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of inception-like modules (Figure 10.8a). There were two different module architectures,
normal and reduction; they alternate in the stack, and are connected directly and through
skip connections. The architecture of the modules is evolved, and consists of five levels of
convolution and pooling operations. The idea is that NASNet represents a space of powerful
image classifiers that can be searched efficiently. Second, a mechanism was devised that
allowed scaling the architectures to much larger numbers of parameters, by scaling the size
of the stack and the number of filters in the convolution operators. The idea is to discover
good modules first and then increase performance by scaling up. Third, the evolutionary
process was modified to favor younger genotypes, by removing those individuals that were
evaluated the earliest from the population at each tournament selection. The idea is to allow
evolution to exploremore instead of focusing on a small number of genotypes early on. Each
of these ideas is useful in general in evolutionary ML, not just as part of the AmoebaNet
system.

Indeed, AmoebaNet’s accuracy was the state of the art in the ImageNet benchmark
at the time. Experiments also demonstrated that evolutionary search in NASNet was
more powerful than reinforcement learning and random search in CIFAR-10, resulting in
faster learning, more accurate final architectures, and ones with lower computational cost
(Figure 10.8b). It also demonstrated the value of focusing the search space intelligently so
that good solutions are in that space, yet it is not too large to find them.

Thus, LSTMs, CoDeepNEAT, and AmoebaNet demonstrated the potential of evolution-
ary NAS in discovering new principles as well as making practical optimizations to existing
ones. A challenge for the future is to take them to transformers, diffusion networks, and
beyond. In the meantime, however, such approaches are useful in two important areas: opti-
mizing architectures for specific hardware constraints, and discovering architectures that
can perform well with little data by utilizing other tasks and datasets. These opportunities
will be discussed in the next section.

10.4 Multiobjective and Multitask NAS

In the NAS discussion so far, improved SOTAperformance in the task has been themain and
only objective. Indeed, as mentioned above, in certain domains the cost of putting together
a large dataset and spending a lot of compute to achieve even small improvements can be
worth it. Benchmarks are also a goodmotivation for research: it is fun to compete with other
researchers in achieving better performance in them, and thus gain prestige and recognition.

However, when new technologies are taken to the real world, a number of new, practical
challenges emerge. In particular, expertise to build good models may not be available; the
models may run in the edge, with limited compute and other hardware restrictions; the
data may not be sufficient in quality and quantity to train good models. Neural architecture
search, and metalearning in general, can be used to cope with each of these challenges.

First, designing good models for new learning tasks still relies on scarce expertise. The
available simulators such as TensorFlow, PyTorch, and Keras provide standard models as
starting points, and in many cases, they work well. However, the number of datasets and
problems where they can potentially be used is also very large, and applications could often
benefit even from small optimizations. Searching for appropriate architectures is one such
optimization; other metalearning dimensions such as activation functions, loss functions,
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and data augmentation are useful as well, as is optimization of general learning parameters
(these approaches will be reviewed in Chapter 11). The term “AutoML” has been coined
to refer to such processes in general: The user provides a dataset and a starting point for
learning, and the learning system configures itself automatically to achieve better results
(J. Liang et al. 2019; He, Zhao, and Chu 2021). The goal is not necessarily to achieve state-
of-the-art in any particular domain but to reduce the human time and expertise needed to
build successful applications. In this manner, deep learning can have a larger impact in the
real world.

Second, many such applications cannot be deployed to run on data centers with dedicated
top-of-the-line hardware, but need to run on commodity compute, or even on highly con-
strained compute in the edge: vehicles, drones, probes in extreme environments, as well as
watches, appliances, clothing, and so on. Only a fraction of the model sizes used in research
may be available in such applications, and there may be limitations on memory structure,
communication, latency, etc. NAS can play a significant role in optimizing the models to
perform as well as possible under such conditions.

In some cases, the constraints must be met entirely, or the solutions are unviable. As usual
in evolutionary computation, such constraints can be implemented as penalty functions,
thus allowing evolution to explore more broadly but eventually converge to solutions that
satisfy the constraints. It may also be possible to modify the solutions algorithmically to
make them comply; evolution will then find a way to optimize the solutions under such
postprocessing.

In other cases, the constraints incur a cost that needs to be minimized. NAS for such
applications is multiobjective, aiming at identifying good tradeoffs between performance
and cost outcomes. For instance, CoDeepNEAT can be extended with multiobjective opti-
mization to form Pareto fronts of accuracy and network size (J. Liang et al. 2019). In
the domain of classifying X-ray images, a variety of tradeoffs were discovered, but there
was also a sweet spot in the front: an architecture that was 1/12th of the size of the best-
performing network while only giving up 0.38% in accuracy (Figure 10.9). In a similar
manner, other objectives could be included, such as training time, amount of training
data needed, or energy consumption. Multiobjective NAS can thus make many more deep
learning applications feasible in the real world.

In the most extreme case along these lines, NAS can be used to optimize designs for
neuromorphic hardware. In order to minimize energy consumption, many such architec-
tures are based on spiking neurons, are small in size, and limited in connectivity. Standard
deep learning architectures are not well suited for them, and there are many opportunities
to discover creative, new designs. A most interesting and potentially fundamental way is
to co-evolve the hardware design with the neural network design simultaneously. In this
manner, it may be possible to discover powerful solutions that are highly specialized and
customized to individual use cases. These opportunities will be discussed in more detail in
Section 11.4.

The third real-world challenge is insufficient data. Indeed, data is now collected every-
where from small businesses, doctor’s offices, and engineering firms to large-scale trans-
portation, weather, business, and education systems. Unfortunately, such data is often siloed
and not aggregated, and often also proprietary and intentionally kept in-house. Even though
the data could in principle be used to solve many prediction and optimization problems,
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Figure 10.9: Simultaneous optimization of network size and performance. The number
of parameters in the network is in the x-axis and the accuracy in classifying X-ray images
to 14 different diseases is in the y-axis. The curves show the Pareto fronts obtained in a
single-objective evolution (of accuracy; green) and multiobjective evolution (of accuracy
and number of parameters; blue). Both populations include a range of tradeoffs but the
multiobjective evolution discovers consistently better ones, including one at the elbow that’s
1/12th of the size and 0.38% less accurate than the top accuracy. In this manner, NAS
can discover architectures that not only perform well but also adhere to cost constraints,
making more applications possible in the real world. For an animation of this process, see
https://neuroevolutionbook.com/neuroevolution-demos. (Figures from J. Liang et al. 2019).

there is not enough of it to take advantage of modern machine learning. Such models would
simply learn to memorize and overfit and not perform well with future data.

Interestingly, in many such domains, it may be possible to build better models by uti-
lizing other datasets (Caruana 1997; Meyerson and Miikkulainen 2019). When a model is
trained to perform multiple tasks simultaneously, represented by different datasets, it learns
to encode each task based on synergies and commonalities between them. Such common
knowledge in turn establishes biases that make it possible to generalize better, even when
the training data within each task alone would be insufficient.

An important role for NAS is to discover architectures that take the best advantage of
such synergies between tasks. Many designs are possible (Figure 10.10: If the tasks are
well-aligned, a single processing path with a different head for each task may be the best
way to integrate them. Alternatively, many parallel paths can be constructed, and different
tasks will utilize them differently. If the tasks are sufficiently different, a complex topology
with different tasks performed at different levels based on customized topologies may be
needed. It is difficult to tell ahead of time which architectures work well; evolutionary NAS
is a good way to optimize them.

To motivate an approach, first consider training a simple network to support multiple
tasks. The network consists of a few tightly connected layers and has a number of decoder
layers on top, one for each task. The tasks can be real, i.e. be based on different datasets, or
they can be pseudotasks, constructed artificially by assigning a different set of labels to the

https://neuroevolutionbook.com/neuroevolution-demos
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Figure 10.10: Alternative approaches to multitask learning. When multiple tasks are
learned simultaneously, the network may discover and utilize general principles underly-
ing them, and perform better than when trained with each task alone. (a) If the tasks are
similar, a single column with a different head for each task may work well. (b) A more flex-
ible architecture may consist of a number of modules at each level, and each task uses them
differently. (c) In the most general case, a customized topology may be used to support a
number of different tasks. It is difficult to decide which architecture works well; evolution-
ary NAS can be used to find optimal ways to do it. Figure fromMeyerson andMiikkulainen
2018a

same training examples (Meyerson and Miikkulainen 2018b). Gradient descent can then be
used to train this architecture.

In the next step, the architecture consists of multiple levels of several such modules. All
modules are included at all levels, but the network learns to utilize them differently at dif-
ferent levels for different tasks. Through gradient descent, they learn functional primitives
that are useful in several tasks (Meyerson and Miikkulainen 2018a).

This is where neuroevolution comes in. It is possible to use evolution to discover an opti-
mal topology of these modules for each task. That is, each task has a different organization
of modules into a network topology, but the modules all come from the same set, trained
together via gradient descent in all tasks. In this manner, the modules still learn to encode
functional primitives; evolution figures out how to use these primitives optimally in each
task.

The final step, then, is to use CoDeepNEAT to evolve the structure of the modules them-
selves (in the CMTR method; Liang, Meyerson, and Miikkulainen 2018). In this manner,
(1) high-level evolution customizes the topology for each task, (2) low-level evolution
optimizes the structure of the modules so that they can extract common knowledge most
effectively, and (3) gradient descent extracts the common knowledge across tasks and
encodes it into the modules.

This approach was demonstrated e.g. in the Omniglot domain, i.e. in recognizing hand-
written characters in multiple different alphabets (Liang, Meyerson, and Miikkulainen
2018; Lake, Salakhutdinov, and Tenenbaum 2015). While the alphabets are quite differ-
ent, they are still related in that each consists of shapes and combinations of lines in a
limited area. While there are only 20 examples of each character, there are 50 different
alphabets, and therefore multitask learning is an effective way to combine knowledge from
all alphabets to learn each one well. Moreover, evolutionary optimization makes it possible
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Figure 10.11:Network topologies discovered for different handwritten alphabets. Each
network is trained to recognize handwritten characters of one alphabet. However, each
topology is constructed from the same set of neural network modules (indicated by color)
and thus such training results in modules that encode the underlying functional primitives
of many tasks. More complex alphabets receive more complex topologies, and similar
alphabets similar topologies. The resulting topologies are consistent across several runs
of evolution and training, suggesting that they indeed capture underlying principles. Even
though the training data is limited for each task, the primitives make it possible to learn
each task well—better than if the networks were trained from scratch with their own data
only. Thus, NAS can be used to tie together learning of multiple tasks so that learning with
otherwise insufficient data is possible, making it possible to extend machine learning to
more real-world tasks. For an animation of this evolutionary process, an interactive charac-
ter recognition demo, and other demos on multitask evolution, see https://neuroevolutionbook
.com/neuroevolution-demos.

to learn and utilize common knowledge well, as well as to specialize: The CMTR approach
improved state-of-the-art by 30% in this domain.

It is interesting to see the solutions CMTR created (Figure 10.11). In general, the more
complex the alphabet, the more complex the topology. One example is Angelic, a syn-
thetic alphabet designed in the 1500s to communicate with angels. It is more decorative
and unique than most, and the network constructed for it is complex. Also, alphabets that
look similar have similar networks. For instance, Hebrew and N’ko both have dominant
horizontal lines, and their network topologies are similar; Latin and Cyrillic are similar
as well. Interestingly, when evolution is run multiple times, consistent topologies emerge
for the same language each time, suggesting that they indeed capture essential representa-
tions for each task. It would be difficult to come up with such representations by hand, but
evolutionary NAS does it reliably.

Multitask learning has been demonstrated to work well even when the tasks are very
different. For instance, language learning, vision, and genomic structure prediction can all
be mutually informative, even though they represent very different domains in the world.
A method for aligning the parameters across such differences is needed, but with such a

https://neuroevolutionbook.com/neuroevolution-demos
https://neuroevolutionbook.com/neuroevolution-demos


Evolutionary Neural Architecture Search 229

method, it seems possible to support many disparate domains with many others (Meyerson
and Miikkulainen 2019).

Apparently, the world is based on a set of fundamental principles and structures
that repeat across domains, perhaps as low-dimensional manifolds embedded in high-
dimensional spaces. Thus, learning to understand part of the world helps in understanding
other parts. It may be possible to take advantage of this observation to evolve supernetworks,
consisting of modules that can be reused in different configurations, or paths through the
network, to learn new tasks (Fernando et al. 2017). More generally, it may be possible to
construct a central facility that learns and represents these regularities as variable embed-
dings and different tasks are established by learning specialized encoders and decoders
of this knowledge (Meyerson and Miikkulainen 2021). This approach can be instantiated
throughmultitask learning and evolution. It may also be possible to utilize LLMs as the cen-
tral facility, and then evolution to discover the customized encoders and decoders. While
such architectures do not yet exist, the approaches reviewed in this section are a possible
starting point for constructing them. This is one approach that might, in the long term, in
constructing agents with general intelligence.

10.5 Making NAS Practical

Even in settings where NAS can make useful discoveries, the approaches are still limited
by available computation. Efficient implementations can make a big difference, leading
to better solutions. The approaches involve evaluating a large number of neural network
designs, which is very expensive. Training a deep learning network can take several days,
and a search for good designs may need to evaluate millions of candidates. If the search
simply runs as an outer loop, it will be limited to a few hundred or thousand candidates.

Several principled efficiency optimizations are possible. One important one is to utilize
surrogatemodels. Instead of modeling how the world will respond to a solution, as was done
in Section 6.2.2, they model the solutions directly, i.e. how well each solution is going to
perform in the task. This approach is useful in metalearning in general: In its most general
form, it powers bilevel evolution, i.e. an approach where an outer-loop evolution optimizes
the parameters of an inner loop evolutionary process (Section 11.2). It can be instantiated
to speed up search in all aspects of metalearning, including that of activation functions
(Section 11.3.2).

Surrogate models are usually trained with a sample of solutions. For instance in NAS,
a set of different architectures is created and evaluated ahead of time, the model trained
to map architecture descriptions to performance, and then used predict the performance of
new solutions. Several such benchmark collections have already been created and they can
serve as a catalyst for studying NAS methods in general (Zela et al. 2022; Dong and Yang
2020; Ying et al. 2019).

Another way of making NAS practical is to limit the search space. The Amoeba method
(Section 10.3.2) already took advantage of it by optimizing the variations of a repetitive
structure. In a more extreme approach, a supernet is first created, i.e. large network that
consists of the entire search space, including all possible layers, their variations, and con-
nections between them. The supernet is then trained in the task (at least partially). It then
serves as a starting point for creating candidates during search, providing the search space
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Figure 10.12: The MSuNAS approach for evolving convolutional networks. The idea is
to make search practical by limiting the search space and by guiding the search. The search
space consists of five computational blocks, and is parameterized through number of layers,
kernel size, channels (that expand through the layers), and input resolution. (a) The pareme-
ters are selected from a prespecified set and can be coded either as variable (b) or fixed (c)
length individuals. A supernet is created with the largest values and subsumes the entire
search space. Good tradeoffs between performance and other objectives are then found in
this space using NSGA-II multiobjective search method. A surrogate model, trained with a
sample of architectures in this space, is used to guide the search, and the trained supernet
to initialize the weights of the candidates. The approach can find architectures that perform
better or similar to standard architectures, and are smaller, with significantly less training.
(Figure from Lu et al. 2020).

and initial evaluations. This approch makes sense if the goal is not just to find the best-
performing network (for which the supernet itself might be the best choice), but at the
same time, achieve other objectives like minimize the size of the solutions.

Several of these ideas were implemented in the MSuNAS approach, where the NSGA-
II multiobjective optimization method was adapted to NAS of convolutional image-
processing networks (Figure 10.12; Lu et al. 2020). The search space was restricted to
networks with five computational blocks with four design parameters, i.e. the number of
layers, the number of channels, the kernel size, and the input resolution, each with a pre-
determined range. A supernet was created by setting each of these parameters at their
maximum values; thus all other candidates in the search space were enclosed in it. A surro-
gate model was trained with 2000 randomly sampled networks in this space. Each network
was trained for 150 epochs on CIFAR-10, CIFAR-100, and ImageNet, and evaluated with
5000 unseen images. The supernet was trained in this task as well, and its weights used to
initialize the candidates during search.

The approach found solutions that represented useful tradeoffs in this domain. The most
accurate architectures performed as well or better than standard architectures, and many of
themwere much smaller as well. The surrogate modeling approach resulted in several times
to orders of magnitude faster learning. These results suggest that NAS can be a practical
and useful technique in searching variations in a limited search space.

Sometimes such methods are called one-shot methods, because the supernet is trained
to represent the entire search space. The more general approach consists of black-box,
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or zeroth-order, methods, where the search space is open-ended (such as CoDeepNEAT
described in Section 10.3.2). Such methods have more potential for discovery, but it is
more difficult to make them efficient, and therefore take advantage of them.

Intermediate approaches may provide a good tradeoff. For instance, it is possible to limit
NAS to traditional convolutional networks only, i.e. those with a number of convolutional
and pooling layers followed by a number of fully connected layers (as opposed to very deep
networks with many skip connections such as ResNet or DenseNet). Such a limited search
space allows customizing many aspects of the NAS process, making it efficient.

In one such approach, EvoCNN (Sun et al. 2020), it was possible to design a variable-
length representation for the architecture that allows networks of variable sizes to be
represented systematically and compactly. The population could then be initialized as a
random sample of such architectures, instead of minimal networks, providing for a more
comprehensive search process. On the other hand, the number of parameters was used as
a fitness component during evolution, favoring smaller networks, thus making sure that
the complexity that was there actually mattered. Weight initialization was also included as
part of the representation as mean and standard deviation values for sets of connections.
As is well-known in deep learning (and discussed in more detail below), good initializa-
tion makes it more likely that the architecture performs as well as it can, resulting in more
consistent and fair evaluations. Genetic operators were then designed to operate efficiently
on such architectures. With these customizations, EvoCNN performed better than other
hand-designed traditional CNN architectures. Also interestingly, the evolved initialization
performed better than standard initialization methods, such as Xavier (Glorot and Bengio
2010).

Part of why fully general (zeroth-order) methods are challenging to design is because it
is difficult to implement even basic evolutionary search, i.e. crossover. The architectures
are usually represented as graphs, and they suffer from the permutation problem (or com-
peting conventions problem): the same functional design be coded in several different ways
simply by changing the order of elements in it. The permutation problem makes crossover
ineffective, which is why most black-box methods rely only in mutation.

As a matter of fact, the same issue exists in many other areas of evolutionary computa-
tion, to the extent that the entire validity and usefulness of crossover is sometimes called
into question (Qiu and Miikkulainen 2023). Yet, biology utilizes crossover very effectively,
creating solutions that are viable and creative (Section 9.1.1). This observation suggests that
perhaps we do not understand crossover very well, and our implementations of it are lacking
something.

Interestingly, NAS can be used as a domain to gain insight into the general problem
of what makes crossover useful (Qiu and Miikkulainen 2023). Two architecture repre-
sentations can be compared through graph edit distance (GED), measuring how many
modifications are necessary to transform one to the other. This metric can then be used to
construct a crossover operator that results in individuals that lie along the shortest edit path
(SEP) between them. It turns out that theoretically the expected improvement from the SEP
crossover is greater than the improvement from local search (i.e. mutation), from standard
crossover, and from reinforcement learning. These theoretical conclusions can be demon-
strated numerically, as well as in practical evaluation in various NAS benchmarks: They
converge to optimal architectures faster than other methods, even with noisy evaluations.
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Thus, crossover can be a useful tool in NAS if implemented in the right way. More gen-
erally, if evolutionary computation is not using crossover, it is probably leaving money on
the table.

There are other useful tools that were originally developedwith NAS inmind, but are use-
ful in neuroevolution, and in evolutionary computation and in neural networks, in general.
An important one is to initialize the networks in a proper way before training (Bingham and
Miikkulainen 2023a). In deep learning, a fundamental challenge is that the signals (activa-
tion and gradients) may vanish, or explode. If the network weights are initialized so that
the activation stays within reasonable bounds, training is more likely to be successful. In
NAS, this means that the evaluation of the candidate is more reliable, making search more
effective. The initialization can be done in various ways and customized to specific activa-
tion functions, topologies, layers, and even data. However, there is a general principle that
works well in most cases: Setting the weights of each layer so that the outputs have zero
mean and unit variance.

In a method called AutoInit, such weight initialization was derived for the most com-
mon layer types (Bingham and Miikkulainen 2023a). Experimentally, AutoInit resulted in
faster and more reliable convergenge for convolutional, residual, and transformer architec-
tures, various hyperparameter settings, model depths, datamodalities, and input sizes. It was
also shown particularly useful in metalearning of activation functions, and in NAS. When
implemented in CoDeepNEAT, it adapted to each candidates unique topology and hyperpa-
rameters, improving its performance in several benchmark tasks. As expected, much of this
improvement was due to reduced variance in evaluations. However, AutoInit also allowed
utilizing a broader set of hyperparameter values and topologies. Some such solutions are
difficult to train properly, and only perform well with proper initialization. Thus, intelligent
initialization makes it possible for NAS to find more creative solutions as well.

Ultimately, NAS methods need to run on parallel hardware, and utilize such computa-
tion well. Like all evolutionary algorithms, NAS is well suited for such hardware because
candidate evaluations can be performed at different compute nodes. However, evaluation
times can sometimes be very long and vary significantly. It is therefore important that such
evaluations are asynchronous: The nodes should not sit idle waiting for other candidates in
a generation to finish their evaluations, but should take on other evaluations immediately
(Liang, Shahrzad, and Miikkulainen 2023).

Asynchronous evaluation, therefore, is based on an evaluation queue rather than gen-
erations (Figure 10.13). Individuals are created and evaluated and the elite set updated
continuously. While several such implementations exist already (including rtNEAT dis-
cussed in Section 8.1), the approach is more complexwithmore sophisticatedNASmethods
that take advantage of structure. For instance with CoDeepNEAT, individuals exist at the
level of modules and blueprints, and both populations are speciated into subpopulations
with their own elits. Thus, there are several evolutionary processes going on at the same
time. When an assembled network is evaluated, the resulting fitnesses are incorporated into
these processes asynchronously.

Note that although there are no generations, the evolutionary processes still need to
progress in batches. That is, M individuals need to be evaluated and their fitnesses prop-
agated to the current populations before another M can be generated—even though the
individuals may have different ancestries and in a sense belong to different generations. As
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Figure 10.13: Asynchronous evaluation of individual and coevolutionary encodings.
One challenge in parallelizing the evaluation of neuroevolution candidates is that the eval-
uation times may vary. Therefore, instead of evaluating an entire generation of candidates
synchronously before generating new ones, candidates are placed in a queue and evalu-
ated as soon as compute nodes become available. In this manner, compute nodes are never
idle and evaluation can be speeded up significantly. (a) With encodings that represent the
entire solution, the population and elites are maintained as usual, and evolution progresses
in batches of M individuals. (b) With coevolutionary encodings such as CoDeepNEAT, the
individuals are created and fitnesses distributed among participating blueprint and module
populations. The process favors individuals with short evaluation times, which means that
M needs to be larger when those times vary a lot. However, the speedup is also larger then,
e.g. 14-fold for CoDeepNEAT. The bias towards networks that evaluate fast is also benefi-
cial in NAS, resulting in more desirable solutions as a surprising side benefit (Figures from
Liang, Shahrzad, and Miikkulainen 2023)

usual in evolution, the batch size M needs to be optimized for each problem, balancing the
time used for evaluation and for search, i.e. how much evaluation noise can be tolerated.
However, with variable evaluation times, batch evaluations establish a search bias: Those
candidates that evaluate faster are more likely to be included in the batch, and thus more
likely to reproduce. Thus, in domains where the evaluation times are relatively uniform, M
can be small, and search proceed faster. However, if the times vary significantly, M needs
to be larger so that evolution is based on more diverse candidates.

In NAS, such a bias is fortunately not a problem. The speedup from asynchrony increases
more with variable evaluation times than the handicap from diversity. For instance in
designing sorting networks, whire the times are relatively similar, asynchronous search
finds solutions twice as fast than synchronous search. In CoDeepNEAT, where the times
vary a lot, the speedup is 14-fold. Moreover, a bias towards faster networks is desirable in
any case. Even if it is not an explicity secondary objective, smaller networks that evaluate
faster are preferred over complex networks. In this sense, asynchronous evaluation provides
an advantage not only in speed, but quality of solutions as well.
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10.6 Beyond Neural Architecture Search

While NAS is still work in progress, already many interesting and useful ideas stemmed
from the field — ideas that have impacted other subfields of AI. As was discussed in
Section 10.2, one of the main limiting factors of NAS is the two-stage optimization process:
One must search for the architecture in the outer loop, and spend a lot of computation in the
inner loop to train each model. However, it turns out that the inner loop may not be as cru-
cial in identifying good architectures as initially thought. Given that NAS mostly focuses
on optimizing architectures with known, powerful building blocks, it may be possible to
predict their performance without training them. A surrogate model can be trained based
on a benchmark dataset of architectures and their performance for this task. Or, a hypernet-
work can be used to predict the weights, making it possible to evaluate and rank candidates
without having to train them (Brock et al. 2017).

In the extreme, it turns out that even randomly initiated CNNs (Ulyanov, Vedaldi, and
Lempitsky 2018) and LSTMs (Schmidhuber et al. 2007) have useful properties without any
training. This leads to an important question: How important are the weight parameters of
a neural network compared to its architecture? An approach called Weight Agnostic Neural
Networks (WANNs;Gaier andHa 2019) evaluated the extent to which neural network archi-
tectures alone, without learning any weight parameters, can encode solutions for a given
task. The basic idea was to apply a simple topology search algorithm, NEAT, but explicitly
make the weights random. To evaluate these networks, the connections were instantiated
with a single shared weight parameter sampled from a uniform random distribution, and
the expected performance measured over multiple such instantiations. It turned out that
WANNs could perform several reinforcement learning tasks, and achieved much higher
than chance accuracy on supervised tasks such as the MNIST classification (Figure 10.14).
This result suggests that NAS alone may be sufficient to solve some problems without any
gradient descent. Indeed, in many biological species the young are already proficient in
many survival tasks without any learning; NAS with random weights can be seen as an
approximation of this process.

A most compelling direction in NAS is to develep methods that discover the building
blocks as well. They can be seen as components of neural network architectures that have
great inductive bias at a variety of tasks. This approach would well with how biological
evolution works, in that individuals are not born with simply a blank-slate neural network
to be trained using gradient descent, but one that already implements a wide variety of
useful innate behaviors that also impact their development. To quote Tony Zador, a com-
putational neuroscientist (Zador 2019): “The first lesson from neuroscience is that much
of animal behavior is innate, and does not arise from learning. Animal brains are not the
blank slates, equipped with a general purpose learning algorithm ready to learn anything,
as envisioned by some AI researchers; there is strong selection pressure for animals to
restrict their learning to just what is needed for their survival.”

Ideas have also emerged on how to move back from designing large deep learning archi-
tectures to optimizing such architectures entirely with evolution, including their weights.
For instance, indirect encoding such as HyperNEAT can be used to optimize a very large
number of weights by sampling the substrate more densely. In a more direct deep neu-
roevolution approach, deep network weights are represented compactly as a list of random
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Figure 10.14: Solving problemswith NAS alone without gradient descent. In theWANN
approach, network architectures are evolved with a shared random value for weights. Sur-
prisingly, without any gradient descent, they can solve reinforcement learning tasks such
as bipedal walking and driving, and perform competently (at 94%) in MNIST handwritten
digit classification. The diagram on the left side of (c) is part of an interactive demo that
shows which parts of the input and network are used to classify different digits. WANN
networks can be seen as a model of precocial performance in many animal species, where
newborn individuals already perform well in a number of tasks necessary for survival with-
out any experience or learning. For interactive demos, see https://neuroevolutionbook.com
/neuroevolution-demos. (Figures from Gaier and Ha 2019)

number seeds: One for the initialization of the network and the rest for the random muta-
tions that construct the network (Such et al. 2017). Another approach is based on ant-colony
optimization: The ants traverse the architecture space from input to output, and the network
is constructed based on their paths. Architectures of any size can be constructed in this
manner, and the paths can include a weight dimension as well (ElSaid et al. 2023).

Many other promising ideas have emerged from the NAS field. Rather than searching for
architecture, researchers have applied similar methods to search for better loss functions,
activation functions, learning methods, and data augmentation methods. These optimiza-
tions are highly relevant even when network architectures have largely converged on a few
best designs, such as transformers. Such approaches will be discussed in more detail on
Chapter 11 on metalearning.

https://neuroevolutionbook.com/neuroevolution-demos
https://neuroevolutionbook.com/neuroevolution-demos
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10.7 Chapter Review Questions

1. NAS Approaches: What are the primary methods used in Neural Architecture Search
(NAS) to automate the design of neural network architectures? Why is evolutionary
optimization particularly well-suited for this task?

2. Backprop NEAT: How does Backprop NEAT combine NEAT topology search with
backpropagation? What role do activation function diversity and fitness regularization
play in improving the evolved networks?

3. Feature Discovery: In the context of Backprop NEAT, how does the algorithm discover
features that are typically engineered manually, such as those required for classifying
concentric circles or XOR data?

4. CoDeepNEAT: How does the CoDeepNEAT approach leverage modular evolution to
discover neural architectures? What advantages does its blueprint-module coevolution
provide compared to evolving full architectures directly?

5. AmoebaNet Contributions: What innovations in AmoebaNet’s evolutionary process
enabled it to achieve state-of-the-art performance in ImageNet? How did these innova-
tions improve the efficiency and accuracy of the NAS process?

6. Multiobjective Optimization: How does multiobjective NAS differ from single-
objective NAS? What advantages does it offer when deploying neural networks in
resource-constrained environments?

7. Pareto Fronts: Explain the concept of Pareto fronts in the context of NAS. How are
they used to optimize trade-offs between objectives such as model accuracy and size?

8. Multitask Learning: What are the benefits of using NAS to discover architectures
for multitask learning? How do alternative designs (e.g., single-column vs. complex
topologies) address differences between tasks?

9. Module and Topology Co-Evolution: In multitask NAS, how does the co-evolution of
module structures and task-specific topologies (e.g., in CMTR) enhance learning across
tasks with limited data?

10. NAS Efficiency: What strategies, such as surrogate modeling and supernets, have been
developed to make NAS computationally practical? How do they maintain effectiveness
while reducing search costs?
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