250 Chapter 11

ReLU early in training: The function is activated around the nonlinearity, but does not reach
the saturating region that occurs with larger activations. However, later training also takes
advantage of the saturating region. In this manner, the same activation function can be used
in two ways: presumably to keep the gradients from vanishing early, and to commit to
decisions later. This result challenges the common approach in deep learning design, and
demonstrates the power of neuroevolution in metalearning good designs.

In sum, surrogate optimization techniques make it possible to scale up neuroevolution
metalearning; in doing so, it is possible to identify principles that would be difficult for
human designers to discover.

11.3.6 Synergies

Perhaps the most important future direction in evolutionary metalearning is to discover and
utilize synergies between the different aspects of the learning system design. For instance,
the best performance was reached by optimization activation functions for the specific
architecture; It might be possible to optimize the architecture simultaneously to emphasize
this effect.

Simply running evolution on all these design aspects simultaneously is unlikely to work;
the search space would be prohibitively large. Similarly, adding more outer loops to the
existing process (where supervised learning is the inner loop and metalearning is the outer
loop) is likely prohibitive as well. However, it might be possible to alternate evolution of
different aspects. Better yet, techniques from bilevel (or multilevel) optimization could be
useful—the idea is to avoid full inner-outer loop structure, but instead use e.g. surrogate
models to evaluate outer loop innovations (Sinha et al. 2014; Liang and Miikkulainen 2015).

A practical approach is to simply add constraints, and search in a smaller space. A first
such step was already taken in the EPBT system (J. Liang et al. 2021), which combines
hyperparameter tuning, loss-function optimization, and population-based training (PBT)
into a single loop. That is, hyperparameters and loss functions are evolved at the same
time as the networks are being trained. Hyperparameter tuning is limited to those that do
not change the structure of the networks (e.g. learning rate schedules) so that they can
be continuously trained, even when the hyperparameters change. Similarly, loss-function
optimization is limited to TaylorGLO coefficients (J. Liang et al. 2021) that can be changed
while training is going on. Even so, the simultaneous evolution and learning was deceptive,
and needed to be augmented with two mechanisms: quality-diversity heuristic for manag-
ing the population and knowledge distillation to prevent overfitting. The resulting method
worked well on optimizing ResNet and WideResnet architectures in CIFAR-10 and SVHN,
but also illustrates the challenges in taking advantage of synergies of metalearning methods.

Similarly, promising results were obtained in an experiment that compared human design
with evolutionary metalearning (Miikkulainen, Meyerson, et al. 2021). Using the same
datasets and initial model architectures, similar computational resources, and similar devel-
opment time, a team of data scientists and an evolutionary metalearning approach developed
models for age estimation in facial images (Figure 11.6). The evolutionary metalearning
approach, LEAF-ENN, included optimization of loss functions (limited to linear combina-
tions of MSE and CE), learning hyperparameters, architecture hyperparameters, and data
augmentation methods. Evolution discovered several useful principles that the data scien-
tists were not aware of: Focusing data augmentation to regions that mattered most, and

Optimization of Neural Network Designs 251

b
o
=3

DO Human Design: 3.79
L PSP PPRRNR A F1-- ot A s °

W
~
wu

w
[
=}

w
N
u

—&— DO Evolution
=@~ D1 Evolution

W
o
=}

Age Prediction MAE
5
w

N
w
o

D1 Human Design: 2.33

N
N
u

RN-50 S0 S1 DN-169 SO S1 S2 S3 sS4
Base Base

Evolution Stage

Figure 11.6: Utilizing Metalearning Synergies to Beat Human Designers. In this nat-
ural experiment, human experts and metalearning were both working at the same time to
improve the accuracy of age estimation from facial images. In two datasets (DO and D1),
LEAF-ENN evolutionary metalearning (Miikkulainen, Meyerson, et al. 2021) was able
to discover models that performed better than those simultaneously designed by human
machine learning engineers. The humans optimized the ResNet-50 architecture for DO and
EfficientNet-B8 for D1. The evolutionary runs progressed in stages: In DO, ResNet-50 (S0)
was expanded to Densenet 169 (S1); in D1, DenseNet-169 (S0) was expanded to DenseNet-
201 (S1) and trained longer (S2), then expanded to EfficientNet-B6 (S3), and ensembling
(S4). At the same time, evolution optimized learning and architecture hyperparameters,
data-augmentation methods, and combinations of loss functions. The approach discovers
and utilizes synergies between design aspects that are difficult for humans to utilize. The
final accuracy, MSE of 2.19 years, is better than typical human accuracy in age estimation
(3-4 years). (Figure from Miikkulainen, Meyerson, et al. 2021)

utilizing flips only horizontally across the face; utilizing different loss functions at differ-
ent times during learning; relying mostly on the output level blocks of the base models.
With both datasets, the eventual accuracy of the metalearned models was significantly bet-
ter than that of the models developed by the data scientists. This result demonstrates the
main value of evolutionary metalearning: It can result in models that are optimized beyond
human ability to do so.

11.4 Neuroevolution of Neuromorphic Systems

Neuromorphic computing, i.e. spiking neural networks designed to be implemented in hard-
ware, is a promising new area for neuroevolution. Such networks need to be energy efficient,
and therefore compact and complex, with many design parameters that need to be optimized
and customized. This general area is reviewed in this section, several examples are given,
and future opportunities are outlined.

252 Chapter 11

11.4.1 Neuromorphic computation

Neuromorphic computation, a field focusing on hardware implementation of neural net-
works, is a burgeoning field with a long history Catherine D. Schuman et al. 2017; James et
al. 2017. There are several motivations: neuromorphic circuits offer parallel computation
that results in real-time performance, they can be fault tolerant, such systems may learn
online, and they can be used to evaluate hypotheses in neuroscience. However, energy effi-
ciency has gradually emerged as the main goal over the years. Most of the implementations
are based on spiking neurons, as opposed to neurons that are activated with continuous
values representing firing rates. Such spikes require very little power, resulting in energy
savings of several orders of magnitude. As computation and Al move to the edge, i.e. sen-
sors and actuators in the field, power becomes a primary constraint on computation, and
neuromorphic designs offer a possible solution.

Although the full power of neuromorphic computing is still a way off, substantial
hardware designs have already been manufactured that demonstrate its potential. IBM’s
TrueNorth (Akopyan et al. 2015) is one and Intel’s Loihi (Davies et al. 2018) another, both
with 1M spiking neurons. It is therefore possible to generate neuromorphic methods and
have them run on these actual physical devices. However, the field is much more broad, and
many methods are proposed for a wide variety of conceptual devices. What makes the field
particularly interesting is that the resulting neural network architectures and algorithms are
often new and different, and not just hardware approximations of existing simulated neu-
ral networks such as backpropagation on a three-layer feedforward network. In that sense,
neuromorphic computing is driving innovation in neural networks.

Biology is the source for many such ideas in that many neuromorphic designs are
inspired by neuroscience. Some of them are also plausible, intended to capture principles
of biology closely enough to test hypotheses about it. For instance, spiking neurons can be
implemented at the level of Hodgkin-Huxley equations, i.e. the electrochemical balance of
compartments in the neural membrane. Such implementations allow studying single neuron
computation well. Other models like the Izhikevich neuron aim to replicate the bursting and
spiking behavior with simpler computation. The leaky-integrate-and-fire model simplifies
them further into integrating the spikes in each synapse over time (with decay), and firing
when a threshold is exceeded.

Learning in spiking networks is often based on spike-timing-dependent plasticity
(STDP). If a postsynaptic neuron fires shortly after the presynaptic neuron, it is possible
that the presynaptic firing caused the postsynaptic firing, and the connection is strength-
ened. Conversely, if the postsynaptic neuron fires shortly before the presynaptic neuron,
the connection is weakened. In this sense, STDP is a time-based refinement of the Hebbian
learning principle, i.e. that neurons that fire together wire together.

Note that STDP is an unsupervised learning method: there are no targets or gradients,
but simply an adaptation principle that applies to each connection independently. To make
learning more goal directed, learning mechanisms that approximate backpropagation have
also been proposed. A practical approach along these lines is to first train a standard simu-
lated firing-rate backpropagation network off-line, and then convert the resulting network
into a spiking neural network equivalent (Lu and Sengupta 2022). Such implementations
can achieve power savings, however, they do not take into account or utilize any further
properties of hardware systems such as delays and timing.

Optimization of Neural Network Designs 253

Thus, LIF neurons with an STDP learning rule are the most common implementation
of neuromorphic architectures. It has low energy requirements and is event driving, and
is thus suitable for many architectures and applications. The designs include hardware-
constrained circuits such as those of provided by TrueNorth and Loihi, brain-inspired
circuits, feedforward neural networks, and convolutional networks.

Interestingly, reservoir computing architectures have emerged as a popular design as
well, as a way to extend neuromorphic computing to time-varying problems. A reservoir is
a recurrent network that generates a time-varying signal that can then be processed with a
feedforward network, making it possible to recognize time series, or generate time-varying
behavior such as locomotion. The reservoir is initialized with random neurons and connec-
tion weights, and they are not modified, making them particularly useful for neuromorphic
computation, for instance through a memristor implementation.

The designs are often evaluated with standard machine learning tasks. However, the ulti-
mate applications range from vision and sensing to robotics and control. While it may
be possible to achieve better performance through e.g. deep learning, some of such tasks
need to be performed in physical devices at the edge with little power available. For
instance, visual and auditory signal detection, brain-machine interfaces, and central pattern
generators for locomotion may be such applications in the future.

Because neuromorphic designs are unique and varied, there is a great opportunity to
optimize them through neuroevolution, as will be discussed next.

11.4.2 Evolutionary optimization

Neuromorphic designs include many dimensions that can be optimized towards several
different objectives. For instance, the synaptic efficacy, activation decay, firing threshold,
refractory period, and transmission delay of LIF neurons can be adjusted; the connectivity of
the network can be changed, and the timing and extent of plasticity modified. Performance
in the task is one objective, energy consumption, size, and complexity of the network others.

Optimization of neuromorphic designs is thus a compelling application for neuroevo-
lution. First, gradients are often difficult to obtain with neuromorphic architectures and
in domains where they would be applied. Neuroevolution does not depend on gradients,
and it can therefore be used to implement supervised learning. It can therefore be used to
extend neuromorphic computing to many engineering applications. Second, while many
applications can be built with deep-learning designs, they are too large to be effectively
deployed at the edge. Neuroevolution often results in compact designs that are space and
energy-efficient. Third, it is possible to optimize the designs towards multiple objectives
simultaneously, including performance, energy consumption, size, complexity, and spe-
cific hardware restrictions. Fourth, evolution can be extended to include hardware design
as well, leading to the co-design of the hardware and the algorithms that run on it. Fifth,
while such optimization is compute-intensive, it can be done offline, taking advantage of
existing hardware simulators.

Many approaches to neuromorphic neuroevolution have been proposed, targeting differ-
ent aspects of hardware design. For instance, the Evolutionary Optimization of Neuromor-
phic Systems (EONS; C. D. Schuman et al. 2020) framework, the idea is to evolve a flexible
structure of nodes and edges, as well as many of their parameters such as the connection
weights, the time delay on the connections and neurons, activation thresholds, and leak rate.

254 Chapter 11

The system starts with a randomly initialized population represented as lists of nodes with
IDs and parameters; as usual, each generation of individuals is evaluated in the task, and
crossover and mutation applied to selected parents. The method is thus similar to NEAT but
includes many more parameters that are specific to neuromorphic hardware. Note EONS is
also generic and can be adjusted to different kind of hardware. Evolution is simple enough
so that it can be implemented in hardware at the edge, but usually it is done off-line using
a hardware simulator.

EONS has been tested on several standard benchmarks. For instance, in classification
tasks from the UCI database it resulted in simpler and more accurate solutions than standard
neuromorphic designs. Evolution also adapted the solutions to hardware constraints such as
the number of bits used to encode the weights. With a secondary objective to minimize the
number of nodes and connections, in addition to accuracy, it produced a range of tradeoffs.
Such experiments thus demonstrate the viability of hardware/algorithm co-design.

11.4.3 Examples

A particularly interesting application of EONS is to optimize reservoir architectures.
Although reservoir networks usually have a fixed structure and weights, and learning is
only done on the feedforward network that receives input from the reservoir, evolution can
be used to optimize the reservoir itself. Such optimization may include tuning its hyper-
parameters, connectivity, and even the weights. This optimization can be done before the
learning in the feedforward network, the feedforward network can be evolved directly at the
same time, or the trained performance of the feedforward network can be used as fitness for
reservoir evolution (Reynolds, Plank, and Schuman 2019; Iranmehr et al. 2019). Note that
even though these optimizations were developed for neuromorphic computing, they apply
to firing-rate versions of reservoir networks as well.

Evolutionary optimization of reservoir networks was shown to result in better perfor-
mance than e.g. the usual grid search for good designs. A particularly illustrative application
was to classify radar pulse sequences in order to identify movements of free electrons in the
ionosphere. The performance was close to other machine learning methods; the low-power
implementation may make it possible to deploy actual physical solutions even in satellites.

Along the lines of building better detectors, radiation anomaly detection is a simi-
lar potential killer app for neuromorphic computing (Ghawaly et al. 2022; Ghawaly et
al. 2023). As part of nuclear nonproliferation research, the challenge is to detect hidden
gamma-ray sources in an urban environment. This is a difficult task because the detection
needs to be done by moving through the normal accessible environment, and background
radiation varies significantly. Potential sources need to be detected as anomalies in the
observed levels that are very noisy, triggering an alarm for further study. As usual in such
tasks, the true positive rate needs to be increased while keeping the false alarm rate as low
as possible.

The task is well defined, with ANSI standards for acceptable detection levels for different
types of radiation, as well as standard datasets through which performance can be evaluated.
The best current approaches are based on machine learning: In a recent competition by US
Department of Energy, nine of the ten best methods were based on neural networks and
similar methods (Department of Energy 2019). However, such methods consume a lot of

Optimization of Neural Network Designs 255

energy, which limits their applicability in the field. Neuromorphic computing is a viable
alternative, offering real-time detection with much less energy usage.

In a series of experiments, EONS was set to design a network for this task. As usual,
EONS optimizes the topology and weights of the network, but also several hyperparam-
eters such as the encoding for the spikes, the delays on neurons and connections, neuron
leakage, spiking thresholds, and short-term memory between inferences. A threshold on
the spiking rate was used to trigger alarms, adjusted to an acceptable false-alarm rate. The
resulting designs had a sensitivity of about half of a compute-intensive PCA-based spectral
analysis method; thus, the energy savings still come with a cost. However, they met several
ANSI standards and performed better than a common ko baseline method, suggesting that it
may already be possible to deploy them in conditions where energy is at a premium. Most
interestingly, the best designs leveraged both spatial and temporal features in the signal,
taking advantage of short-term memory. Also, while the leakage rate was not important,
spike encoding mattered, with the number of spikes generated being the most powerful.
Such insights are useful in neuromorphic computing in particular because they can drive
co-design of the hardware, suggesting what elements are most useful to implement.

While low energy consumption is important in sensing, it can also be crucial for actu-
ators at the edge. For instance for autonomous cars, computing consumes 40 to 80% of
the power required for the control system (Baxter et al. 2018). Neuromorphic computing
could reduce this requirement significantly, thus extending battery life. This idea was tested
in the F1Tenth system, which is a 1/10 scale simulation and physical implementation of a
Formula One race car (Figure 11.7; C. Schuman et al. 2022).

Compared to imitation learning based on hand-designed waypoints, neuroevolution
resulted in architectures that performed better, although they took longer to train. This
improvement was due to discovering customized structure in the network; without it, the
results were not as good. Interestingly, the discovered network structures were also smaller
than the best hand-designed ones for imitation learning and evolution without structure
optimization. Since smaller networks are easier to deploy at the edge, with less energy
and space needed, neuroevolution again provides solutions that make physical hardware
implementations more realistic.

As a proof of concept, the evolved controllers were implemented on a circuit board on a
physical car and tested on a physical track setting. While the performance dropped some, as
is usual in transfer from simulation to the physical world, the driving was largely successful,
demonstrating actual neuromorphic control at the edge.

11.4.4 Future directions

Neuromorphic neuroevolution is a relatively new opportunity. The motivation from energy
consumption is compelling, and there are several encouraging results, but the performance
still needs to be improved and killer applications identified and implemented. However,
there are several ways in which it can be further developed and improved, which makes it
an interesting area for neuroevolution in the future.

While neural architecture search at the level of deep learning has become rather difficult,
due to extremely large networks and a few dominant architectures, the demands of neuro-
morphic computing are almost exactly the opposite. The networks need to be small, often
recurrent, and customized. There are many hyperparameters beyond the standard neural

256 Chapter 11

EONS SNN Performance Variation on Train and Test Tracks

Zandvoort{ L) L ¥

YasMarina{ C—FE @ }+— o

p [L) : 4

Sochi H 2)]

Silverstone 4 [() F—*

Shanghai| C—®&——————————
\ > Sepang{ [} e
SaoPaulo H L) I *

Sakhir| CCL—& — }+—+

Oschersleben{ [T) —

Nuerburgring () ¥

MoscowRaceway { € 3

Monza{ & L]

Melbourne C * I []]

Hockenheim | —] ® o o

Montreal I * []]

Catalunya o -

Budapest @

BrandsHatch o []

Austin q [e)fee] o ® O *
0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Two Laps Completed
(a) FITENTH physical car (b) Performance on simulated tracks

Figure 11.7: Evolving a neuromorphic race car controller. Neuromorphic control can
reduce the energy consumption of both sensing and actuation, which is crucial in appli-
cations at the edge, such as self-driving cars. (a) The physical platform was a FITENTH
robotic vehicle, intended to represent 1/10 of a Formula One race car. The controller was
implemented on the pCaspian neuromorphic development board. (b) Performance of the
neuroevolved controller on various simulated race tracks. The bottom five were used for
training and the two 15 for testing. Performance was measured in x-axis as the fraction of
two laps completed. The box plots show the distribution of the best networks found in 30
evolution runs; the red star is the network with the best average performance. Some tracks
are more difficult than others, but evolution discovered networks that performed well on
all of them, and the best network on nine of the 15. When transferred to a real-world track
(not shown), performance was not as good as in simulation, but still demonstrated a prac-
tical implementation of a neuromorphic controller at the edge. Figures from C. Schuman
et al. 2022

network ones, such as delays, leakage, thresholds, spike encoding, and short-term memory.
The designs are constrained by restrictions and properties of the actual hardware where
they will eventually run.

As a result, there are many opportunities for neuroevolution. As with deep neuroevo-
lution, the overall topology, i.e. neurons and their connectivity, is important, but also
because the networks are compact, the connection weights can be optimized directly. The
hyperparameters make the optimization problem complex but also provide an opportunity
for further improvement and customization. New learning mechanisms may be developed
through neuroevolution, improving upon STDP and perhaps providing practical methods
for online supervised learning. Information about not only spike timing across an individ-
ual synapse may be used, but also timing across multiple synapses and their history. There
may be opportunities to leverage imperfections and other properties of physical devices,
and even interactions between them like coupling.

Perhaps the most exciting opportunity is the co-design of neuromorphic architectures
and hardware. It may be possible to establish a cooperative coevolutionary mechanism that
modifies both aspects simultaneously, resulting in an optimal fit not unlike the brain and
behavior coevolution discussed in Section 14.5. There are several constraints on both sides
on size, communication, and complexity, but they can possibly be incorporated into the

Optimization of Neural Network Designs 257

search and evaluation mechanisms. As a result, entirely new architectures and algorithms
may be discovered, and customized to the task to be solved. Such an approach may indeed
prove crucial in moving more computing to the edge in the future.

11.5 Chapter Review Questions

. Complex System Design: What are the main advantages of using evolutionary opti-

mization for designing complex systems, such as VLSI circuits or neural networks,
compared to traditional human-driven approaches?

Bilevel Neuroevolution: How does bilevel neuroevolution enhance the performance of
neural networks? Why is surrogate modeling crucial in this process?

Loss Function Optimization: Discuss how evolutionary techniques discovered the
”Baikal Loss” function, and its impact on regularization and robustness in neural
networks.

Activation Functions: Explain the role of activation functions in neural network per-
formance and how evolutionary approaches like Pangaea can customize activation
functions for specific architectures and tasks.

Data Augmentation: Describe how evolutionary optimization can be applied to data
augmentation. Provide examples of transformations discovered during such processes.

. Learning Methods: What are the key findings of the AutoML-Zero system? How

does it demonstrate the potential of evolutionary approaches in discovering fundamental
learning algorithms?

Synergies in Metalearning: Why is it challenging to optimize multiple aspects of neural
network design simultaneously? How can these challenges be addressed in evolutionary
metalearning to outperform human-designed models?

Neuromorphic Computation: What are the key advantages of neuromorphic comput-
ing, particularly in the context of energy efficiency and edge applications? How do
spiking neural networks differ from traditional neural networks in achieving these goals?

. Evolutionary Optimization in Neuromorphic Systems: How does the Evolutionary

Optimization of Neuromorphic Systems (EONS) framework adapt standard neuroevo-
lution methods for neuromorphic hardware? What unique parameters does it optimize
compared to traditional neural networks?

. Applications and Future Directions: Discuss how neuromorphic neuroevolution has

been applied in tasks such as reservoir optimization, radiation anomaly detection, and
autonomous vehicle control. What are some future opportunities and challenges in
combining hardware and algorithm co-design in neuromorphic systems?

	Foreword
	Website
	Preface
	Acknowledgments
	1 Introduction
	1.1 Evolving neural networks
	1.2 Extending creative AI
	1.3 Improving the world
	1.4 Plan for the book
	1.5 Hands-on Exercises for the Book
	1.6 Chapter Review Questions

	2 The Basics
	2.1 Evolutionary Algorithms
	2.1.1 Simple Genetic Algorithm
	2.1.2 Simple Evolution Strategy
	2.1.3 Covariance-Matrix Adaptation Evolution Strategy (CMA-ES)
	2.1.4 Natural Evolution Strategies
	2.1.5 OpenAI ES
	2.1.6 Fitness Shaping
	2.1.7 Try these algorithms yourself

	2.2 Neural Networks
	2.2.1 Feedforward Neural Networks (FNNs)
	2.2.2 Recurrent Neural Networks (RNNs)
	2.2.3 Long Short-Term Memory Networks (LSTMs)
	2.2.4 Convolutional Neural Networks (CNNs)
	2.2.5 Transformers

	2.3 Conclusion and End-of-Chapter Questions
	2.4 Chapter Review Questions

	3 The Fundamentals of Neuroevolution
	3.1 Evolution Strategies for Reinforcement Learning
	3.2 Evolving Robust Policies for Bipedal Walker
	3.3 Evolving Convolutional Neural Networks
	3.4 Topology and Weight Evolving Networks: The NEAT Method
	3.5 Neuroevolution vs. deep learning
	3.6 Chapter Review Questions

	4 Indirect encodings
	4.1 Why indirect encodings?
	4.2 Developmental processes
	4.2.1 Cell-Chemistry Approaches
	4.2.2 Grammatical Encodings
	4.2.3 Learning approaches

	4.3 Indirect encoding through hypernetworks
	4.3.1 Compositional Pattern Producing Networks
	4.3.2 Case Study: Evolving Virtual Creatures with CPPN-NEAT
	4.3.3 Hypercube-based NEAT (HyperNEAT)
	4.3.4 Evolvable Substrate HyperNEAT
	4.3.5 General Hypernetworks and Dynamic Indirect Encodings

	4.4 Self-attention as dynamic indirect encoding
	4.4.1 Background on Self-Attention
	4.4.2 Self-Attention as a Form of Indirect Encoding
	4.4.3 Self-attention Based Agents

	4.5 Chapter Review Questions

	5 Searching for / utilizing diversity
	5.1 Genetic diversity
	5.2 Behavioral diversity
	5.3 Novelty Search
	5.4 Quality Diversity Methods
	5.4.1 Novelty Search with Local Competition
	5.4.2 MAP-Elites
	5.4.3 Nuts and Bolts of QD Implementation

	5.5 Multiobjectivity
	5.6 Ensembling
	5.7 Utilizing population culture and history
	5.8 Chapter Review Questions

	6 Neuroevolution of Behavior
	6.1 From control to strategy
	6.1.1 Successes and challenges
	6.1.2 Discovering robust control
	6.1.3 Transfer to physical robots
	6.1.4 Discovering flexible strategies
	6.1.5 Evolving cognitive behaviors
	6.1.6 Utilizing stochasticity, coevolution, and scale

	6.2 Decision making
	6.2.1 Successes and challenges
	6.2.2 Surrogate modeling
	6.2.3 Case study: Mitigating climate change through optimized land use
	6.2.4 Case study: Optimizing NPIs for COVID-19
	6.2.5 Leveraging human expertise

	6.3 Chapter Review Questions

	7 Neuroevolution of Collective Systems
	7.1 Cooperative Coevolution
	7.1.1 Evolving a single neural network
	7.1.2 Evolving a team

	7.2 Competitive coevolution
	7.2.1 Evolving single neural networks
	7.2.2 Evolving multiple teams

	7.3 Cellular Automata
	7.3.1 Evolving Neural Cellular Automata
	7.3.2 Growing functional machines
	7.3.3 Case study: Evolving Video Game Levels with NCAs and QD
	7.3.4 Neural Developmental Programs
	7.3.5 Synergistic Combinations of Neuroevolution and Differentiable Programming

	7.4 Chapter Review Questions

	8 Interactive Neuroevolution
	8.1 The NERO Machine Learning Game
	8.2 Incorporating human knowledge
	8.3 Collaborative Neuroevolution
	8.3.1 Evolving Game Content

	8.4 Making Human Contributions Practical
	8.5 Chapter Review Questions

	9 Open-ended Neuroevolution
	9.1 Openended Discovery of Complex Behavior
	9.1.1 Neutral mutations with weak selection
	9.1.2 Extinction events
	9.1.3 Evolvable representations
	9.1.4 Expressive Encodings
	9.1.5 Major Transitions
	9.1.6 Openended Evolution of Intelligence

	9.2 Cooperative coevolution of body and brain
	9.3 Competitive coevolution of environments and solutions
	9.3.1 The Influence of Environments
	9.3.2 Co-Evolving Agents and Their Environments
	9.3.2.1 Paired Open-Ended Trailblazer (POET)
	9.3.2.2 Learning to Chase-and-Escape

	9.4 Chapter Review Questions

	10 Evolutionary Neural Architecture Search
	10.1 Neural Architecture Search with NEAT
	10.2 NAS for Deep Learning
	10.3 Example NAS successes
	10.3.1 LSTM Designs
	10.3.2 CoDeepNEAT
	10.3.3 AmoebaNet

	10.4 Multiobjective and multitask NAS
	10.5 Making NAS practical
	10.6 Beyond Neural Architecture Search
	10.7 Chapter Review Questions

	11 Optimization of Neural Network Designs
	11.1 Designing complex systems
	11.2 Bilevel neuroevolution
	11.3 Evolutionary Metalearning
	11.3.1 Loss functions
	11.3.2 Activation functions
	11.3.3 Data use and augmentation
	11.3.4 Learning methods
	11.3.5 Utilizing surrogates
	11.3.6 Synergies

	11.4 Neuroevolution of neuromorphic systems
	11.4.1 Neuromorphic computation
	11.4.2 Evolutionary optimization
	11.4.3 Examples
	11.4.4 Future directions

	11.5 Chapter Review Questions

	12 Synergies with Reinforcement Learning
	12.1 RL vs. NE
	12.2 Synergistic Combinations
	12.2.1 Evolutionary Reinforcement Learning
	12.2.2 Evolving Value Networks for RL
	12.2.3 Evolutionary Meta-Learning

	12.3 Evolving Neural Networks to Reinforcement Learn
	12.3.1 Evolving Hebbian Learning Rules
	12.3.2 Learning when to learn through neuromodulation
	12.3.3 Indirectly encoded plasticity
	12.3.4 Learning to continually learn through networks with external memory
	12.3.5 Exercises

	12.4 Scaling Up
	12.4.1 Exercise on Scaling up NE

	12.5 Chapter Review Questions

	13 Synergies with Generative AI
	13.1 Background on Large Language Models
	13.2 Evolutionary Computing Helps Improve LLMs
	13.2.1 Evolutionary Prompt Engineering/Adaptation
	13.2.2 Evolutionary Model Merging

	13.3 LLMs Enhances Evolutionary Computing
	13.3.1 Evolution through Large Models
	13.3.2 LLM As Evolution Strategies

	13.4 World Models
	13.4.1 A Simple World Model for Agents
	13.4.2 Using the World Model for Feature Extraction
	13.4.3 Training an Agent using the World Model as a Neural Simulator of Reality

	13.5 Chapter Review Questions

	14 What Neuroevolution Can Tell Us About Biological Evolution?
	14.1 Understanding neural structure
	14.2 Evolutionary Origins of Modularity
	14.3 Understanding Neuromodulation
	14.4 Developmental processes
	14.4.1 Synergetic development
	14.4.2 Development through genetically directed learning

	14.5 Constrained evolution of behavior
	14.6 Understanding evolutionary breakthroughs
	14.7 Evolution of Language
	14.7.1 Biology of language
	14.7.2 Evolving Communication
	14.7.3 Evolution of Structured Language

	14.8 Chapter Review Questions

	Notes
	References
	Index

