1 Introduction

To illustrate what neuroevolution is about, consider the following four challenges
(Figure 1.1):

Imagine that you want to create a character in a video game where you as the player per-
form search and rescue. This character acts as your sidekick: scouts for information that’s
helpful, helps move large objects, etc. You want the character to anticipate what you want
to do, and act in a believable, human-like manner: it has limited resources, like you do, but
generally uses them well. How do you design such a character? Many of its characteristics
are difficult to describe: you know it when you see it.

Now imagine that there is a new pandemic emerging. It seems to target particularly vul-
nerable populations, it seems to be transmitted through the air in crowded conditions, and
seems to have a long incubation period. The disease has already led to hospitalizations
in several countries, and some have taken measures to contain it e.g. by closing schools,
restricting air travel, and establishing contact tracing. Eventually, the pathogen will be
sequenced and vaccines and medications perhaps developed for it, but we need to cope
with the spread of the disease right now. Can we learn from these experiences around the
world, and come up with intervention recommendations that are customized for the current
situation in different countries, or even cities and neighborhoods?

You are an analyst at a retailer, trying to predict sales of different products in different
stores in order to minimize inventory and waste. You have historical data available that
includes product descriptions, seasonal variations, and economic indicators, which in prin-
ciple should allow you to use deep learning to predict. However, there is not enough data
to do it: Such a network would simply learn to memorize the small dataset and not gener-
alize well in the future. However, there is a lot of data about other types of sales, as well as
other economic and retail time metrics. Could you design a deep learning architecture that
utilizes all these other datasets to learn to predict your data better?

You are a biologist studying the behavior of a particular species, say hyenas. You discover
that in some circumstances they perform extremely sophisticated coordination of collabo-
rative actions that allows them to overpower a group of lions. While hyenas are good at
many social tasks, this one stands out as something beyond their usual capabilities. Could
we be seeing evolution taking place, i.e. an adaptation that eventually leads to a leap in
social intelligence? It is not possible to verify the hypothesis in the field, or even in the lab.
Could we create a computational simulation to provide evidence for it?

The above four examples each illustrate neuroevolution in action. Neuroevolution, or
optimization of neural network designs through evolutionary computation, is an approach



2 Chapter 1

400k
300k
200k

100k

o
Apr2020 1ul2020 Oct 2020 Jan 2021 Apr2021 Jul 2021

Mouse over bars for more info Forecast

Apr2020 Jul2020 0ct2020 Jan 2021 Apr2021 Jul2021

(b) Pandemic intervention strategy

(c) Network sharing knowledge across tasks (d) Evolution of coordination

Figure 1.1: Illustrative opportunities for neuroevolution. (a) A non-player character in
a videogame is controlled by an evolved neural network. It balances multiple objectives,
including ill-defined ones such as “human-like behavior”. (b) Based on a predictive model
learned from historical data (top), neuroevolution constructs a strategy that can be applied
to different countries at different times. It discovers customized solutions (bottom) that are
more effective than general rules of thumb. (c¢) In learning multiple tasks at once, neuroevo-
lution discovers a common set of modules, and for each task, a different architecture made
of these modules (this one recognizes handwritten characters in the Angelic alphabet; the
different modules are labeled by color). By combining knowledge from multiple tasks In
this manner, neuroevolution can make deep learning work even when the data is otherwise
insufficient. (d) Neuroevolution discovers sophisticated coordination that allows simulated
hyenas to steal a kill from lions. It is possible to identify what steps in evolution lead to
this breakthrough; for instance, the descendants of risk-taking (red) and risk-averse (blue)
hyenas will evolve to approach up to the striking distance (black dotted square) where they
can overpower the lion (yellow, with a zebra kill). (Figure ¢ from Liang, Meyerson, and
Miikkulainen 2018)

in the Al toolbox that is different from just about anything else. The idea is not to simply
optimize a quantitative metric, but find solutions that achieve multiple goals, some of which
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may be ill-defined; not to replace human creativity and decision-making authority, but to
extend it with a powerful tool for discovery; not to solve problems by encoding and applying
what already works, but to discover creative, effective solutions that can be surprising and
difficult to find; not to create static and rigid solutions but behavior that generalizes and
adapts to unpredictable and changing world. Thus, with neuroevolution it is possible to
create Al-based decision-making to improve engineering, science, and society in general.

This book aims to give the reader the conceptual and practical knowledge to take advan-
tage of neuroevolution in a range of applications, and to develop it further. The discussion
will begin in this chapter with a high-level overview of neuroevolution mechanisms, com-
paring and contrasting them with other types of creative Al, and identifying opportunities
for where neuroevolution can be used to most significant impact. The body of the book then
reviews evolutionary computation basics, methods for taking advantage of encodings and
diversity, constructing intelligent agents, empowering and leveraging other learning sys-
tems (such as deep learning, neuromorphic systems, reinforcement learning, and generative
Al), and modeling and drawing insights from biology.

1.1 Evolving Neural Networks

Neuroevolution is the practice of applying computational evolution methods to artificial
neural networks. Most students studying machine learning learn that in order to train a
neural network, one should define an objective function to measure how well the neural
network is performing some task, and use backpropagation to solve for the derivatives of
this objective function with respective to each weight, and afterwards use these gradients to
iteratively solve for a good set of weights for the neural network. This framework is known
as end-to-end training.

While the backpropagation algorithm is a very powerful method for many applications,
it is certainly not the only one. There are other methods for coming up with neural network
weights. For example, going to one extreme, one method is just to randomly guess the
weights of a neural network until we get a set of weights that can help us perform some
task.

Genetic algorithms is a principled approach beyond random guessing. It works as fol-
lows: Imagine if we have 100 sets of random weights for a neural network, and evaluate
the neural network with each set of weights to see how well it performs a certain task.
After doing this, we keep only the best 20 sets of weights. Then, we populate the remaining
80 sets of weights based on the 20 that we kept. Those 20 serve as raw material, and we
apply genetic operations crossover and mutation to form new sets of weights. Crossover
is a recombination operator, i.e. it forms a new set by choosing randomly from two (or
more) existing sets. Note that the existing sets are known to be relatively good already, so
crossover aims at finding ways to combine their strengths. Mutation is a novelty operator,
i.e. it chooses a weight in the new set randomly, and modifies it randomly to create a new
weight. Mutation thus aims at creating weights that may not already exist among the top
20, but would be useful to have.

The 80 new sets of weights thus constitute a mutated recombination of the top 20. Once
we have a full population of 100 sets of weights again, we can repeat the task of evaluating
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Figure 1.2: A general framework for neuroevolution. The process starts with a popu-
lation of neural networks, encoded e.g. as a set of weights in a fixed network topology,
concatenated into a string, and initialized randomly. Each encoding is decoded into a net-
work, which is then evaluated in the task to estimate its fitness, i.e. to see how well it
performs in the task. The encodings of networks that perform well become parents for the
next generation of networks: They are mutated and recombined with other good encod-
ings to form offspring networks. These offspring networks replace those that performed
poorly in the original population. Some of these offspring networks are likely to include
good parts of both parents, and therefore perform better than their parents. This process
repeats until networks are eventually created that solve the task. Note that gradient infor-
mation is not necessary; only high-level fitness information is needed. Thus, neuroevolution
is a population-based search that discovers and utilizes building blocks as well as random
exploration, resulting in network designs that perform well in a desired task.

the neural network with each set of weights again and repeat the evolution process until we
obtain a set of weights that satisfy our needs (Figure 1.2).

This type of algorithm is an example of neuroevolution, and is very useful for solving
for neural network weights when it is difficult to define a mathematically well-behaved
objective function, such as functions with no clear derivatives. Using this simple type of
method in the past, we can train neural networks to balance inverted pendulums, play video
games, and get agents to collectively learn to avoid obstacles.

In the past few decades, however, neuroevolution has developed into a branch of Al
of its own. Several new techniques beyond random exploration have been proposed to
make it systematic and effective, and it has turned out the state-of-the-art method in many
application areas. This book reviews these techniques and opportunities. But let us start by
outlining neuroevolution’s role in Al in general.



Introduction 5

1.2 Extending Creative Al

The field of artificial intelligence (Al) is going through a transformation, i.e. a paradigm
shift. It is emerging from the laboratory and getting integrated into the mainstream of
society, changing how much of human intellectual activity is organized and conducted.
Technically, the focus of Al methods is moving from prediction to prescription, i.e. from
imitating what people do to actually creating new solutions that have not existed before.
For instance, instead of recognizing images and understanding language, or predicting the
weather or binding strength of molecules, Al is now generating images at will, writing prose
and answering questions, and creating new molecules that never existed before.

There is no single technology or breakthrough that made this progress possible; instead, it
emerged from the confluence of several factors. A most important one is simply the avail-
ability of massive amounts of data—much of human experience is now available online
(text, code, images, video, music, scientific datasets). At the same time, computational
resources are now available at an unprecedented, and unexpectedly large scale—a mil-
lionfold increase in the last few decades or so (Routley 2017). As a result, many of the
techniques that have been known since the 1990s—techniques that looked promising but
never quite worked at scale—can now be scaled up and made to work.

The most important one, of course, is large language models (LLMs; Hadi et al. 2023).
Gradient descent as a learning mechanism for neural networks became popular in the 1980s
(although conceived much before), and the task of predicting the next word in text (or
more generally, a token in a sequence) has been used to demonstrate properties of neural
networks for decades. An important innovation in modeling language structure was the
transformer architecture, which allows representing relationships and abstractions of the
sequence. However, it was still surprising that when scaled up million-fold in terms of data
and compute, language modeling results in an agent that encodes general knowledge about
the world and can cope with many of the tasks in it. How exactly the scale-up achieved such
behavior, whether it is based on principles similar to the human brain, and how we can take
advantage of it in a reliable and productive manner is still work that needs to be done, but
it has already fundamentally changed the way we think about Al and artificial agents. They
can have useful knowledge and skills similar to and even beyond human abilities, and we
can interact with them similarly to human experts (Miikkulainen 2024).

Image generation models are similarly a major step forward in generative Al. Various
techniques can be used, such as GANSs or transformers, but many current models are based
on diffusion: A sequence of noising and denoising operations are used to tie together a lin-
guistic expression of the desired image (Luo 2022). With very large training sets of images
and descriptions, the system learns the general principles about the visual world, and can
then use them to create images that have never existed before. The approach can be extended
to video and sound as well. One difference from LLMs is that the applications are mostly
creative, i.e. humans give high-level descriptions of what they want and the model makes
a guess of what the human has in mind. They are not used to answer questions about facts,
e.g. to create a map of an actual city, and therefore they cannot really be wrong. Yet they
still encode a lot of knowledge about the world, i.e. objects and actors in it, their relation-
ships, and even ill-defined concepts such as styles and moods and emotions, and can thus
serve as an extension of human creativity.
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Indeed, LLMs and image models are already useful in this role of enhancing human cre-
ativity. Experts can use them as a tool that makes them more productive. In an interactive
setup, the expert can describe what s/he wants, and the Al will generate alternative solu-
tions, be it illustrations, diagrams, memos, lyrics, art, stories, translations, music, code for
algorithms, code for interfaces, etc.—the human can then refine these solutions until they
solve the problem, and the process can be more comprehensive, efficient, and creative than
without such tools. However, what really made Al break out from the lab to the mainstream
is that these tools are useful also for non-experts. A much larger segment of the population
can now create art, text, and code at will, and be effective and proficient in it the way they
never could before. For instance, I can write an outline of a story, and use Al to realize it in
a certain style, and other Al to provide illustrations for it—even if I’m not a skilled artist or
a writer. Similarly, I can describe an idea for a method to extract knowledge from a dataset,
and then use Al to implement the method in e.g. Python. If the database has an esoteric API,
I can have Al read the documentation and write the code to get the data through it. I can do
this even if I'm not a programmer, or technical enough to understand the documentation.

The third area of Al that has recently emerged from the lab and is changing the world is
decision-making—in behavior, design, and strategy. That is, we have autonomous agents
that behave intelligently, for instance drive a car in open-ended traffic conditions, or control
non-player characters in video games. Using Al, we can design a better shape for a train’s
nose cone, or molecules that detect pathogens more accurately or treat diseases more effec-
tively. Based on datasets in healthcare, business, and science, Al can be used to recommend
more effective treatments, marketing campaigns, and strategies to reduce global warming.
This kind of Al is different from the first two in that it is not based on learning and utilizing
patterns from large datasets of existing solutions. Gradient descent cannot be used because
the desired behaviors are not known—hence there are no targets from which to backpropa-
gate. Instead, decision-making Al is based on search—trying out solutions and evaluating
how well they work, and then improving them. The most important aspect of such methods
is to be able to explore and extrapolate, i.e. discover solutions that are novel and unlikely
to be developed otherwise.

Like the other two methods, decision-making Al benefits massively from scale. There
are two aspects to it. First, scaling up to large search spaces means that more novel, differ-
ent, and surprising solutions can be created. A powerful way to do this scaleup is to code
the solutions as neural networks. Second, scaling up the number of evaluations means that
more of the search space can be explored, making their discovery more likely. This scaleup
is possible through high-fidelity simulations and surrogate models. Like LLMs and image
models, these technologies have existed for a long time—and the massive increases in com-
putational power are now ready to make them practical, and take them from the laboratory
to the real world. Thus, decision-making Al is likely to be the third component of the Al
revolution and one that is emerging right now.

The technologies enabling it are different from LLMs and image models (although they
can also be used to enhance the emergence, as will be discussed in Section 13). An obvi-
ous one is reinforcement learning (RL). RL started in the 1980s and 1990s as a model of
animal conditioning and is still largely based on lifetime exploration and adaptation of a
single individual solution. RL takes many forms; the most dominant one has been based
on Q-learning, i.e. the idea that different decisions at different states have different utility
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Figure 1.3: Discovering solutions in large, multidimensional, deceptive search spaces.
(a) Hill-climbing methods such as gradient descent and reinforcement learning are well-
suited, but also limited to, small, low-dimensional, regular search spaces. If the initial
solution is in the scope of the optimum, hill-climbing will find it. (b) Population-based
search extends to large, high-dimensional, deceptive spaces. For instance in this deceptive
space, the population is distributed over several peaks, and operations such as crossover
allow for long jumps between them.

values (Q-values), which can be learned by comparing values available at successive states.
An important aspect of such learning is that instead of storing the values explicitly as an
array, a value function is learned that covers a continuous space of states and decisions. In
that manner, the approach extends to large spaces often encountered in the real world. For
instance, a humanoid robot can have many degrees of freedom, and therefore many phys-
ical configurations, and perform many different actions—even continuous ones. A value
function assigns a utility to all combinations of them. This approach in particular has ben-
efited from the progress in neural networks and deep learning, and the increase in available
compute: it is possible to use them to learn more powerful value functions (e.g. DQN; Mnih
et al. 2015)).

With sufficient compute, policy iteration has emerged as an alternative to Q-learning.
Instead of values of decisions at states, the entire policy is learned directly as a neural
network. That is, given a state, the network suggests an optimal action directly. Again,
methods such as REINFORCE have existed for a long time (Ronald J. Williams 1992b),
but they have become practical with modern compute.

As a result, a number of real-world applications have emerged. The best known ones are
in game playing: For instance, RL was used as an element in beating the best human players
in e.g. go and chess as well as in simulated car racing (Silver et al. 2018). Applications
have also started to emerge in scientific domains such as protein folding and drug design
(Wurman et al. 2022).

Importantly, however, scale-up is still an issue with RL. Even though multiple modi-
fications can be evaluated in parallel and off-line, the methods are still primarily based
on improving a single solution, i.e. on hill-climbing (Figure 1.3a). Creativity and explo-
ration are thus limited. Drastically different, novel solutions are unlikely to be found simply
because the approach does not explore the space widely enough. Progress is slow if the
search landscape is high-dimensional and nonlinear enough, making it difficult to find good
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Figure 1.4: Finding solutions with population-based search. The search space is depicted
as a rectangle; the solutions are dots whose size corresponds to their fitness. Population-
based search, i.e. evolutionary optimization, starts by spreading the initial population
broadly around the search space, thus exploring a diverse set of solutions. The poor solu-
tions are discarded, and the good ones are recombined with other good solutions through
crossover and mutation, creating an offspring population. After several generations, the
population converges around the best solutions. They often represent different tradeoffs
from which the human decision-maker can choose. In this manner, the search can discover
a host of possible creative solutions.

combinations. Deceptive landscapes are difficult to deal with since hill-climbing is likely
to get stuck in local minima. Care must thus be taken to design the problem well so that RL
can be effective, which also limits the creativity that can be achieved.

Evolutionary computation offers the missing piece. With a population of candidates, it is
possible to explore more widely (Figure 1.3b). The population can be created to be highly
diverse, covering the various areas of the search space. If some such candidate does not
work out, that’s ok; many other candidates are exploring other areas. However, evolutionary
search is much more than simply a large number of diverse, parallel searches. As soon as a
good idea is discovered, i.e. a solution that solves part of the problem, or a special case, that
information is available to other solutions through crossover (Figure 1.4). Good ideas thus
spread quickly, and other parallel searches can take advantage of them. As will be discussed
in Section 11.1, it is thus possible to find solutions in vast search spaces (e.g. 22" states),
high-dimensional search spaces (e.g. 1B parameters), and spaces that are highly nonlinear
and deceptive.

These properties of evolutionary computation are useful in general in discovering many
different kinds of solutions, such as designs described as parameter vectors, program trees,
or solution graphs. However, they are particularly useful in discovering neural networks for
decision-making tasks. Remember that the optimal behaviors are not known, and therefore
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they must be found using search. The space of possible neural networks that implement
the behaviors is vast, high-dimensional, and with highly nonlinear interactions. Therefore,
evolution can be used effectively to discover neural networks for decision-making. This is
what neuroevolution is all about.

1.3 Improving the World

The utility of neuroevolution is tremendous. First, it can be used to discover and optimize
behavior for intelligent agents, i.e. systems that are embedded in an environment and inter-
act with it over time. The networks map situations in the environment into actions that
achieve multiple goals. In this manner, it is possible to optimize control for cars, planes,
other vehicles, and robots in general—and not only control but behavioral strategies as well,
such as anticipating and avoiding obstacles, optimizing trajectories, and minimizing energy
usage and stress on the hardware. In simulated worlds, it is possible to discover effective
behavior for non-player characters, guiding it towards different strategies such as aggressive
or conservative, and even ill-defined ones such as human-like and believable. Strategies for
dynamic optimization of logistics, transportation, manufacturing, and control of chemical
and biological plants as well as intelligent buildings and cities can be developed.

Second, neuroevolution can be used to discover customized strategies for decision-
making. These networks map descriptions of problems directly to solutions. For example in
wellness and healthcare, given a description of a person’s medical profile as input, they can
make nutrition or exercise recommendations, or design personalized medical treatments
and rehabilitation plans, in order to maximize benefits and minimize cost and side effects.
In business, they can create marketing strategies customized to the product, season, and
competition, or investment strategies optimized to current markets and resources. They can
discover effective incentives for recruiting and retention in particular cases, as well as the
most effective responses in various customer service situations. In education, they may
assign personalized exercises that are maximally effective with the least amount of work.
The same approach applies to physical training, while in addition minimizing injury risk.
There are many “Al for Good” applications in society as well, such as discovering effec-
tive non-pharmaceutical containment and mitigation strategies in a pandemic, approaches
to land-use strategies to minimize climate change, or to design and operation of ecological
villages.

Third, it is possible to use neuroevolution to optimize other learning methods. Evolution
creates optimal designs for them so that e.g. deep learning, reinforcement learning, or spike-
timing-dependent plasticity can be as effective as possible. For instance, architectures, loss
functions, activation functions, data augmentation, and learning rules can be discovered
specifically for different deep-learning tasks and datasets. Networks can be evolved as
transfer functions for cellular automata, allowing them to perform more complex tasks.
They can be evolved to serve as kernels for Gaussian processes, or as value functions in
Q-learning. It is possible to optimize them for particular hardware limitations, such as lim-
ited compute or memory, or for specific neuromorphic hardware, to take the best advantage
of available resources. In domains where deep learning might work well but there is not
enough data available to train it, it may be possible to evolve neural network architectures
that combine data from multiple other tasks, in order to help learn the target task. This is
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often the situation in the real world: There are many tasks with little data, but also many
large datasets that can be used to help. Neuroevolution can serve as the glue between them
to make many more deep-learning applications possible.

Fourth, since neuroevolution emulates biological adaptation (evolution) and encodes
solutions in biologically motivated processors (neural networks), it is a natural approach
to studying biological behavior. Neuroevolution experiments can be used to shed light on
questions such as how mating, hunting, herding, and communication emerged over evo-
lution, and even how language and intelligence in general resulted from adaptation and
niching in biology. A computational model provides the ultimate understanding in cogni-
tive science, and neuroevolution can be used to motivate such models from the biological
perspective. On the other hand, such biological connections can provide insight into how
intelligent artificial systems can be engineered to be effective, robust, and resource-efficient.

1.4 Plan for the Book

This book provides a comprehensive introduction to these topics. The goal is to familiarize
the reader with the various neuroevolution technologies, but also provide the tools to take
advantage of them to develop them further and to build applications. The major algorithms
are reviewed and their origins and motivation explained; concrete examples of their use
are given and references are provided in the literature; open areas of research are identified
and suggestions for further work are given. While the book assumes basic familiarity and
understanding of neural networks, not much background in evolutionary computation is
necessary. The book is accompanied on the web by a number of demos, exercises, and a
general software platform. The idea is to provide the reader not just with the knowledge but
also a practical tool that can be readily applied and extended.

Neuroevolution as a field emerged in the late 1980s (with some of the earliest results
by Belew, McInerney, and Schraudolph 1990; Harp, Samad, and Guha 1989; Kitano 1990;
Miller, Todd, and Hedge 1989; Mjolsness, Sharp, and Alpert 1989; Montana and Davis
1989; Miihlenbein and Kindermann 1989; Schaffer, Caruana, and Eshelman 1990; Whitley
and Hanson 1989). Its development over the years has been chronicled in comprehensive
survey articles about once a decade (Schaffer, Whitley, and Eshelman 1992; Yao 1999;
Floreano, Diirr, and Mattiussi 2008; Kenneth O. Stanley et al. 2019b). Instead of attempting
to cover everything that has been done in this field, this book aims to provide a guided tour
and logical story through it.

Hence, the material is organized into five main parts. The first part introduces the reader
to the principles of evolutionary computation through a series of increasingly challenging
examples. The specific case of neuroevolution is then introduced, similarly through simple
example applications. The first exercises are introduced to make these concepts concrete
and productive; therefore, the software platform is also described in the beginning so that
it is easy to get started with neuroevolution right away.

The second part introduces two fundamental neuroevolution design considerations: net-
work encodings (direct and indirect), and making the search effective through diversity.
Important distinctions between encoding approaches are clarified with examples, genetic
and behavioral diversity contrasted, and novelty and quality-diversity search introduced,
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as well as taking advantage of diversity through ensembling—all of these fundamental
methods in the neuroevolution toolbox, but rarely explicitly distinguished.

The third part focuses on intelligent agents, i.e. how effective behavior can be evolved
from low-level control to high-level strategies, and ultimately to support decision-making
systems. The setting is then expanded from individual agents to collective systems with
cooperative and competitive interactions. Next, interactive evolution methods are reviewed
as a way to combine machine discovery with human insight. Finally, opportunities and
challenges for open-ended discovery will be discussed, motivated by biological evolution,
as well as existing artificial examples of open-ended innovation systems.

The fourth part then extends neuroevolution to combinations with other learning meth-
ods. Approaches to designing deep learning architectures are first reviewed, and challenges
in it and possible future opportunities discussed. Meta-learning is then extended to other
aspects of neural-network design, including loss and activation functions, data use, and
learning methods and their synergies. Synergistic combinations with neuromorphic sys-
tems, reinforcement learning, and generative Al are reviewed as well, finding that in each
case it is possible to use evolution to optimize the general setting that makes other types of
learning more effective.

The fifth and final part evaluates how neuroevolution can provide insight in the study of
biological evolution, from understanding neural structure and modularity, to developmen-
tal processes and body/brain coevolution, and finally to biological behavior, breakthroughs
and evolution of language. Throughout, possible insights for biology-motivated engineer-
ing in the future are identified. Indeed, the final chapter discusses the potential role of
neuroevolution in constructing agents with artificial general intelligence.

In sum, neuroevolution is an emerging third component of the recent Al revolution.
It allows development of systems that generate behavior, strategies, and decision-making
agents. Applications of such agents are ubiquitous in the real world, leading to more profi-
cient, efficient, and cost-effective systems—and generally improving lives. The area is ripe
with many future work opportunities as well.

1.5 Hands-On Exercises for the Book

We believe that practical engagement is essential for mastering the concepts explored in this
book. Our design principles are rooted in a commitment to providing a rich, accessible, and
effective learning experience. The following outlines our philosophy behind the hands-on
exercises included in this book.

Purpose: The exercises are crafted with the intention of deepening the readers’ under-
standing through problem-solving and experimentation. While some exercises address
inherently complex topics, others focus on areas closely aligned with current technology
trends and the latest advancements in ML/AIL. By doing so, we aim to: (1) Encourage explo-
ration of cutting-edge methodologies, making the learning experience more engaging and
relevant; (2) Bridging theoretical understanding with practical implementation to solidify
concepts; (3) Foster a mindset of experimentation, mirroring the iterative nature of real-
world Al research and applications. We also believe that these hands-on experiences serve
to develop confidence and engineering capabilities in tackling novel problems, equipping
readers to innovate and adapt to emerging challenges in the field.
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Form: The exercises are presented as Python notebooks, primarily hosted on Google
Colab, to minimize setup effort and enable readers to start problem-solving immediately.
This format ensures accessibility, as the exercises can run on CPUs or low-end GPUs avail-
able in Colab, making them inclusive for readers with limited computational resources.
Each exercise is designed to take no more than 30 minutes to 1 hour of running or training
time for a complete solution, ensuring a balance between depth and computational effi-
ciency, while allowing students ample time to engage with and understand the content. The
tasks are carefully distilled to emphasize core knowledge while reducing execution time,
creating a experience that focuses on learning the essentials without unnecessary overhead.

Solutions (for Instructors and TAs): For instructors and teaching assistants, complete
solutions are provided in the form of Python notebooks stored in a separate archive. These
solutions act as a reference, offering clarity and consistency when guiding students during
workshops or discussions. They demonstrate the expected approach and results for each
exercise and are structured to facilitate adaptation or extension for varied educational con-
texts. By separating the problems from their solutions, we encourage students to actively
engage with the exercises, fostering independent learning and problem-solving skills.

Let's get started!
1.6 Chapter Review Questions

1. Definition: What is neuroevolution, and how does it differ from traditional neural
network optimization methods such as backpropagation?

2. Key Challenges: List and describe the four illustrative challenges that neuroevolution
aims to address, as presented in Figure 1.1.

3. Mechanisms: Explain the general framework of neuroevolution, including the roles of
crossover, mutation, and fitness evaluation.

4. Comparison: How does neuroevolution address limitations of gradient-based meth-
ods in optimizing neural networks, especially in large, high-dimensional and deceptive
search spaces?

5. Creative Solutions: Why can neuroevolution be considered a tool for discovery and
creativity rather than just optimization? Provide examples to illustrate your answer.

6. Applications: Neuroevolution was described as improving the world in four main areas.
List these areas and briefly explain one example for each.

7. Extending AI: How does neuroevolution complement other Al methods like reinforce-
ment learning and deep learning? Provide specific scenarios where these combinations
are effective.

8. AI Transformation: Discuss the paradigm shift in Al described in the chapter. How is
neuroevolution a part of this shift, particularly in decision-making tasks?

9. Population-Based Search: Contrast hill-climbing methods like reinforcement learning
with population-based search methods used in neuroevolution. Why is the latter better
suited for exploring large, high-dimensionsal, and deceptive search spaces?

10. Future Directions: According to the chapter, what are some promising areas of future
research in neuroevolution, and why are they significant?
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