
11 Optimization of Neural Network Designs

11.1 Designing Complex Systems

Many areas of technical design are too complex for humans to optimize, and instead, auto-
mated methods must be used. VLSI design has long relied on machine optimization, but
other areas of engineering are starting to rely on them as well. The systems have become
larger, with many interacting elements, and several simultaneous performance goals. The
sheer dimensionality and search space is too large to handle without automated search.

Evolutionary optimization is particularly well suited to such scaling. In some cases like
designing circuitry for a 70-bit multiplexer, it was possible to find solutions in a space
with 2270

potential solutions. While it is hard to imagine a space that large, consider that
if that number of potential solutions was printed on paper with a 10pt font, it would take
light 95 years to travel from the beginning to the end of the number (Miikkulainen 2021).
In others like designing an optimal schedule for metal casting, there are variables for each
type of object in each melting heat, and there may be tens of thousands of heats, resulting in
billion variables (Deb and Myburgh 2017). Such scaling is possible because the population
can discover partial solutions that can then be used as stepping stones to construct more
complete ones, thus requiring exploration of only a fraction of the space and combinations
of dimensions.

On the other hand, sometimes the scale is not the main problem, but complexity is:
Problems can have nonlinear interactions and even be deceptive so that good solutions
are overlooked. It is not just that search needs to be automated, but it should be intelli-
gent enough to handle deception, such as evolutionary search. For instance, the original
nose-cone of the Shinkansen bullet train was long and sleek, with great aerodynamics,
but it created a bang when going into a tunnel. In the next version, the engineers wanted
to eliminate the bang, but it was difficult to do by hand. However, they were eventually
able to do so by harnessing evolutionary optimization: a cone with deep grooves on both
sides (Ishida Lab 2018). It was unconventional and unlikely to be discovered by human
engineers, but it got the job done. Similarly, evolution discovered that it may be advanta-
geous to keep the lights on 24hrs in computer-controlled greenhouses: Basil doesn’t need to
sleep (Miikkulainen 2021). Further, webpage designs were found that violated well-known
design principles with garish colors and active language, yet they were more effective
in engaging users: What the human designers referred to as an “ugly widget generator”
actually beat their design by 45% (Miikkulainen et al. 2020).
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Similar stories abound in all areas of engineering from drug design and medical treat-
ments to programming and autonomous control (see e.g. Lehman et al. 2020, for examples).
As a matter of fact, the annual Human-Competitive Results competition at the GECCO
Conference has showcased hundreds of such approaches since 2004 (Goodman 2023).

This insight applies to neuroevolution as well. While so far in this book, evolution has
been used to optimize the network itself, i.e. its topology and weights, any aspect of the
design can be evolved. Opportunities include the overall architecture, activation functions,
loss functions, data augmentation, learning mechanisms, and even the neuroevolution opti-
mizer itself. As a result, the networks can performmore accurately, generalize better, and/or
use fewer resources than those designed by hand. Collectively, these approaches are called
metalearning, which is the topic of this chapter.

11.2 Bilevel Neuroevolution

Several examples of neuroevolution discovering complex and robust behavior were
reviewed in Chapter 6. Indeed, many such domains include a large number of variables
that interact nonlinearly, making it difficult to design control algorithms using traditional
methods.While neuroevolution can often be used effectively to construct robust controllers,
it is still crucial to get the parameter settings right. Most often, the experiments require a
painstaking search in the space of learning parameters, such as mutation and crossover rates
and extent, population size, elite percentage, number of stochastic evaluations, etc. There
are many such parameters and they interact nonlinearly, making the usual grid search of
possible combinations ineffective.

An elegant and compelling solution is to use bilevel evolution to optimize the parameters
(Liang and Miikkulainen 2015). That is, the optimization process is defined in terms of two
nested problems (Figure 11.1a):

maximize
pu

Fu(pu) = E[Fl(pl)|(pu)] (11.32)

subject to pl = Ol(pu), (11.33)

where E[Fl(pl)|pu] is the expected performance of the neural network with parameters (i.e.
weights) pl, obtained by the lower-level optimization algorithm Ol (i.e. neuroevolution)
with parameters pu, which are in turn maximized by a separate upper-level optimization
algorithm Ou.
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(a) Bilevel neuroevolution

(b) Improvement over human fine tuning
in the helicopter hovering task

(c) Improvement with more parameters
in the double pole balancing task

Figure 11.1: Enhancing neuroevolution with bilevel optimization. Neuroevolution per-
formance depends crucial on a proper setting of its hyperparameters. They can be evolved as
part of the optimization process, resulting in bilevel neuroevolution. (a) More specifically,
neural networks with parameters (weights) pl are evolved using a low-level neuroevolu-
tion algorithm Ol with parameters pu. The pu are in turn optimized with an upper-level
MEA algorithm Ou. The expected fitness Fl(pl)|pu is taken as the fitness of pu. In this
manner, the neuroevolution process can be optimized automatically, which makes it pos-
sible to solve harder problems with it. (b) Neuroevolution with eight hand-tuned evolution
parameters (HNE) is successful in helicopter hovering task, but when those same parame-
ters are optimized at the same time through bilevel evolution (HNE8), better solutions are
found faster. In this manner, bilevel evolution can be harnessed to improve upon human
design of neuroevolution experiments. (c) The cumulative success of neuroevolution with
five hand-tuned evolutionary parameters (PNE), five bilevel-optimized parameters (PNE5),
and fifteen bilevel-optimized parameters (PNE15) in the double pole balancing task. More
parameters allow bilevel evolution to develop a more powerful neuroevolution parameter-
ization, resulting in faster discovery of solutions. Therefore, when bilevel optimization is
available, it is better to make the neuroevolution method more flexible and configurable,
even beyond the human ability to optimize. For animations in helicopter hovering, see
https://neuroevolutionbook.com/neuroevolution-demos. (Figures from Liang and Miikkulainen
2015)

https://neuroevolutionbook.com/neuroevolution-demos


240 Chapter 11

Bilevel evolution is a special case of meta-evolutionary EAs (MEAs; Eiben and Smit
2011; Grefenstette 1986; Sinha et al. 2014) where evolution is used to optimize algorithms
off-line. It is related to self-adaptive EAs where evolutionary parameters are adjusted on-
line depending on progress in the optimization (Kramer 2010; Kumar et al. 2022). In its
most straightforward form, each fitness evaluation of each high-level individual pu requires
running an entire neuroevolution experiment. The crucial idea of bilevel optimization is
to estimate the fitness of pu without having to run such an experiment every time. In
essence, the idea is the same as surrogate optimization for decision-making, discussed in
Section 6.2.2. Each run of a neuroevolution experiment can be considered as a sample, and
a predictor model learned to approximate the fitness landscape. The upper-level search can
then be donemostly against the surrogate, with only occasional neuroevolution experiments
needed.

A simple approach is to fit e.g. a quadratic function to these samples (Sinha et al. 2014).
A more complex one is to train a random forest or a neural network, as was done in
Section 6.2.2: Such models are nonparametric, i.e. more general, and less prone to overfit-
ting. Forming the surrogate is still difficult because there are usually very few samples and
they are noisy. One way to deal with this problem is to construct the fitness Fu from mul-
tiple metrics over several neuroevolution runs with pu, including best and average fitness
and standard deviation, diversity of the population, and the shape of the learning curve. In
effect, the idea is to predict the eventual performance of pu after prolonged evolution, and
to take into account the reliability of this estimate.

To see the value of bilevel optimization, consider e.g. the benchmark task of evolving a
neural network for helicopter hovering. The goal is to keep the helicopter as close as possi-
ble to a point in 3D space in windy conditions, with 12 state variables (coordinates, angles,
velocities) as the input, and four action variables (aileron, elevator, rudder, and rotor pitch)
as the output. The task is difficult because there are many variables that interact, their values
are noisy, and the domain is unstable. However, neuroevolution can solve it with a careful
hand-tuning of eight evolutionary parameters: mutation probability, rate, amount, replace-
ment rate and fraction, population size, crossover probability, and crossover averaging rate
(Koppejan and Whiteson 2011). Remarkably, such hand-tuning still leaves money on the
table: by optimizing the parameter further with bilevel evolution, it is possible to evolve
solutions that perform significantly better, both by learning faster and achieving better final
accuracy (Figure 11.1b). Also, using a good surrogate is crucial: while using a random for-
est surrogate improves bilevel optimization significantly compared to not using a surrogate,
quadratic fitting is too unreliable and actually decreases performance.

A common rule of thumb is that humans can take into account seven +/- two variables
at once, which is well in line with the helicopter hovering result. However, with bilevel
evolution, it may be possible to increase the number of variables significantly. Would such
an extension result in better performance? For instance in the standard benchmark task
of double pole balancing, it is common to specify the values of five parameters by hand:
mutation rate and amount, replacement fraction, initial weight range, and population size.
There are, however, many other parameters that could be included, such as 1-pt, 2-pt, and
uniform crossover probability, tournament, truncation, and roulette selection probability,
etc. They are not strictly necessary to parameterize an effective neuroevolution experiment,
but they do make it possible to establish a more complex search.
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It turns out such extra customization pays off significantly. It is much faster to find solu-
tions when 15 evolutionary parameters are optimized rather than only five (Figure 11.1)c.
This is an important result because it suggests that bilevel optimization changes how we
should think about problem-solving. Simple methods may be easy to understand for peo-
ple, but when they can be optimized automatically, it is better to make the method more
flexible and configurable, even beyond human ability. Such complexity translates to better
performance through bilevel optimization.

As more compute becomes available, bilevel optimization is likely to become an increas-
ingly important element of neuroevolution. It can also be extended in several ways. For
instance, instead of fixed parameters pu, it may be possible to discover parameter adapta-
tion schedules that change the parameters during the course of individual neuroevolution
runs, similarly to self-adapting EAs. They may themselves take the form of a neural net-
work that observes the performance of the run and outputs optimal current parameters at its
output. While the designs of neuroevolution algorithms has naturally focused on compact
and parsimonious methods, it may be possible to design them with bilevel optimization in
mind, which means creating many more configuration parameters, and thus take advantage
of the power of expanded optimization. Also, better surrogate modeling techniques can
be developed, perhaps by utilizing knowledge of the domain, benchmark collections, and
methods for estimating fitness in neural architecture search.

11.3 Evolutionary Metalearning

Besides the architecture, there are several other aspects of machine learning system design
that need to be configured properly for the system to perform well. Those include learn-
ing hyperparameters (such as the learning rate), activation functions, loss functions, data
sampling and augmentation, and the methods themselves. Approaches similar to those used
in NAS can be applied to them; however, the evolutionary approach has an advantage in
that it is the most versatile: It can be applied to graphs, vectors of continuous and discrete
parameters, and configuration choices. This ability is particularly useful as new architec-
tures are developed. For instance, at this writing, work has barely begun on optimizing
designs of transformer (Vaswani et al. 2017) or diffusion (Sohl-Dickstein et al. 2015) archi-
tectures. They have elements such as attention modules, spatial embeddings, and noise
transformations that are different from prior architectures, yet may be parameterized and
evolution applied to optimize their implementation. Most importantly, evolution can be
used to optimize many different aspects of the design at the same time, discovering and
taking advantage of synergies between them. Several such approaches are reviewed in this
section.

11.3.1 Loss functions
Perhaps the most fundamental is the design of a good loss function. The mean-squared-
error (MSE) loss has been used for a long time, and more recently the cross-entropy (CE)
loss has become popular, especially in classification tasks. Both of those assign minimal
loss to outputs that are close to correct, and superlinearly larger losses to outputs further
away from correct values. They make sense intuitively and work reliably, so much so that
alternatives are not usually even considered.
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(a) Loss function profiles (b) Performance with weight perturbation

Figure 11.2: Regularization and Robustness with Evolved Loss Functions. When loss
functions are evolved as part of the optimization process, surprising synergies emerge. (a)
The standard loss function, such as Log Loss (or Cross-Entropy) has a high loss for outputs
that are far from correct (1.0 in this case) and a low loss otherwise. In contrast, evolutionary
optimization of loss functions throughGLO/TaylorGLO (Gonzalez andMiikkulainen 2020,
2021b) discovered a new principle: When the output is very close to the correct one, a high
loss is incurred. This principle, termed Baikal loss for its shape, discourages overfitting,
thus regularizing the network automatically, leading to better generalization. Such a loss
is effective but counterintuitive, and thus unlikely to be discovered by human designers.
(b) The Baikal loss also makes the network performance more robust. This effect can be
quantified by perturbing the network weights. With Baikal loss, the network’s performance
is less affected thanwith Cross-Entropy loss. This effect can be further magnified bymaking
robustness against adversarial inputs an explicit second objective in evolution. Thus, loss-
function optimization can be used to improve not just regularization, but robustness as well.
(Figures from Gonzalez and Miikkulainen 2020, 2021a)

However, it turns out that it is possible to improve upon them, in a surprising way that
would have been difficult to discover if evolution had not done it for us (Gonzalez and
Miikkulainen 2020, 2021b). If outputs that are extremely close to correct are penalized with
a larger loss, the system learns to avoid such extreme output—which minimizes overfitting
(Figure 11.2a). Such loss functions, called Baikal loss for their shape, lead to automatic
regularization. Regularization in turn leads to more accurate performance on unseen exam-
ples, especially in domains where the amount of available data is limited, as is the case in
many real-world applications.

Baikal loss was originally discovered with a classic genetic programming approach
where the function was represented as a tree of mathematical operations (Gonzalez and
Miikkulainen 2020). The structure of the tree was evolved with genetic algorithms, and the
coefficients in the nodes with CMA-ES (N. Hansen andA. Ostermeier 2001). This approach
is general and creative in that it can be used to explore a large search space of diverse func-
tions. However, many of those functions do not work well and often are not even stable. In
the follow-up TaylorGLO method (Gonzalez and Miikkulainen 2021b), the functions were
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represented instead as third-order Taylor polynomials. Such functions are continuous and
can be directly optimized with CMA-ES, making the search more effective.

Regularization in general is an important aspect of neural network design, there are many
techniques available, such as dropout, weight decay, and label smoothing (Srivastava et
al. 2014; Szegedy et al. 2016; Hanson and Pratt 1988), but how they work is not well
understood. Loss-function optimization, however, can be understood theoretically, and thus
provides a starting point to understanding regularization in general (Gonzalez and Miikku-
lainen 2021a). It can be described as a balance of two processes, one a pull toward the
training targets, and another a push away from overfitting. The theory leads to a practical
condition for guiding the search toward trainable functions.

Note that Baikal loss is a general principle; evolutionary optimization was crucial in dis-
covering it but it can now be used on its own in deep learning. It is still possible to customize
it for each task and architecture, and even small modifications to the standard Baikal shape
may make a difference. Optimization may also have a significant effect on various learn-
ing challenges, for instance when there is not much training data (Gonzalez, Landgraf, and
Miikkulainen 2019), or when the labels are particularly noisy (Gao, Gouk, and Hospedales
2021). It may also be possible to modify the loss function during the course of learning,
for instance by emphasizing regularization in the beginning and precision towards the end
(similarly to activation functions; Section 11.3.2).

It turns out that loss functions that regularize also make networks more robust, and
this effect can be further enhanced by including an explicit robustness goal in evolution
(Figure 11.2b). One way to create such a goal is to evaluate performance separately wrt.
adversarial examples. This result in turn suggests that loss-function optimization could
be an effective approach to creating machine learning systems that are robust against
adversarial attacks.

Loss-function optimization can also play a major role in systems where multiple loss
functions interact, such as Generative Adversarial Networks (GANs; (Gonzalez, Kant,
and Miikkulainen 2021)). GANs include three different losses: discriminative loss for
real examples and for fake examples, and the generative loss (for fake examples). It is
difficult to get them right, and many proposals exist, including those in minimax, nonsat-
urating, Wasserstein, and least-squares GANs (Arjovsky, Chintala, and Bottou 2017; Mao
et al. 2017; Goodfellow et al. 2014). Training often fails, resulting e.g. in mode collapse.
However, the three losses can be evolved simultaneously, using performance and reliability
as fitness. In one such experiment on generating building facade images given the overall
design as a condition, the TaylorGLO approach was found to result in better structural
similarity and perceptual distance than the Wasserstein loss (Gonzalez, Kant, and Miikku-
lainen 2021). Although this result is preliminary, it suggests that evolutionary loss-function
optimization may make more complex learning systems possible in the future.

11.3.2 Activation functions
Early on in the 1980s and 1990s, sigmoids (and tanh) were used almost exclusively as acti-
vation functions for neural networks. They had the intuitively the right behavior as neural
models, limiting activation between the minimum andmaximum values, a simple derivative
that made backpropagation convenient, and a theorem suggesting that universal computing
could be based on such networks (Cybenko 1989; Hornik, Stinchcombe, and White 1989).
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There were indications, however, that other activation functions might work better in many
cases. Gaussians achieved universal computing with one less layer, and were found pow-
erful in radial basis function networks (Park and Sandberg 1991). Ridge activations were
also found to provide similar capabilities (Light 1992).

However, with the advent of deep learning, an important discovery was made: Activation
function actually made a big difference wrt. vanishing gradients. In particular, rectified lin-
ear units (ReLUs), turned out important in scaling up deep learning networks (Nair and
Hinton 2010). The linearly increasing region does not saturate activation or gradients,
resulting in less signal loss. Moreover, it turned out that in many cases ReLU could be
improved by adding a small differentiable dip at the boundary between the two regions,
in a function called Swish (Ramachandran, Zoph, and Le 2017). This result suggested that
there may be an opportunity to optimize activation functions, in general and for specific
architectures and tasks.

Like with loss functions, there is a straightforward opportunity in evolving functions
through genetic programming (Bingham,Macke, andMiikkulainen 2020). Similarly to loss
functions, such an approach can be creative, but also results in many functions that make the
network unstable. Amore practical approach is to limit the search space to e.g. computation
graphs of two levels, with a focused set of operators, that are more likely to result in useful
functions. This approach was taken e.g. in the Pangaea system (Bingham and Miikkulainen
2022). Given a list of 27 unary and seven binary operators, two basic two-level computation
graph structures, and four mutation operators, evolution can search a space of over ten
trillion activation functions.

However, finding an effective function is only part of the challenge. The function also
needs to be parameterized so that it performs as well as possible. While coefficients mul-
tiplying each operator can be evolved together with the structure, it turns out that such
fine tuning can be done more efficiently through gradient descent. In other words, in Pan-
gaea evolution and gradient descent work synergetically: evolution discovers the general
structure of the function, and gradient descent finds its optimal instantiation.

The method is powerful in two ways: it finds general functions that perform better
than previous functions (such as ReLU, SeLU, Swish, etc.) across architectures (such as
All-CNN, Wide ResNet, Resnet, and Preactivation Resnet) and tasks (such as CIFAR-10,
CIFAR-100). However, it is most powerful in discovering activation functions that are spe-
cialized to architecture and task, apparently taking advantage of the special requirements
in each such context.

Furthermore, performance can be further improved by allowing different functions at
different parts of the network, and at different times throughout training (Figure 11.3).
The optimal designs change continuously over time and space. Different activation func-
tions are useful early in training when the network learns rapidly and late in training when
fine-tuning is needed; similarly, more nonlinear functions are discovered for later layers,
possibly reflecting the need to form a regularized embedding early, and make classification
decisions later.

The Pangaea results suggest an intriguing duality: While neural network learning is
mostly based on adapting a large number of parameters (i.e. weights), perhaps a similar
effect might be achieved by adapting the activation functions over space and time? Perhaps
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Figure 11.3: Activation Functions Discovered over Space and Time. Activation func-
tions can be seen as fundamental to network performance as its weights. Pangaea (Bingham
and Miikkulainen 2022) combines evolution of activation function structure synergetically
with gradient descent of its parameters. It is possible to discover general functions, but the
approach is most powerful in customizing them to a particular architecture and task. More-
over, the functions change systematically over learning time as well as through different
depths of layers, presumably starting with coarse learning and regularization and trans-
forming into fine-tuning and classification. These results suggest a possible duality with
weight learning, and a possible synergy for the future. (Figure from Bingham and Miikku-
lainen 2022)

the two mechanisms could be used synergetically? Evolution of the activation function
structure provides the foundation for this approach, which still needs to be developed fully.

11.3.3 Data use and augmentation
Another important opportunity for evolutionary optimization of supervised learning sys-
tems is to optimize the training data. For instance, it may be possible to form embeddings
of the training samples through an autoencoder, and then form a strategy for utilizing dif-
ferent kinds of samples optimally through time (Gonzalez, Landgraf, and Miikkulainen
2019). In this manner, evolution could discover ways for balancing an imbalanced dataset
or designing curricular learning from simple to more complex examples. Especially in
domains where not a lot of labeled samples are available, such techniques could result in
significant improvements. It may also be possible to extend the methods to utilize multiple
datasets optimally over time in a multitask setting.

Another possibility is to evolve methods for augmenting the available data automatically
through various transformations. Different datasets may benefit from different transforma-
tions, and it is not always obvious ahead of time how they should be designed. For instance,
in an application to develop models for estimating the age of a person from an image of
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their face, evolution was used to decide vertical and horizontal shift and cutout, as well as a
direction of flip operations, angle of rotation, degree of zoom, and extent of shear (Miikku-
lainen,Meyerson, et al. 2021). Unexpectedly, it chose to do vertical flips only—whichmade
little sense for faces, until it was found that the input images had been rotated 90 degrees! It
also discovered a combination of shift operations that allowed it to obfuscate the forehead
and chin, which would otherwise be easy areas for the model to overfit.

A particularly interesting use for evolved data augmentation is to optimize not only the
accuracy of the resulting models but also to mitigate bias and fairness issues with the data.
As long as these dimensions can be measured (Sharma, Henderson, and Ghosh 2020), they
can be made part of the fitness, or separate objectives in a multiobjective setting. Opera-
tions then need to be designed to increase variance across variables that might otherwise
lead to bias through overfitting—for instance gender, ethnicity, and socioeconomic status,
depending on the application. While evolutionary data augmentation is still new, this area
seems like a differentiated and compelling opportunity for it.

11.3.4 Learning methods
An interesting extension of NAS is to evolve the learning system not from high-level
elements, but from the basic algorithmic building blocks (mathematical operations, data
management, and ways to combine them)—in other words, by evolving code for super-
vised machine learning. In this manner, evolution can be more creative in discovering good
methods, with fewer biases from the human experimenters.

The AutoML-Zero system (Real et al. 2020) is a step towards this goal. Given an address
space for scalars, vectors, and matrices of floats, it evolves setup, predict, and learn methods
composed of over 50 basic mathematical operations. Evolution is implemented as a linear
GP, and consists of inserting and removing instructions and randomizing instructions and
addresses. Evaluation consists of computing predictions over unseen examples.

Starting from empty programs, AutoML-Zero first discovered linear models, followed
by gradient descent, and eventually several extensions known in the literature, such as
noisy inputs, gradient normalization, and multiplicative interactions (Figure 11.4). When
given small datasets, it discovers regularization methods similar to dropout; when given
few training steps, it discovers learning-rate decay.

Thus, the preliminary experiments with AutoML-Zero suggest that evolutionary search
can be a powerful tool in discovering entire learning algorithms. As in many metalearning
approaches, themain powermay be in customizing thesemethods to particular domains and
constraints. A crucial aspect will be to guide the evolution within the enormous search space
toward meaningful solutions, without hampering its ability to create, again a challenge
shared with most of metalearning.

11.3.5 Utilizing surrogates
While evolutionary metalearning can discover more effective neural network designs, it
is also challenging in three ways: It is computationally very expensive to evaluate all the
different designs; it is difficult to gain insight into what works; and it is not clear how the
search spaces should be defined so that they are fast to search and contain good solutions.

One way to make progress toward meeting these challenges is to perform a full search in
as large a search space as possible, thus forming a benchmark dataset that makes it possible
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Figure 11.4: Evolutionary Discovery of Learning Methods. At the highest level, met-
alearning extends to the learning mechanisms themselves. In AutoML-Zero (Real et
al. 2020), sequences of instructions for setup, prediction, and learning are evolved through
mutation-based regularized search. AutoML-Zero first discovered simple methods such
as linear models, then several known extensions such as ReLU and gradient normaliza-
tion, and eventually more sophisticated techniques such as multiplicative interactions. The
approach could potentially be useful in particular in customizing learning methods to dif-
ferent domains and constraints. (Figure from Real et al. 2020)

to analyze what works. These insights may then be used to construct a surrogate approach
that makes it possible to search in larger spaces without having to evaluate candidates
through full training.

Such an approach, AQuaSurF, was demonstrated in the task of discovering effective
activation functions (Bingham and Miikkulainen 2023b). Based on the work described in
Section 11.3.2, an exhaustive set of 2913 different activation functions were created from
a three-node computational graph of Pangaea and tested on three architecture/task settings,
All-CNN/CIFAR-10, ResNet-56/CIRAF-10, and MobileViTv2-0.5/Imagenette. Thus, they
covered basic convolutional, residual, and transformer designs in the visual domain. In each
case, the networks were trained fully to evaluate how well each function performed in the
particular setting.2

Most activation functions performed poorly, but a small number of functions performed
very well, confirming that activation-function metalearning is difficult but also worthwhile.
Most interestingly, two trends were also observed: (1) There were clusters of functions that
performed well across architectures and architectures, representing refinements of general
solutions; and (2) the very best performance in each setting was achieved by a few functions
that performed poorly in other settings, in other words, by activation functions that were

2. This dataset is available at https:// github.com/cognizant-ai-labs/act-bench.
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specialized to the architecture and task. This result suggests that metalearning can be most
powerful when it is used to customize the designs to the particular problem.

The benchmark collection was then used to construct an effective surrogate for full
network evaluations. It turned out that a combination of Fisher-information-matrix (FIM)
eigenvalues and the function shape is a powerful surrogate.

First, FIM quantifies how much information the network parameters carry about the
data distribution, and thus serves as a characterization of network behavior. It has been
used in many studies to illustrate learning ability, generalization, robustness to pertur-
bations, and loss-function shape of neural networks (Jastrzebski et al. 2021; T. Liang et
al. 2019; Liao et al. 2018; Karakida, Akaho, and Amari 2019). The information in FIM
is represented compactly in its eigenvalues; there are as many eigenvalues as there are
network weights, but they can be binned into a histogram of a lower dimensionality. The
histogram vector then forms a computational characterization of the network. Networks
with different activation functions have different such characterizations, and the space of
this FIM-eigenvalue-histogram vectors can be used as a surrogate search space for good
activation functions.

However, the FIM depends on other factors as well, including the architecture, loss
function, and data distribution, which makes them rather noisy. An additional surrogate
representation is useful in compensating for such noise: the shape of the activation func-
tion itself. This shape can be represented as a sampling of activation function values for
inputs distributed as N (0, 1), as they would be in a properly initialized network (Bingham
and Miikkulainen 2023a). Using both FIM and output together form a powerful surrogate
(Figure 11.5a): functions that perform similarly are clustered together, making it easy to
search for good functions.

Indeed the search for good activation functions was highly effective in this surrogate
space. Even a simple search like k-nearest neighbors regression could find the best functions
fast and reliably.

However, the surrogate approach also turned out effective in activation optimization
beyond the benchmark settings in three ways. First, it scaled up to a much larger search
space of 425,896 functions for which the performance was not known, as well as to the
harder CIFAR-100 task with the same architectures. In each case, it discovered new activa-
tion functions that performed better than any of the known functions so far. Second, those
discoveries also transferred to new settings: The best functions performed better than any
previously known functions on ResNet-50 on the full ImageNet dataset. Thus, it is possible
to discover good functions efficiently in smaller tasks and then use them to improve perfor-
mance in larger ones. Third, the approach also extended to new architectures and baseline
functions. For instance with CoAtNet Dai et al. 2021 on Imagenette, initialized with the
best previously known activation functions, the approach outperformed all baselines. Thus,
the surrogate approach is a powerful way to optimize designs for new settings.

Interestingly, AQuaSurF was able to achieve these results by balancing refinement and
novelty. Many of the functions it discovered were similar e.g. to the well-known func-
tions of ELU and Swish, with minor changes to their shape. This result suggests that
these are generally good functions, but also that such customizations matter; AQuaSurF
is well-equipped to find them.
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(a) Surrogate spaces (b) Using the sigmoid

Figure 11.5: Utilizing surrogates to discover surprising activation functions. Surrogate
modeling can be used to evaluate activation function candidates without full training, mak-
ing it possible to search in larger spaces which may result in more innovative solutions.
(a) UMAP embeddings of the 2913 activation functions in the three benchmark settings
(columns) in three different surrogate spaces: FIM eigenvalues (top row), function outputs
(middle row), and both (bottom row). UMAP is a dimensionality-reduction technique that
preserves the structure of high-dimensional spaces well, in this case 13692, 16500, and
11013 FIM eigenvalue histogram dimensions and 1000 function output samples. Function
performance is indicated by color coding. Similar colors cluster best in the bottom row,
suggesting that using both FIM and output features as the surrogate space makes search
for good functions the easiest. (b) The best activation function in the CoAtNet experiment
turned out to be a sigmoid. The histograms indicate values with which it is activated in
the network. At initialization (blue histogram), it is used similarly to ReLU; after training
(orange histogram) both saturation regions are used. This discovery suggests that sigmoidal
activations may be useful in specific situations, challenging the conventional wisdom in
deep learning. (Figures from Bingham and Miikkulainen 2023b)

However, in many cases, AQuaSurF also found designs that were very different from the
existing ones, yet performed at least as well. Some of them had discontinuous derivatives,
some did not saturate at either side, and some had positive instead of negative bumps. The
biggest surprise was discovered in the CoAtNet experiment on ImageNette (Figure 11.5b).
This function was essentially a sigmoid, similar to those used extensively during the early
days of neural networks, but largely discarded in favor of ReLU in deep learning. Why
would it be discovered again in these experiments?

In deep learning, the linearly increasing region of ReLU helped avoid vanishing gradi-
ents. Interestingly, if we look at how the sigmoid is used, by plotting which parts of the
function are actually activated during performance, it indeed provides behavior similar to
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ReLU early in training: The function is activated around the nonlinearity, but does not reach
the saturating region that occurs with larger activations. However, later training also takes
advantage of the saturating region. In this manner, the same activation function can be used
in two ways: presumably to keep the gradients from vanishing early, and to commit to
decisions later. This result challenges the common approach in deep learning design, and
demonstrates the power of neuroevolution in metalearning good designs.

In sum, surrogate optimization techniques make it possible to scale up neuroevolution
metalearning; in doing so, it is possible to identify principles that would be difficult for
human designers to discover.

11.3.6 Synergies
Perhaps the most important future direction in evolutionary metalearning is to discover and
utilize synergies between the different aspects of the learning system design. For instance,
the best performance was reached by optimization activation functions for the specific
architecture; It might be possible to optimize the architecture simultaneously to emphasize
this effect.

Simply running evolution on all these design aspects simultaneously is unlikely to work;
the search space would be prohibitively large. Similarly, adding more outer loops to the
existing process (where supervised learning is the inner loop and metalearning is the outer
loop) is likely prohibitive as well. However, it might be possible to alternate evolution of
different aspects. Better yet, techniques from bilevel (or multilevel) optimization could be
useful—the idea is to avoid full inner-outer loop structure, but instead use e.g. surrogate
models to evaluate outer loop innovations (Sinha et al. 2014; Liang andMiikkulainen 2015).

A practical approach is to simply add constraints, and search in a smaller space. A first
such step was already taken in the EPBT system (J. Liang et al. 2021), which combines
hyperparameter tuning, loss-function optimization, and population-based training (PBT)
into a single loop. That is, hyperparameters and loss functions are evolved at the same
time as the networks are being trained. Hyperparameter tuning is limited to those that do
not change the structure of the networks (e.g. learning rate schedules) so that they can
be continuously trained, even when the hyperparameters change. Similarly, loss-function
optimization is limited to TaylorGLO coefficients (J. Liang et al. 2021) that can be changed
while training is going on. Even so, the simultaneous evolution and learning was deceptive,
and needed to be augmented with two mechanisms: quality-diversity heuristic for manag-
ing the population and knowledge distillation to prevent overfitting. The resulting method
worked well on optimizing ResNet andWideResnet architectures in CIFAR-10 and SVHN,
but also illustrates the challenges in taking advantage of synergies of metalearningmethods.

Similarly, promising results were obtained in an experiment that compared human design
with evolutionary metalearning (Miikkulainen, Meyerson, et al. 2021). Using the same
datasets and initial model architectures, similar computational resources, and similar devel-
opment time, a team of data scientists and an evolutionarymetalearning approach developed
models for age estimation in facial images (Figure 11.6). The evolutionary metalearning
approach, LEAF-ENN, included optimization of loss functions (limited to linear combina-
tions of MSE and CE), learning hyperparameters, architecture hyperparameters, and data
augmentation methods. Evolution discovered several useful principles that the data scien-
tists were not aware of: Focusing data augmentation to regions that mattered most, and
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