1 0 Evolutionary Neural Architecture Search

The design of neural network architectures, i.e. the organization of neurons into assem-
blies and layers and the connections between them, has played an important role in the
advances in deep learning. Through a combination of human ingenuity and the need to push
state-of-the-art performance, there have been several large leaps of technological innovation
since the early 2010s. During this time, the technique now known as Neural Architecture
Search (NAS) also emerged as its own subarea of deep learning research. The goal of NAS
is to employ various methods such as reinforcement learning, gradient descent, Bayesian
optimization, and evolutionary search to automate the search for novel neural network archi-
tectures, which are then trained with gradient descent to obtain the final network. The idea is
that such automated search could result in architectures superior to those hand-designed by
human researchers. Evolutionary optimization is particularly well suited for NAS because
it can optimize not only continuous hyperparameter values, but discrete choices among
alternative components, and even large structures such as graphs. Many evolutionary opti-
mization techniques have found a new use in NAS, and new ones have been developed as
well.

This chapter starts with a simple example combining NEAT topology search with back-
propagation for the weights. It then expands to deep learning architectures, with examples
in convolutional, recurrent, and general topologies. Particularly useful cases for NAS are
multiobjective domains where aspects other than performance need to be optimized as well,
and multitask domains where the needs of several tasks can be combined. NAS requires a
lot of computation, so techniques have been developed for efficient search and evaluation.
It may also be possible to evolve the networks entirely, without gradient descent as the
second phase, in the future.

10.1 Neural Architecture Search with NEAT

The NAS idea can be illustrated by combining the NEAT topology search algorithm with
the backpropagation algorithm for training the weights of each neural network topology.
This concept of Backprop NEAT appeared many times even before deep learning, and in
that sense it can be seen as the grandfather of modern NAS. Incidentally (as discussed in
the Box below) it also encouraged the development of the NAS subfield within Google.

In Backprop NEAT, a neural network topology is evolved using the NEAT-style crossover
and mutation operators. Unlike in the original version of NEAT, in this experiment many
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Figure 10.1: Types of nodes and activation functions in the Backprop NEAT exper-
iment. The colors are used to label nodes in Figures 10.2 and 10.3. Different functions
implement different computational properties that make the search for a good architecture
more effective.

types of activation functions are possible, represented as different colors in the neural net-
work (the legend is shown in Figure 10.1). The input to a neuron is the usual weighted
sum of incoming connections. The add operator does nothing to the input, while the mult
operator multiplies all the weighted inputs together. By allowing for a sinusoidal operator,
the network can produce repetitive patterns at its output. The square and abs operators
are useful for generating symmetries, and the Gaussian operator is helpful in drawing one-
off clustered regions. The output neurons have sigmoid activation functions since the task
consists of classifying examples into two categories (0 or 1).
Each neural network topology that NEAT creates is represented as a computation graph.
It is then possible to run backprop on this same graph to optimize the weights of the network
to best fit the training data. In this manner, NEAT is strictly responsible for specifying the
architecture, while backprop determines the best set of weights for it (in the original NEAT,
evolution is also used to determine the weights). In this experiment, an L2 regularization
term is also included in the backprop. The initial population of networks consists of minimal
architectures like the one in Figure 10.2a, implementing logistic regression with a different
set of random weights, i.e.
0=0 (Wix+wyy+wsb), (10.30)

where x and y are the coordinates of the input sample, b is the bias unit (activated at 1.0),
w; are the initial random weights, and o is the output of the network. This simple network
divides the plane into two halves as shown in Figure 10.2b. The color coding represents
values from 0.0 (orange) through 0.5 (white) to 1.0 (blue). When the dataset consists of
two Gaussian clusters, this simple initial network performs quite well already. In fact, when
starting with an initial population of 100 simple networks with random weights, before any
backprop or genetic algorithm, the very best network in the population is likely good enough
for this type of dataset.

Each network architecture is assigned a fitness score based on how well they do in the
classification task after training them with backprop. In addition to measuring how well
each network fits the training data, using the maximum likelihood metric, the number of
connections is also taken into account. Usually simpler networks are more regularized and
thus generalize better to new examples, and also take less memory and are faster to run.
Thus, simpler networks are preferred if they achieve similar regression accuracy than more
complex ones, or if they are much simpler, even if they are somewhat less accurate. To
achieve this goal, the fitting error is adjusted by the number of connections as

f=-EV1+rc, (10.31)



Evolutionary Neural Architecture Search 213

gen: 1, nodes: 4, connections: 3, fitness: -0.1979
pu s

° Y
° Y train accuracy = 97% test accuracy = 96.8%

(a) Network architecture (b) Classification performance
Figure 10.2: An example network from the first generation. The task consists of classi-
fying input samples (2-D points) into one of two categories (0/1). The initial population
consists of networks that implement logistic regression with a different set of random
weights. If the population is large enough and the classification problem simple enough,
some of those initial networks may already do well in the task, as is the case in this nearly
linearly separable classification task.

where f is the fitness, E is the error over the training set, ¢ is the number of connections, and
r is a proportionality factor. Thus, a network with more connections will have a fitness that
is more negative than a network with fewer connections. The square root is used because
intuitively it seems a network with e.g. 51 connections should be treated about the same
as a network of 50 connections, while a network with five connections should be treated
very differently than a network with four connections. Other concave utility functions may
achieve the same effect. In a way, like the L2 regularization of weights, this type of penalty
is a form of regularization on the neural network structure.

After a few generations, networks evolve that once trained, fit training data well, even
in tasks that are not linearly separable (Figure 10.3). How is Backprop NEAT able to do
it? In machine learning and data science in general, performance often depends on appro-
priate feature engineering, i.e. selecting or designing features that best represent the input.
This approach has the advantage of incorporating known human expertise into the problem,
making the learning task simple. For example, if the classification task consists of separat-
ing a small circle inside a big circle, the decision boundary is simply the distance from the
origin. Constructing two new features by squaring each input dimension, most of the work
has already been done for the network.

It is interesting to see whether NEAT can discover these features by itself without relying
on human engineering. So, the raw inputs to each NEAT network will only be the x and y
coordinates, and the bias b = 1. Any further features, such as squaring those variables, mul-
tiplying them, or putting them through a sinusoidal gate, will have to be discovered by the
algorithm. Indeed, it can select the appropriate activation functions and network structure
around them to implement useful features. For example with the XOR dataset, networks
utilized abs and ReLU activation functions, which are useful in producing decision bound-
aries that are more or less straight lines with sharp corners (Figure 10.3). With concentric
circles, the final network often included many sinusoidal, square, and Gaussian activation
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Figure 10.3: Evolved Backprop NEAT networks for classifying data of varying com-
plexity. With XOR (top row), the architecture relies on abs and ReLU that allow the
forming of long lines with sharp corners. In contrast with concentric circles (middle row),
the architecture takes advantage of sinusoidal, square, and Gaussian functions to establish
features that work well in such radially (nearly) symmetric domains, making the machine
learning task easier. With concentric spirals, it further utilizes a complex topology to
approximate the complex decision boundary. In this manner, evolution discovers hyper-
parameters and structures that work well for the task, similar to and possibly exceeding the
ability of human engineers to design them.
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functions, which makes sense given the radial symmetry of the dataset. With concentric
spirals, which is almost symmetric but much more complex as well, the architectures uti-
lized similar functions but also a complex topology that allowed it to match the complex
decision boundary.

An interesting further observation is that networks that backprop well will tend to be
favored in the evolution process, compared to networks with gradients that are unstable. A
network with blown-up weight values is likely to perform poorly in classification, resulting
in a poor fitness score. More generally, given a set of backprop parameters, such as a small
number of backprop iterations or a large learning rate, evolution produces different kinds of
networks, presumably those that learn well under such conditions. On the other hand, if the
parameters are not set right, backprop may not find good weight values even if they exist,
thus discarding a powerful architecture. Analogously, a person with extraordinarily high
1Qs may never reach their full potential if they live in a very harsh environment, or perhaps
lack the people skills to influence their peers to accept their ideas. A solution in NAS is
to make learning parameters evolvable as well. In that manner, good parameter values can
be discovered together with architectures that work well with them. Such metalearning
approaches are discussed further in Chapter 11.

10.2 NAS for Deep Learning

The Backprop NEAT experiment in the previous section introduced the concept of topology
search for backpropagation neural networks. It illustrates the idea that even though gradient
descent will optimize weights for a given neural network, it is also useful to optimize its
hyperparameters and topology. This idea can be applied to modern deep learning as well.
This section briefly outlines the history of NAS in deep learning, introduces the general
approach, and reviews successes and challenges. Examples of prominent approaches and
future directions are described in the sections that follow.

As deep learning rose in power and popularity, it became evident that simple fully-
connected neural networks were not sufficient for most applications. Convolutional neural
network (CNN) architectures grew more sophisticated, including AlexNet (Figure 10.4
Krizhevsky, Sutskever, and Hinton 2012), the winner of the 2012 ImageNet competition,
which drew a lot of attention and essentially got us out of the neural network winter and
into the era of deep learning. AlexNet led to the development of more complicated CNN
architectures such as VGG (Simonyan and Zisserman 2014), Highway Networks (Srivas-
tava, Greff, and Schmidhuber 2015) and Residual Networks (ResNet) (He et al. 2016b),
and countless other architectures for computer vision.

Concurrently, for sequential tasks, people designed better recurrent neural network archi-
tectures that outperformed simple full-connected vanilla recurrent neural networks, such as
Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997), Gated Recurrent
Unit (GRU) (Chung et al. 2014), and others. Most recently, with the introduction of the
self-attention-based Transformer (Vaswani et al. 2017) architecture, there have been a host
of proposals that claim to offer better, incremental performance to the original Transformer.

Much of this research was performed by graduate students who experimented with dif-
ferent architecture configurations, based on their hunch and instincts, who would try to
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Figure 10.4: The AlexNet deep learning architecture. This architecture put deep learning
into the spotlight when it won the ImageNet competition in 2012. There are careful engi-
neering decisions that were involved in its design, including the principled organization
into convolutional, pooling, and dense layers. More recent networks are often even more
sophisticated and require a pipeline that spans network architecture and careful training
schemes. Much manual labor is required in addition to the human insight to make them
work, which suggests automated methods of configuring them might help. (Figure from
Krizhevsky, Sutskever, and Hinton 2012)

experimentally discover new architectures that would offer some performance benefits com-
pared to prior architectures. Some refer to this process as Graduate Student Descent (GSD),
a joke on the Stochastic Gradient Descent (SGD) optimization process, hinting that the
progress of machine learning research might be automated by a machine (Figure 10.5).

One of the main obstacles to the automated approach was that most deep learning tasks
typically take several days to train. However, with the advent of large GPU computing
clusters, it became feasible in the mid-2010s. The NAS subfield gradually emerged and
became quite popular in the late 2010s. A form of graduate student descent applied to the
area of NAS itself, and today, there are thousands of papers on the subject (for reviews,
see Y. Liu et al. 2021; White et al. 2023), and even a popular, standardized benchmark for
measuring the performance of NAS methods (Ying et al. 2019; Dong and Yang 2020; Zela
et al. 2022).
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Figure 10.5: Graduate Student Descent (XKCD 2021). Some things never change! But now
we have a name for it.

Info Box: Development of NAS inside Google Brain In a way, the develop-
ment of NAS was related to the career path that prompted me (David Ha) to
become a researcher at Google Brain and led me to conduct much of my nature-
inspired research ever since. In 2016 I published the Backprop NEAT experiment
(Section 10.1) as a personal blog post, and it somehow caught the attention of Jeff
Dean, who reached out to me to comment on the concept of separating topology
search and weight optimization, and had an interest to explore this idea deeper,
potentially at Google scale. This conversation prompted me to apply and join
Google Brain’s residency program—in fact, Quoc Le (a co-author in the early NAS
paper (Zoph and Le 2017)) was my first interviewer for the job! Quoc had a fan-
tastic vision of developing a pipeline that could eventually automate much of the
machine learning work at Google, which eventually became known as the AutoML
project years later.

Quoc became my mentor and advisor, and we decided to explore two concepts:
neural networks that generated weights (which became Hypernetworks (Ha, Dai,
and Le 2016), my first project there), and neural network architecture search (a
project led by Barret Zoph, who is a brilliant engineer and quickly learned to nav-
igate Google’s enormous compute resources with a fitting name, Borg!). The NAS
project sought to apply topology search—define a search space for neural network
architectures, and by leveraging Google’s large compute resources, identify the
architectures within the search space that will perform well on benchmark deep
learning tasks such as image recognition or language modeling. This project got
me started on large machine learning models, a path I’m on still today.
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At around 2016, there were two dominant paradigms in deep learning: CNNs for image
processing and RNNs for sequence processing (or some combination of CNNs and RNNs
for spatial-temporal applications such as video processing). The architecture design prob-
lem for CNNs and RNNs looked quite different. For CNNSs, it involved identifying the best
combination of convolutional filters, which are great priors for image processing due to
positional invariance property. Therefore, the task for designing, or automating the design
of, CNN architectures required a search space that mainly focused on the edges (or the
connections) of a graph. In contrast, sequential processing and sequence generation tasks
relied on RNNs, which applied the same network architecture many times over, recurrently
(hence the name). The essential element of the RNN is its memory node, i.e. a fixed struc-
ture that is replicated and activated many times. The search space mainly focused on the
architecture of this node, i.e. its internal structure of cells, connections, activation func-
tions, and specification of the state. In both cases, the problem was framed as a black-box
optimization problem.

This automated search approach required enormous computation resources (Real et
al. 2017); while the sampling process of architectures (the outer loop) is efficient, the cal-
culation of the reward signal, or fitness for each candidate architecture (the inner loop)
required training a neural network on the actual task. Computer vision benchmarks at the
time, such as CIFAR-10, often required training the neural network for weeks on a single
GPU. As a solution, researchers started to use proxies for the fitness function. For instance,
for image classification, they would train for only a limited number of steps on CIFAR-10,
and make the assumption that whatever metric had been achieved after n steps will be a
good metric to rank the models (Miikkulainen, Liang, et al. 2023; Jiang et al. 2023; Rawal
and Miikkulainen 2020). This is a good assumption since there is often a high correlation
between the final performance and early-stage training performance of neural networks.
Also, the tasks and benchmarks used for NAS were often smaller in scale. For instance,
CIFAR-10 or a low-resolution version of ImageNet was used for training image classi-
fication models, and the Penn Treebank Dataset (PTB) was used for training language
models. The authors would then demonstrate that the resulting models transfer to larger
scale datasets, such as the full ImageNet or JFT-300M for images, and Wikipedia 100M or
1B benchmarks for text (Zoph et al. 2018; Real et al. 2019). Furthermore, the authors also
showed that the architectures found could be scaled or stacked to have more capacity and
thus achieve better performance (Real et al. 2019).

NAS did produce architectures that are useful in production, especially neural networks
that achieve high performance at low computational cost for inference (in terms of inference
speed and also number of parameters). Three examples are reviewed in the next section,
on LSTM node design, general modular networks, and refinement of existing designs, all
based on evolutionary optimization. Evolutionary NAS was also applied to the transformer
architecture, to produce Evolved Transformers (So, Le, and Liang 2019) which also perform
better on benchmark tasks while requiring fewer resources.

It is actually remarkable that there are many different approaches to NAS, and they
all work well. It seems that you can apply almost any optimization technique—evolution,
RL, Bayesian optimization, gradient descent—and get improved results. Even just random
search may perform well, for instance achieving results within less than half a percent of
more sophisticated NAS methods, and close to state-of-the-art performance for both image
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classification and language modeling benchmarks (Real et al. 2019; Li and Talwalkar 2020).
This observation suggests that much of the performance is already baked into the hand-
engineered building blocks of NAS, such as convolutional filters, self-attention layers, and
RNN nodes. The research community has designed them by hand to achieve SOTA. NAS
has proven useful as a way to fine-tuning them, but it has not yet produced innovations that
could automate the discovery of such truly fundamental concepts.

That is probably why, despite these improved MobileNet, Transformer, and RNN node
architectures, people still often use the traditional MobileNet, the classical Transformer,
and the original LSTM in most networks in production. The performance gains have not yet
been large enough and their implementations stable enough for the software and hardware
vendors to converge on the improved variants. The NAS field continues to make progress
though, including successes outlined in the next few sections, and discoveries that extend
to other fields, which may lead to such convergence in the future.

10.3 Example NAS Successes

This section reviews three NAS methods that resulted in SOTA performance at the time. The
first one, the design of LSTM nodes, improved the original design that had stayed the same
since the 1990s. It demonstrated that complexifying the design can add power even though
such designs are difficult for humans to discover. The second, CoDeepNEAT, generalizes
ideas from general neuroevolution to the level of network architectures. In principle, it could
discover new architectural principles that work better than the existing human-designed
ones. It has not so far—the challenge is to identify the proper building blocks and then take
advantage of structure. The third, Amoebanet, utilizes structure, scaling, and regularization
more explicitly by hand. It achieved SOTA on ImageNet in 2018, which was a remarkable
achievement given that ImageNet was the main focus of the machine-learning community
at that time. It may be possible to use an Amoeba-like approach in the future to incorporate
new ideas and improve performance again. Note that even slight improvement is sometimes
useful: For instance in finance, healthcare, and engineering design it translates to money,
lives, and resources saved.

10.3.1 LSTM Designs
First, consider the design of better LSTM nodes. The original architecture (Figure 10.6a)
had been developed in the 1990s (Hochreiter and Schmidhuber 1997), and despite many
attempts to improve it by hand, it was deemed to be robust, general, and usually at least
as good as the alternatives (Greff et al. 2017). In essence, an LSTM node is a neuron that
can memorize a value in its internal memory cell indefinitely long. It contains circuitry for
loading that value (the input gate), reading it out (the output gate), and erasing it (the forget
gate). A sequence processing network includes many such nodes, and their internal param-
eters (weights, activation functions) can be modified through backpropagation. Through
such learning, each node determines when and how it utilizes its memory cell best as part
of the processing of sequences.

Even though this design is principled and makes sense, it turns out that it can be com-
plexified significantly, leading to LSTM nodes that perform better. Its internal processing
can be more complex, propagating through a nonlinear network with multiple paths. Its
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Figure 10.6: NAS in LSTM node design. At the lowest level, NAS can be used to design
nodes in a recurrent neural network. In the node diagrams above, the A(¢) is the main output
of the node, propagated to other nodes. The c(¢) and d(¢) are outputs of the native mem-
ory cell, propagated internally. The green input elements denote the native memory cell
outputs from the previous time step (i.e. c(f—1) or d(t—1)). The red input elements are
formed after combining the node output from the previous time step (i.e. h(z— 1)) and the
new input from the current time step (x(¢). The other colors identify activation functions
in computational cells: ReLU, sigmoid, tanh, sin, add, and multiply. In all solutions, the
memory cell paths include relatively few nonlinearities. Unlike LSTM and NASCell, the
evolved nodes reuse inputs and utilize extra memory cells in different parts of the node; they
also discovered LSTM-like output gating. The evolved nodes for language and music mod-
eling are different, suggesting that evolution captures and utilizes the inherent structure
in these domains to perform better. In this manner, neuroevolution was able to improve
upon a human design that had stayed the same for decades and was considered optimal
among many variants. For an animation of this search process and an interactive demo, see
https://neuroevolutionbook.com/neuroevolution-demos. (Figures from Rawal and Miikkulainen
2020)

h(t)

memory state can be more complex, consisting of multiple memory cells. It can utilize a
variety of activation functions in its internal nodes, and more general memory blocks. Such
complexification is difficult for humans to develop, but NAS methods can do it.

The first such improvement was based on reinforcement learning (Zoph and Le 2017). A
recurrent network was used to generate the node designs, trained through the REINFORCE
algorithm (Ronald J. Williams 1992b) to maximize the expected accuracy on a validation
set. The resulting NASCell was significantly more complex than the original LSTM design
(Figure 10.6b). However, the exploration ability of such refinement search is somewhat
limited and can be expanded through evolutionary methods.

In particular, genetic programming was used to search for trees representing the node
structure, resulting in designs with multiple nonlinear paths and multiple memory cells
(Figure 10.6¢) Rawal and Miikkulainen 2020). In the language modeling domain (i.e. pre-
dicting the next word), this design was organized into two layers of 540 nodes each and
evolved for 30 generations. Compared to networks of similar size, it improved 20 perplexity
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Figure 10.7: Discovering general neural architectures through coevolution of modules
and blueprints. The CoDeepNEAT approach (Miikkulainen, Liang, et al. 2023) aims at dis-
covering modular architectures in an open-ended search space. (a) The blueprints represent
the high-level organization of the network and modules fill in its details. The blueprint and
module subpopulations are evolved simultaneously based on how well the entire assem-
bled network performs in the task. This principle was originally developed for evolving
entire networks (Moriarty and Miikkulainen 1997; Gomez and Miikkulainen 1997), but it
applies in neural architecture search for deep learning as well. (b) The overall structure of a
network evolved for the image captioning task; the rectangles represent layers, with hyper-
parameters specified inside each rectangle. One module consisting of two LSTM layers
merged by a sum is repeated three times in the middle of the network. The approach allows
discovery of a wide range of network structures. They may take advantage of principles dif-
ferent from those engineered by humans, such as multiple parallel paths brought together
in the end in this network. For a demo of CoDeepNEAT in character recognition task, see
https://neuroevolutionbook.com/neuroevolution-demos. (Figures from Miikkulainen, Liang, et
al. 2023)

points over the original LSTM and 1.8 points over the NASCell, achieving the state-of-the-
art performance of 62.2 at the time. Most interestingly, when the same approach was applied
to the music modeling domain (i.e. predicting the next note), a different design emerged as
the best (Figure 10.6d). This result suggests that different domains have different structure;
such structure can be learned by NAS and architectures customized to take advantage of it.

These results opened the door to optimizing combinations of different kinds of memory
nodes, like those used in the neural Turing machine (Section 12.3.4; Khadka, Chung, and
Tumer 2019), and other recurrent network elements (Ororbia, ElSaid, and Desell 2019).
As a result, the memory capacity of the model increased multifold—an improvement that
likely would not have happened without such automated NAS methods.
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10.3.2 CoDeepNEAT

As a second example, consider the CoDeepNEAT method of discovering general network
designs. CoDeepNEAT (Miikkulainen, Liang, et al. 2023; J. Liang et al. 2019) builds on
several aspects of techniques developed earlier to evolve complete networks. In SANE,
ESP, and CoSYNE, partial solutions such as neurons and connections were evolved in
separate subpopulations that were then combined into full solutions, i.e. complete neural
networks, with the global structure specified e.g. in terms of a network blueprint that was
also evolved (Moriarty and Miikkulainen 1997; Gomez and Miikkulainen 1997; Gomez,
Schmidhuber, and Miikkulainen 2008). Similarly, CoDeepNEAT co-evolves multiple pop-
ulations of modules and a population of blueprints that specify which modules are used and
how they are connected into a full network (Figure 10.7a). Modules are randomly selected
from the specified module population to fill in locations in the blueprint. Each blueprint
is instantiated in this way many times, evaluating how well the design performs with the
current set of blueprints. Each module participates in instantiations of many blueprints
(and inherits the fitness of the entire instantiation each time), thus evaluating how well
the module works in general with other modules. The main idea of CoDeepNEAT is thus
to take advantage of (and scale up with) modular structure, similarly to many deep learning
designs such as the inception network and the residual network (He et al. 2016a; Szegedy
et al. 2015).

The modules and the blueprints are evolved using NEAT (Section 3.4), again originally
designed to evolve complete networks and adapted in CoDeepNEAT to evolving network
structure. NEAT starts with a population of simple structures connecting inputs straight to
outputs, and gradually adding more modules in the middle, as well as parallel and recurrent
pathways between them. It thus prefers simple solutions but complexifies the module and
blueprint structures over time as necessary. It can in principle design rather complex and
general network topologies. However, while NEAT can be used to create entire architectures
directly, in CoDeepNEAT it is embedded into the general framework of the module and
blueprint evolution; It is thus possible to scale up through repetition that would not arise
from NEAT naturally.

The power of CoDeepNEAT was originally demonstrated in the task of image captioning,
a domain where a competition had been run for several years on a known dataset (Miikku-
lainen, Liang, et al. 2023). The best human design at that point, the Show&Tell network
(Vinyals et al. 2015), was used to define the search space; that is, CoDeepNEAT was set to
find good architectures using the same elements as in the Show&Tell network. Remarkably,
CoDeepNEAT was able to improve the performance further by 15%, thus demonstrating
the power of neural architecture search over the best human solutions (Miikkulainen, Liang,
et al. 2023). Similar CoDeepNEAT evolution from a generic starting point was later used to
achieve a state-of-the-art in text classification (Wikidetox; J. Liang et al. 2019) and image
classification (Chest X-rays;). Indeed, these successes demonstrated that with very little
computational cost, neural architecture search can achieve performance that exceeds that
of standard architectures, making it possible to quickly and effectively deploy deep learning
to new domains.

Most importantly, the best networks utilized a principle different from human-designed
networks: They included multiple parallel paths, possibly encoding different hypotheses
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Figure 10.8: Evolutionary Discovery in the NASNet Search Space Compared to RL
and Random Search. (a) In contrast with CoDeepNEAT, the AmoebaNet method (Real et
al. 2019) focuses evolution to a particular stacked architecture of inception-like normal and
reduction modules (cells); these networks are then scaled to larger sizes algorithmically.
AmoebaNet also promotes regularization by removing the oldest individuals in the popula-
tion. (b) As a result, it discovers architectures that are more accurate than those discovered
through random search and RL, reaching state-of-the-art accuracy in standard benchmarks
like ImageNet. (Figures from Real et al. 2019)

brought together in the end (Figure 10.7b). In this manner, the large search space utilized
by CoDeepNEAT may make it possible to discover new principles of good performance.

Such discovery is indeed the main power of CoDeepNEAT, and what it was initially
designed to do. At the time, papers were coming out each outdoing each other proposing a
different architecture. It seemed that the space of good architectures was large and ripe for
discovery. Soon after, however, the transformers and diffusion architectures were developed
and became dominant. While there is still plenty of opportunity to optimize variants of
them using neuroevolution, a major question for the future is whether open-ended search
methods such as CoDeepNEAT can be further developed to discover new principles that
might follow them.

10.3.3 AmoebaNet
Even small improvements to performance are sometimes useful. If you are designing a
network to predict financial data, half a percent can translate to millions. If it is to predict
effects of treatments, it can save lives. Thus, NAS applied to the refinement of existing ideas
can play an important role. Perhaps the best example of such work is the AmoebaNet sys-
tem (Real et al. 2019). At its time, it improved the state-of-the-art in the ImageNet domain,
which had been the focus of deep learning research for several years. Many architectures
and ideas have been designed by human experts for it; AmoebaNet exceeded the perfor-
mance of all of them, by utilizing evolutionary neural architecture search in a manner that
mattered in practice.

There were three innovations that made this result possible. First, search was limited
to a NASNet search space, i.e. networks with a fixed outer structure consisting of a stack
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of inception-like modules (Figure 10.8a). There were two different module architectures,
normal and reduction; they alternate in the stack, and are connected directly and through
skip connections. The architecture of the modules is evolved, and consists of five levels of
convolution and pooling operations. The idea is that NASNet represents a space of powerful
image classifiers that can be searched efficiently. Second, a mechanism was devised that
allowed scaling the architectures to much larger numbers of parameters, by scaling the size
of the stack and the number of filters in the convolution operators. The idea is to discover
good modules first and then increase performance by scaling up. Third, the evolutionary
process was modified to favor younger genotypes, by removing those individuals that were
evaluated the earliest from the population at each tournament selection. The idea is to allow
evolution to explore more instead of focusing on a small number of genotypes early on. Each
of these ideas is useful in general in evolutionary ML, not just as part of the AmoebaNet
system.

Indeed, AmoebaNet’s accuracy was the state of the art in the ImageNet benchmark
at the time. Experiments also demonstrated that evolutionary search in NASNet was
more powerful than reinforcement learning and random search in CIFAR-10, resulting in
faster learning, more accurate final architectures, and ones with lower computational cost
(Figure 10.8b). It also demonstrated the value of focusing the search space intelligently so
that good solutions are in that space, yet it is not too large to find them.

Thus, LSTMs, CoDeepNEAT, and AmoebaNet demonstrated the potential of evolution-
ary NAS in discovering new principles as well as making practical optimizations to existing
ones. A challenge for the future is to take them to transformers, diffusion networks, and
beyond. In the meantime, however, such approaches are useful in two important areas: opti-
mizing architectures for specific hardware constraints, and discovering architectures that
can perform well with little data by utilizing other tasks and datasets. These opportunities
will be discussed in the next section.

10.4 Multiobjective and Multitask NAS

In the NAS discussion so far, improved SOTA performance in the task has been the main and
only objective. Indeed, as mentioned above, in certain domains the cost of putting together
a large dataset and spending a lot of compute to achieve even small improvements can be
worth it. Benchmarks are also a good motivation for research: it is fun to compete with other
researchers in achieving better performance in them, and thus gain prestige and recognition.
However, when new technologies are taken to the real world, a number of new, practical
challenges emerge. In particular, expertise to build good models may not be available; the
models may run in the edge, with limited compute and other hardware restrictions; the
data may not be sufficient in quality and quantity to train good models. Neural architecture
search, and metalearning in general, can be used to cope with each of these challenges.
First, designing good models for new learning tasks still relies on scarce expertise. The
available simulators such as TensorFlow, PyTorch, and Keras provide standard models as
starting points, and in many cases, they work well. However, the number of datasets and
problems where they can potentially be used is also very large, and applications could often
benefit even from small optimizations. Searching for appropriate architectures is one such
optimization; other metalearning dimensions such as activation functions, loss functions,
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