan Kautfmann Publishers.

Bibliography 127

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Paul J. Werbos. Generalization of backpropagation with application to a recurrent

gas market model. Neural Networks, 1:339-356, 1988.

Paul J. Werbos. Backpropagation through time: What it is and how to do it. Pro-
ceedings of the IEEFE, October 1990.

Paul J. Werbos. A menu of designs for reinforcement learning over time. In
W. Thomas Miller, ITII, Richard S. Sutton, and Paul J. Werbos, editors, Neural Net-
works for Control, chapter 3, pages 67-95. MIT Press, 1990.

Steven D. Whitehead and Dana H. Ballard. Active perception and reinforcement
learning. Neural Computation, 2(4):409-419, 1990.

B. Widrow and M. E. Hoff. Adaptive switching circuits. In Institute of Radio Engi-
neers, Western FElectronic Show and Convention, Convention Record, pages 96-104,

New York, 1960.

Ronald J. Williams. Inverting a connectionist network mapping by back-propagation
of error. In The Kighth Annual Conference of the Cognitive Science Society, pages
859-865. Lawrence Erlbaum, August 1986.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8:229-256, 1992.

Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm for on-line
training of recurrent network trajectories. Neural Computation, 2(4):490-501, 1990.

Ronald J. Williams and David Zipser. Experimental analysis of the real-time recurrent
learning algorithm. Connection Science, 1(1):87-111, 1989.

Ronald J. Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2):270-280, 1989.

S. W. Wilson. Hierarchical credit allocation in a classifier system. In M. S. Elzas,
T. I. Oren, and B. P. Zeigler, editors, Modeling and Simulation Methodology. Flsevier
Science Publishers B.V., 19809.

Stewart W. Wilson. The animat path to AL. In J. A. Meyer and S. W. Wilson,
editors, From Animals to Animats: Proceedings of the First International Conference
on Simulation of Adaptive Behavior, pages 15-21. MIT Press, 1991.

Lambert E. Wixson. Scaling reinforcement learning techniques via modularity. In
Lawrence A. Birnbaum and Gregg C. Collins, editors, Machine Learning: Proceedings
of the Eighth International Workshop (ML91), pages 368-372. Morgan Kaufmann
Publishers, June 1991.

Mike Wynn-Jones. Node splitting: A constructive algorithm for feed-forward neural
networks. Neural Computing and Applications, 1(1):17-22, 1993.

