
13 Synergies with Generative AI

13.1 Background On Large Language Models

Large Language Models (LLMs), such as OpenAI’s GPT series, represent a significant
advancement in the field of artificial intelligence. These models are characterized by their
vast scale and capacity to process and generate human-like text, making them powerful
tools for a variety of language-based tasks. The backbone of these models is the transformer
architecture, introduced by Vaswani et al. 2017, which employs a self-attention mechanism
allowing the model to consider the importance of all other words in a sentence, regardless
of their positional distance from the word being processed.

This self-attention mechanism simplifies the handling of long-range dependencies in
text, which is critical for tasks such as summarizing a long document or understanding the
nuances in a conversation. Unlike models that rely on recurrent layers, the transformer’s
architecture allows for parallel processing of data, increasing efficiency and scalability
when managing the large datasets essential for training LLMs. Self-attention was described
in Section 4.4.

LLMs undergo extensive pre-training on large text corpora, learning to predict the next
token in a sequence. This foundational training, as seen in models like BERT (Devlin et
al. 2018), is not just aboutmassive data ingestion. Researchers also fine-tune various aspects
such as the ratio of different data types in the training set, the learning rate, and other training
parameters to optimize performance. This meticulous tuning process enhances the model’s
ability to understand context and generate coherent responses.

The performance of LLMs also adheres to scaling laws, as explored in Kaplan et al. 2020.
These laws demonstrate that model performance improves logarithmically with increases
in size, data volume, and computational power, emphasizing the crucial role of data scale.
Large-scale data not only aids in training more accurate models but also ensures a broader
linguistic coverage, allowing the models to generalize better across various tasks. This
extensive data requirement underpins the significance of scaling laws in predicting the
effectiveness of LLMs as they grow increasingly large.

Regarding applications, LLMs extend far beyond powering chatbots and enter the realm
of broader uses, such as serving as autonomous agents that oversee software interac-
tions or operate robotic interfaces. These ventures into agent-centric and tool-use appli-
cations underscore the versatility and transformative potential of LLMs across diverse
technological and human interaction domains.

284 Chapter 13

However, despite their extensive pre-training, LLMs in their raw form are not fully
equipped to handle specialized tasks directly. The transition from a general linguistic under-
standing to specific real-world applications requires significant post-training optimization.
This critical phase involves fine-tuning the model on task-specific datasets, which refines
its responses according to particular needs. Additionally, the use of prompt-engineering
enhances how models interpret and respond to queries, making them more effective and
adaptable. These adaptations are essential for tailoring LLMs to specialized functions,
ranging from conversational AI to more intricate and domain-specific applications.

While the current trend predominantly focuses on constructing larger models trained
on increasingly vast datasets—a strategy consistently rewarded by the scaling law—there
exists a parallel strand of research that employs evolutionary computing to enhance LLMs
in innovative and less conventional manners (Wu et al. 2024; Chao et al. 2024), as we will
explore in subsequent sections.

13.2 Evolutionary Computing Helps Improve LLMs

13.2.1 Evolutionary Prompt Engineering/Adaptation
To adapt LLMs for specific downstream tasks, adding an instruction to the input text, known
as a discrete prompt, directs the LLMs to perform desired tasks with minimal computational
cost. This method eliminates the need for direct manipulation of parameters and gradients,
making it especially suitable for LLMs with black-box APIs like GPT-4 (OpenAI 2023)
and Gemini (Anil, Borgeaud, et al. 2023). However, the efficacy of LLMs in executing spe-
cific tasks heavily relies on the design of these prompts, a challenge commonly addressed
through prompt engineering.

Prompt engineering often requires extensive human effort and expertise, with approaches
ranging from enumerating and selecting diverse prompts to modifying existing ones to
enhance performance. These methods can lead to a cycle of exploration, which might con-
sume resources without substantive gains, or exploitation, which may confine the search to
local optima and stifle broader improvements. Evolutionary algorithms, which are partic-
ularly suited for discrete prompt optimization, offer a robust alternative. These algorithms
view sequences of phrases in prompts as gene sequences, allowing for natural evolutionary
processes to be mirrored in prompt adaptation.

Taking this concept further, the evolutionary process can be used to maintain a diversity
of prompts, helping to avoid diminishing returns seen in conventional prompt engineering
methods. This is achieved by using the LLM itself to modify prompts as well as the strategy
for prompt modification, leading to self-referential self-improvement. This approach not
only harnesses the LLM’s linguistic capabilities but also its ability to iteratively refine the
prompts based on performance feedback. By doing so, LLMs can adapt promptsmore effec-
tively to the domain at hand, continually improving both the prompts and the methodology
by which they are evolved.

This integrated approach leverages evolutionary algorithms and the self-referential capa-
bilities of LLMs to create a dynamic prompt engineering process that not only enhances the
performance of LLMs on specific tasks but also propels the field towards more autonomous

Synergies with Generative AI 285

and efficient use of foundational models for a wide range of applications. As representa-
tive works in this area, we introduce two approaches EvoPrompt (Guo et al. 2023) and
Promptbreeder (Fernando et al. 2023) in this section.

EvoPrompt optimizes prompts for language models by employing evolutionary algo-
rithms, specifically the Genetic Algorithm (GA) and the Differential Evolution (DE). These
algorithms are especially suited for situations where direct access to the model’s gradients
and parameters is not possible, such as when interacting with LLMs through black-box
APIs. Figure 13.1 give the GA process in EvoPrompt. The DE process is similar and is not
elaborated here.

Genetic Algorithm (GA) Implemented by LLMs
Query:
Please follow the instruction step-by-step to generate a better prompt.
1. Cross over the following prompts and generate a new prompt:

2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed with
<prompt> and </prompt>.

Response:

Prompt 2: Assign a sentiment label to the given sentence from ['negative',
'positive'] and return only the label without any other text.

Prompt 1: Now you are a categorizer, your mission is to ascertain the
sentiment of the provided text, either favorable or unfavourable.

!"#$$#%&"

1. Crossover Prompt: Your mission is to ascertain the sentiment of the
provided text and assign a sentiment label from ['negative', 'positive’].

2. <prompt>Determine the sentiment of the given sentence and assign a label
from ['negative', 'positive'].</prompt>

'()*)&

Figure 13.1: GA process in EvoPrompt. In Step 1, LLMs perform crossover on the given
two prompts (words in orange and blue are inherited from Prompt 1 and Prompt 2, respec-
tively). In Step 2, LLMs perform mutation on the prompt. (Figure from Guo et al. 2023)

The evolutionary process begins with a set of initial prompts that leverage the wisdom
of humans and a development dataset, where each prompt is evaluated based on how effec-
tively it elicits the desired responses from the language model. Throughout a series of
iterations, prompts are selected based on their performance scores. New prompts are then
generated through evolutionary operations that include combining elements from multiple
selected prompts (crossover) and introducing random variations (mutation). The prompts to
introduce these operations are illustrated in Figure 13.1. These newly created prompts are
subsequently evaluated, and those with superior performance are retained for further refine-
ment in subsequent iterations. This cycle of selection, generation, and evaluation repeats,
progressively enhancing the quality of the prompts. A key innovation of this method is the
use of the LLM itself to generate new candidate prompts based on evolutionary instruc-
tions. This melds the model’s advanced natural language processing capabilities with the
strategic optimization power of evolutionary algorithms.

286 Chapter 13

In a comprehensive evaluation of the EvoPrompt method, various experiments were con-
ducted across multiple tasks, including language understanding, language generation, and
the particularly challenging Big Bench Hard (BBH) tasks. While the EvoPrompt method
demonstrated impressive results across all tasks, the performance on BBH is notably rep-
resentative of its capabilities and generalizes well as BBH is a widely accepted benchmark.
For the BBH tasks, the EvoPrompt method was applied to optimize prompts specifically
for the GPT-3.5 model. A subset of the test set was used as the development set to iter-
atively refine the prompts, with the final performance reported as normalized scores, see
Figure 13.2. The results were striking: EvoPrompt achieved substantial improvements
across all 22 evaluated tasks. Specifically, the DE variant of EvoPrompt led to as much
as a 25% improvement in some tasks, with an average improvement of 3.5%. In compari-
son, the GA variant also performed well but slightly lower, reaching a peak improvement
of 15% and an average of 2.5%.

Figure 13.2: Normalized scores on Big Bench Hard (BBH) tasks for EvoPrompt. Since
the tasks are challenging, GPT-3.5 was used as the LLM. Score normalization is calcuated
in comparison to the prompt “Let’s think step by step” with a 3-shot Chain-of-Thought
demonstration. (Figure from Guo et al. 2023)

Promptbreeder introduces a sophisticaed system for evolving prompts that enhance the
performance of LLMs in specific domains, see Figure 13.3 for an overview of the method.
Like EvoPrompt, it automates the exploration of prompts by utilizing evolutionary algo-
rithms to generate and refine task prompts that condition LLMs for better responses. In
promptbreeder, each task prompt serves to condition the context of an LLM before addi-
tional input, aiming to elicit superior responses. The system evaluates the effectiveness of
each prompt by testing it on a batch of domain specific Q&A pairs. This evalution informs
the evolutionary process, where prompts are iteratively refined. A unique and novel feature
of Promptbreeder is its self-referential mechanism, where it applies evolutionary algorithms
not just to task prompts but also to the mutation prompts. These mutation prompts guide
the generation of new task prompts and are themselves subject to evolution. This “meta-
learning” style evolution process ensures continuous improvement in the quality and the
relevance of the prompts.

Concretely speaking, Promptbreeder starts with an initial set of task prompts and muta-
tion prompts, derived from combining domain specific problem descriptions with varied
“thinking styles” and mutation strategies. This initial population is crucial as it sets the
baseline for the evolutionary process, incorporating a rich diversity of approaches and

Synergies with Generative AI 287

Thinking
Styles

“Let’s think step by step” + “Change this instruction to make it more fun” +
“INSTRUCTION:” + “Solve this math word problem” + “INSTRUCTION MUTANT = ”

Mutation
Prompts

Sample Sample

Problem Description

specific to GSM8K, AQuA,
ETHOS, SVAMP etc.

 LLM “Make up a systematic answer that
makes you look quite clever”

 P: "Make up a systematic answer that makes you look quite clever"
 M: "Change this instruction to make it more fun"

 P: "Draw a diagram representing the math problem"
 M: "Mutate the prompt with an unexpected twist"

 P = "Let’s think step through this maths problem"
 M = "Modify the instruction like no self-respecting LLM would"

 P: "SOLUTION:"
 M: "Consider how a better teacher would put this"

0.2

0.4

0.1

0.9

PopulateMutate N

Replace

Initialization of Population of Task-Prompts and Mutation-Prompts

Population (N Task-Prompts and their Mutation-Prompts)

Estimated fitness from a batch of training Q&A pairs

Direct Mutation Estimation of
Distribution Mutation

Hyper Mutation
Mutate mutation-prompt

Lamarckian Mutation
Generate task-prompt
from the "working out"

Prompt Crossover
and

Context Shuffling

Mutation Operators

Figure 13.3: Overview of Promptbreeder. This process begins with a set of problem
description and initial prompts, creating evolution units with task and mutation-prompts.
Using a binary tournament genetic algorithm, it evaluates and iteratively refines these
prompts across generations, enhancing their effectiveness and domain-specific adaptation.
(Figure from Fernando et al. 2023)

perspectives right from the beginning. As depicted in Figure 13.4, Promptbreeder utilizes
LLMs as a fundamental component of its mutation operators. These operators are tasked
with generating new versions of task prompts by applying transformations dictated by
mutation prompts. Each mutation prompt influences how a task prompt is altered, ensuring
that the evolution is guided by strategies that are likely to improve performance based on
previous iterations.

The mutation process in Promptbreeder includes direct mutations where new task
prompts are generated from existing ones by applying simple changes, and more com-
plex mutations where multiple prompts are combined or significantly altered to explore
new prompt spaces. This process is depicted through various mutation mechanisms in the
Figure 13.4. One of the standout features of Promptbreeder is its self-referential mecha-
nism, where the system not only evolves task-prompts but also the mutation-prompts that
guide their evolution. This recursive improvement process ensures that the system becomes
increasingly effective over time. The mutation-prompts themselves are subject to evolution,
optimized to produce more effective task-prompts as the system learns from its successes
and failures.

Promptbreeder has been tested across a variety of domains to evaluate its effectiveness in
optimizing prompts for LLMs. These domains include arithmetic reasoning, commonsense
reasoning, instruction induction, and hate speech classification. The results indicate that
Promptbreeder consistently outperforms the previously considered state-of-the-art Plan-
and-Solve (PS+) technique. In tests using the underlying LLM PaLM 2-L, PB showed
superior performance on almost all datasets. Notably, its zero-shot accuracy surpasses that

288 Chapter 13

Figure 13.4: Overview of multiple variants of self-referential prompt evolution. In (a),
the LLM is directly used to generate variations P′ of a prompt strategy P. Using a mutation
prompt M, we can explicitly prompt an LLM to produce variations (b). By using a hyper
mutation prompt H, we can also evolve the mutation prompt itself, turning the system into
a self-referential one (c). Promptbreeder (d) improves the diversity of evolved prompts and
mutation prompts by generating an initial population of prompt strategies from a set of
seed thinking-styles T , mutation-prompts M , as well as a high level description D of the
problem domain. (Figure from Fernando et al. 2023)

of PS+ in all tests. When few-shot examples are incorporated with the prompts, Prompt-
breeder shows even more significant improvement, highlighting its robustness in both
zero-shot and few-shot scenarios. A specific example of Promptbreeder’s capability is
demonstrated in its application to the ETHOSHate Speech Classification problem. Prompt-
breeder evolved a strategy involving two sequentially applied, relatively long prompts that
significantly outperformed the manually designed prompt, see the following box for refer-
ence. This adaptation resulted in an accuracy improvement from 80% to 89%, illustrating
Promptbreeder’s potential for intricate domain-specific task adaptation.

Synergies with Generative AI 289

Prompt 1: "Text contains hate speech if it includes any of the following:
* Words or phrases that are derogatory, disrespectful, or dehumanizing
toward a particular group of people. * Statements that generalize about
a particular group of people in a negative way. * Statements that incite
hatred or violence against a particular group of people. * Statements that
express a desire for the extermination or removal of a particular group
of people. 7 : Text contains hate speech if it contains language that is
hostile or discriminatory towards a particular group of people. This could
include language that is racist, sexist, homophobic, or other forms of hate
speech. Hate speech is harmful because it can create a hostile environment
for marginalized groups and can lead to discrimination and violence."
Prompt 2: "You are given a piece of text from the internet. You are supposed
to label the text as Hate Speech or Not based on the given criteria. Hate
Speech is defined as speech that is intended to incite hatred or violence
against a particular group of people based on their race, religion, sex,
sexual orientation, or national origin. The given criteria are: 1. Identify
the target group of the speech. This can be a specific group of people,
such as a race, religion, or gender, or it can be a more general group, such
as people with disabilities or sexual minorities. 2. Identify the harmful
speech. This can be speech that is threatening, abusive, or derogatory. 3.
Evaluate the context of the speech. This can include the speaker's intent,
the audience, and the time and place of the speech. The advice was: Remember
to always evaluate the context of the speech when making a determination as
to whether it is hate speech or not. Speech that is intended to be humorous
or satirical may not be considered hate speech, even if it contains harmful
language."

While both Promptbreeder and EvoPrompt utilize evolutionary algorithms to optimize
prompts, there are distinct differences in their methodologies and focus. EvoPrompt pri-
marily concentrates on refining prompts through direct evolutionary operations, such as
crossover and mutation, driven by performance evaluations. It uses a more traditional
approach where the evolutionary process is straightforward and focused primarily on
task prompts alone. In contrast, Promptbreeder introduces a more complex and layered
approach by not only evolving the task prompts but also the mutation prompts that guide
the task prompt evolution. This self-referential approach allows Promptbreeder to adapt
more dynamically to the nuances of different domains by continually refining the mecha-
nisms of prompt evolution itself. Despite these differences, both examples demonstrate the
potential of evolutionary computing to significantly enhance the performance of LLMs in
seemingly straightforward ways. In the following section, we will explore how evolution-
ary algorithms can be applied to merge multiple LLMs, resulting in a composite model that
embodies a superset of the capabilities of its constituent models.

290 Chapter 13

13.2.2 Evolutionary Model Merging
The intelligence of the human species is not based on a single intelligent being, but based
on a collective intelligence. Individually, we are actually not that intelligent or capable.
Our society and economic system is based on having a vast range of institutions made
up of diverse individuals with different specializations and expertise. This vast collective
intelligence shapes who we are as individuals, and each of us follows our own path in
life to become the unique individual, and in turn, contribute back to being part of our
ever-expanding collective intelligence as a species. Some researchers believe that the devel-
opment of artificial intelligence will follow a similar, collective path. The future of AI will
not consist of a single, gigantic, all-knowing AI system that requires enormous energy to
train, run, and maintain, but rather a vast collection of small AI systems–each with their
own niche and specialty, interacting with each other, with newer AI systems developed to
fill a particular niche.

A noticing and promising trend in the open-source AI ecosystem is that, open-source
foundation models are readily extended and fine-tuned in hundreds of different directions
to produce new models that are excellent in their own niches. Unsurprisingly, most of the
top performing models on Open LLM leaderboards are no longer the original open base
models such as LLaMA or Mistral, but models that are fine-tunes or merges of existing
models. Furthermore, open models of different modalities are being combined and tuned to
be Vision-Language Models (VLMs) which rival end-to-end VLM models while requiring
a fraction of the compute to train. Model merging shows great promise and democratizes
up model-building to a large number of participants. However, it can be a “black art”, rely-
ing heavily on intuition and domain knowledge. Human intuition, however, has its limits.
With the growing diversity of open models and tasks, we need a more systematic approach.
Evolutionary algorithms, inspired by natural selection, can unlock more effective merging
solutions. These algorithms can explore a vast space of possibilities, discovering novel and
unintuitive combinations that traditional methods and human intuition might miss. In their
paper (Akiba et al. 2024), researchers introduced Evolutionary Model Merge, a general
evolutionary method to discover the best ways to combine different models. Their method
combines two different approaches: (1) Merging models in the Data Flow Space (Layers),
and (2) Merging models in the Parameter Space (Weights). See Figure 13.5 for illustration.

Synergies with Generative AI 291

Our Merged ModelsCollection of Models

M
od

el
La

ye
rs M

erge in PS

M
erge in DFS

M
erge in both

Q1: Mishka bought 3 pairs of shorts, 3 pairs of long pants, and 3 pairs of shoes. … How much were spent on all the clothing?
Q2: Cynthia eats one serving of ice cream every night. … How much will she have spent on ice cream after 60 days?

…

A1:

✅

A2:

❎

…
Accuracy: 0.18

A1:

❎

A2:

✅

…
Accuracy: 0.31

A1:

✅

A2:

✅

…
Accuracy: 0.52

A1:

✅

A2:

✅

…
Accuracy: 0.36

A1:

✅

A2:

✅

…
Accuracy: 0.56

Figure 13.5: Overview of evolutionary model merging. (Figure from Akiba et al. 2024)

Info Box: The Intersection of EC and LLMs
At the beginning of generative AI innovation, I (Yujin Tang) began my journey

at Google Brain, and later merged into Google DeepMind, primarily focusing on
evolutionary algorithms and their applications. The release of GPT-3 inspired me to
explore the symbiotic potential between evolutionary computing (EC) and LLMs.
With access to a suite of Google internal LLMs and early tests of Gemini, a bunch
of us recognized LLMs as exceptional pattern recognition machines. This led to
our works (Lange, Tian, and Tang 2024a, 2024b) that explored the possibility of
enhancing EC with pre-trained and fine-tuned LLMs.

At the same time, despite the prowess of LLMs in understanding of generat-
ing complex patterns, I noted the significant challenges associated with fine-tuning
these models for specific tasks. This process demanded extensive engineering, pre-
dominantly leaning on gradient-based methods, also a path heavily tread by giants
like Google, Meta and OpenAI.

Later when I joined Sakana AI, I attempted to apply the NEAT algorithm to
LLMs, treating each layer as an independent node. This approach initially seemed
promising but was quickly met with challenges due to the vast search space and
the high sensitivity of LLM to local failures-even a small percentage of subopti-
mal nodes could dramatically affect overall model performance. To combat these
issues, I had to implement some strategic constraints such as limiting connections to
serial formations and applying scalingmatrices, thereby refining the data flow space
model merging method. These are all early works in marrying EC and LLMs, but
are already demonstrating the transformative power of integrate the two for more
adaptive and robust AI systems.

At a high-level, merging in the data flow space uses evolution to discover the best com-
binations of the layers of different models to form a new model. In the model merge

292 Chapter 13

Table 13.1
Performance Comparison of the LLMs. Models 1–3 are source models, Models 4–6 are merged models, and
Models 7–11 are provided for reference. PS stands for Parameter Space merging, and DFS is the abbreviation for
Data Flow Spacing merging. (Table from Akiba et al. 2024)

Id. Model Type Size MGSM-JA (acc ↑)

1 Shisa Gamma 7B v1 JA general 7B 9.6
2 WizardMath 7B v1.1 EN math 7B 18.4
3 Abel 7B 002 EN math 7B 30.0

4 Akiba et al. (2024) (PS) 1 + 2 + 3 7B 52.0
5 Akiba et al. (2024) (DFS) 3 + 1 10B 36.4
6 Akiba et al. (2024) (PS+DFS) 4 + 1 10B 55.2

7 Llama 2 70B EN general 70B 18.0
8 Japanese StableLM 70B JA general 70B 17.2
9 Swallow 70B JA general 70B 13.6

10 GPT-3.5 commercial - 50.4
11 GPT-4 commercial - 78.8

community, intuition and heuristics are used to determine how and which layers of one
model are combined with layers of another model. But one can see how this problem has a
combinatorially large search space which is best suited to be searched by an optimization
algorithm such as evolution. On the other hand, merging in the parameter space evolves
new ways of mixing the weights of multiple models. There are an infinite number of ways
of mixing the weights from different models to form a new model, not to mention the fact
that each layer of the mix can in principle use different mixing ratios. This is where an
evolutionary approach can be applied to efficiently find novel mixing strategies to com-
bine the weights of multiple models. Finally, both Data Flow Space and Parameter Space
approaches can be combined to evolve new foundation models that might require particular
architectural innovations to be discovered by evolution.

Researchers were eager to see how far this automated method can go by finding new
ways to combine the vast ocean of open-source foundation models, especially in domains
that are relatively far apart, such as Math and Non-English Language, or Vision and Non-
English Language. Reported in their paper’s experiments, the authors were able to create
new open models with new emergent combined capabilities that had not previously existed:
a Japanese Math LLM, and a Japanese-capable VLM, all evolved using this approach
and achieve state-of-the-art performance on Japanese language and vision language model
benchmarks.

Concretely, they first set out to evolve an LLM that can solve math problems in Japanese.
Although language models specialized for Japanese and language models specialized for
Math exist, there were no models that excelled at -solving mathematical problems in
Japanese. To build such a model, they selected 3 source models: a Japanese LLM (Shisa-
Gamma) and math-specific LLMs (WizardMath and Abel). In the merging process, the
evolution process went on for a couple hundred generations, where only the fittest (the
models who score highest in the population on the Japanese math training set) would sur-
vive, and repopulate the next generation. The final model is the best performing model
(evaluated the training set) over 100-150 generations of evolution, and this model is then
evaluated once on the test set.

Synergies with Generative AI 293

Table 13.2
Performance Comparison of the VLMs. LLaVA 1.6 Mistral 7B is the source VLM and Japanese Stable VLM is
an open-sourced Japanese VLM.While JA-VG-VQA-500 measures general VQA abilities in Japanese, JA-VLM-
Bench-In-the-Wild evaluates themodel’s handling of complexVQA taskswithin Japanese cultural contexts. (Table
from Akiba et al. 2024)

JA-VG-VQA-500 JA-VLM-Bench-In-the-Wild
Model (ROUGE-L ↑) (ROUGE-L ↑)

LLaVA 1.6 Mistral 7B 14.3 41.1
Japanese Stable VLM - 40.5

Akiba et al. (2024) 19.7 51.2

Table 13.1 summarizes their results. Model 4 is optimized in parameter space and Model
6 is further optimized in data flow space using Model 4. The correct response rates for
these models are significantly higher than the correct response rates for the three source
models. The authors reported that it was incredibly difficult for an individual to manually
combine a Japanese LLM with Math LLMs. But through many generations, evolution is
able to effectively find a way to combine a Japanese LLM with Math LLMs to successfully
construct a model with both Japanese and math abilities. Notably, the performance of the
merged models are approaching those of GPTs and surpassing larger models that are only
specialized in Japanese.

In constructing the Japanese VLM, the authors used a popular open-source VLM
(LLaVa-1.6-Mistral-7B) and a capable Japanese LLM (Shisa Gamma 7B v1), to see if a
capable Japanese VLM would emerge. This was the first effort to merge VLMs and LLMs,
demonstrating that evolutionary algorithms can play an important role in the success of the
merge.

Table 13.2 summarizes the performance of the merged VLM and the baselines. JA-VG-
VQA-500 and JA-VLM-Bench-In-the-Wild are both benchmarks for question and answer
about images. The higher the score, the more accurate the description is answered in
Japanese. Interestingly, the merged model was able to achieve higher scores than not only
LLaVa-1.6-Mistral-7B, the English VLM on which it is based, but also JSVLM, an existing
Japanese VLM.

13.3 LLMs Enhances Evolutionary Computing

13.3.1 Evolution through Large Models
In the seminal paper “Evolution through Large Models” (Lehman et al. 2023), researchers
delve into the integration of evolutionary algorithms and LLMs, with a focus on the inno-
vative domain of code generation. This study is motivated by the capability of LLMs to
significantly enhance genetic programming (GP) by facilitating advanced mutation opera-
tions. LLMs, trained on datasets featuring sequential code changes and modifications, are
adept at simulating probable alterations that a human programmermight make. This enables
these models to guide the evolution of code in sophisticated, contextually aware manners
that surpass the capabilities of traditional mutation operators used in GP.

294 Chapter 13

The research team implemented an integration of LLMs with the MAP-Elites algorithm
(see more in Section 5.4 to learn about MAP-Elites) within the Sodarace simulator, a plat-
form for evolving robotic models. This approach leverages the code generation capabilities
of LLMs to direct the development and refinement of control software for simulated robotic
entities. The experiments conducted yielded impressive outcomes, generating hundreds of
thousands of functional Python programs that effectively controlled robotic models in var-
ious simulated environments. Notably, these tasks were new to the LLMs, highlighting
their ability to generate relevant and functional outputs in untrained scenarios. The success
of these applications showcases the potential of LLMs to revolutionize evolutionary algo-
rithms, enabling not only optimization but also fostering innovation through the creation of
diverse and high-quality solutions.

At the core of the methodological innovation in this paper is the rethinking of the muta-
tion operator, a fundamental component in GP. Traditionally, GP mutations are stochastic,
applying random or simple deterministic changes that may not always respect the under-
lying logic or syntax of the code. In contrast, the approach taken in this work leverages
the sophisticated capabilities of LLMs to introduce a “diff” based mutation process which,
unlike conventional methods, utilizes the deep learning insights of LLMs, trained on vast
repositories of code changes (diffs) from real-world projects (e.g., projects on GitHub).
By understanding both the context and the functionality of code segments, LLMs can gen-
erate diffs that are not only syntactically correct but also semantically meaningful. These
diffs reflect plausible changes that a human developer might make, thus ensuring that each
mutation step is both relevant and potentially beneficial, avoiding the pitfalls of random
modifications. Figure 13.6 highlights a performance comparison between the diff mutation
in this paper and the conventional GP mutation in fixing bugs. The success rate of gener-
ating new code that fixes bugs dropped dramatically for the GP mutation, while the diff
mutation is able to retain the success rate until encountering the 5th bug in the code. This
enhancement of the mutation process, enabled by the sophisticated capabilities of LLMs,
highlights the significant benefits that such models can bring to invent more evolutionary
algorithms.

The second key methodological aspect is the coupling of the diff-based mutation process
with MAP-Elites, an algorithm known for maintaining a diverse set of solutions during
the search process. This pairing is particularly potent because MAP-Elites operates on the
principle of illuminating the “fitness landscape” by categorizing solutions into different
“niches” based on their features and performance. Each niche represents a unique com-
bination of traits, and the goal is to find the best possible solution within each niche. By
integrating the diff model with MAP-Elites, the study harnesses the capability of LLMs to
propose targeted, intelligentmodifications to existing Python solutions. Eachmodified solu-
tion is then evaluated and, if it offers an improvement or explores a new niche, is added to
the evolving map of solutions. Over time, this process not only enriches the diversity of the
solution space but also enhances the overall quality of the solutions produced. This method
enables the systematic exploration of the solution landscape, ensuring that the evolution-
ary process is both broad (covering many different types of solutions) and deep (refining
solutions to achieve high performance).

Finally, the fine-tuning of the diff model represents a critical enhancement. Recognizing
the pre-trained LLM diff model, while capable, is not familiar with the Sodaracer task and

Synergies with Generative AI 295

Figure 13.6: Comparing diff mutation to
GP mutation. Success rate for GP muta-
tion decreases exponentially in the number of
mutations, and produces no solutions when
there are five bugs. In contrast, diff mutation
degrades only with the fifth bug. The conclu-
sion is that LLM-based mutation can indeed
make multiple sensible coupled changes to
code. (Figure from Lehman et al. 2023)

Map of Diverse Champions

Python Program

Diff Model

Python Program

Width of Sodaracer

Height of
Sodaracer

Figure 13.7:MAP-Elites with diff muta-
tion. In each iteration, a Python solution is
sampled from the archive for each replica
of a diff model. Each replica generates
a batch of diffs applied to the sampled
solution to produce modified candidates.
These candidates are evaluated and used
to update the archive. Over time, a sin-
gle seed program evolves into a vari-
ety of high-performing Python programs.
(Figure from Lehman et al. 2023)

may not be aligned with the specific requirements of evolutionary code generation, the
researchers undertook a fine-tuning phase. This process involved training the LLM further
on a dataset generated during the evolutionary search process, which comprises targeted
code diffs that were particularly relevant to the tasks at hand. By doing so, the fine-tuned
diff model could more effectively contribute to the evolutionary search, because the fine-
tuning process refined the model’s ability to predict and generate code diffs that are not only
plausible and syntactically correct but also highly functional within the specific context.

In their experimental setup, the authors initiated the MAP-Elites algorithm with four
simple yet diverse seed solutions designed to span a range of foundational geometries.
These seed solutions, specifically labeled as the Square seed, the Radial seed, and two seeds
inspired by CPPNs, provided a varied starting point for evolutionary exploration. For more
detailed information about CPPNs, refer to Section 4.3.1, and see Figure 13.8 for visual
illustrations of these seed designs.

As the evolutionary search progressed, it led to the discovery of creatures with novel
and complex body designs, synthesized through the advanced capabilities of the program.
These innovative designs are showcased in Figure 13.9, highlighting the algorithm’s ability
to push beyond conventional design boundaries. Furthermore, a detailed behavior analy-
sis of the evolutionary method is provided in Figure 13.10, which presents three critical
metrics: the percentage of niches discovered, the QD score, and the percentage of runnable
code generated by the diff model. This analysis includes a comparative study between the
outcomes using the pre-trained diff model and the model that was fine-tuned during the QD
process.

296 Chapter 13

The results demonstrate that even with the pre-trained diff model, the method achieved
respectable scores across the evaluated tasks. However, it was the fine-tuned LLM that
significantly enhanced performance, underscoring the effectiveness of integrating LLMs
with evolutionary computing techniques. This synergy not only boosted the algorithm’s
efficiency but also its ability to generate highly functional and innovative solutions, thereby
showcasing the substantial potential of this integrative approach.

Figure 13.8: Seed solutions. From top to
bottom: CPPN seed, radial seed, and square
seed. (Figure from Lehman et al. 2023)

Figure 13.9: Generalization tests. From
top to bottom: Wheel, from radical seed;
Galloper, from square seed; Runner, from
CPPN seed. (Figure from Lehman et
al. 2023)

13.3.2 LLM As Evolution Strategies
LLMs trained on extensive text data have shown remarkable abilities in in-context learn-
ing. These models, without any additional training and merely through the information
provided in context, can not only grasp but also enhance complex patterns. For instance,
they can deduce rules from presented sequences and suggest improvements (Mirchandani
et al. 2023). This ability to adapt and generate solutions without changing underlying model
structures is particularly fascinating and appears to extend to various types of abstract
sequences.

Given their ability to handle complex patterns, a natural question arises: can these text-
trained language models function as effective optimization tools? More specifically, can
theymimic the workings of evolutionary strategies (ES), where they help evolve the weights
of neural networks? In Lange, Tian, and Tang 2024b, the authors’ exploration into this
started by using LLMs as “general pattern machines” to develop a novel strategy that trans-
forms a standard language model into a recombination operator. This operator processes
sequences of function evaluations and their corresponding solutions, and from there, it can

Synergies with Generative AI 297

(a) Niches Reached

(b) QD Score

(c) Diff Quality

Figure 13.10:The impact of fine-tuning the diff model on the performance of ELM. For
both the pretrained diff model and the fine-tuned one, shown are (a) the number of niches
reached, (b) QD score of the produced map, and (c) percentage of valid/runnable diffs pro-
posed. The experiments demonstrate that fine-tuning the diff model improves performance
of the evolutionary process across all three metrics. (Figure from Lehman et al. 2023)

generate new solution proposals. The strategy they crafted, EvoLLM, involves reimagin-
ing the language model as a core component in evolutionary computing. This approach
not only asks the LLM to identify potential solutions but actively involves it in the evolu-
tionary cycle, allowing it to suggest optimal sampling points for further evaluation (see the

298 Chapter 13

left part of Figure 13.11). The method also integrates techniques like integer-based search
space discretization and the use of decision transformer-style queries to enhance fitness.
This innovative prompting strategy has proven effective, as EvoLLM can successfully per-
form black-box optimization on a variety of BBOB functions (Hansen et al. 2010) and
control tasks (see the right part of Figure 13.11), demonstrating that LLMs can indeed act
as powerful tools in evolutionary computing.

Figure 13.11: Overview of EvoLLM procedure & Aggregated Results across 8 BBOB
settings. (Figure from Lange, Tian, and Tang 2024a)

Concretely, EvoLLM’s design can be described from the combination of a high-level
prompt design space (macro-view) and a detailed API space (micro-view), see Figure 13.12
for an illustration.

In the high-level prompt design space, EvoLLM first follows the paradigm established
in Mirchandani et al. 2023 and construct an LLM prompt by representing the solution can-
didates as integers resulting from a discretized search space with a pre-specified resolution.
They use integers instead of raw floating point numbers to avoid the difficulty LLM tok-
enizers face when dealing with non-text data. For example, they return different numbers of
tokens per individual number, and this severely prevents EvoLLM from inferring improve-
ment sequences. To construct a query that EvoLLM can better understand and generate
improvement efficiently, the authors keep a record of all the population evaluations and
sort the set of previous records H = {Xg, Fg}G

g=1 by their fitness within and across gener-
ations, here Xg’s are the solutions in generation g, and Fg’s are their fitness scores. They
then select the top-K performing generations and top-M solutions within each generation,
and organize them in a formated manner in the LLM’s input context. Finally, similar to the
design Decision Transformer (Chen et al. 2021), EvoLLM appends a desired fitness level
f query
LLM as the target for the proposal at the end of the input context, see the bottom left light
purple box in Figure 13.12 (Prompt 1) for an illustration of the input prompt. Although
there are violations, most LLMs robustly follow the pattern outlined in this prompt design
and continue the string format by outputing a new mean xLLM with the correct delimiter.
The caller of EvoLLM in the user space can then use this as the proposed mean to sample

Synergies with Generative AI 299

a new set of candidates and evaluate them in the task to update the records H, and this loop
continues.

Figure 13.12:EvoLLMPrompt Design Space&API. (Figure fromLange, Tian, and Tang
2024a)

EvoLLM includes a set of detailed design choices in the API space, and the list below
summarizes the most important ones:

1. Context Buffer Initialization. EvoLLM uses random search, a standard BBOB algo-
rithm, to fill up the context buffer as initial solutions and evaluations.

2. Context Buffer Discretization and Augmentation. EvoLLM represents the solutions
as integers (i.e., remap the inputs and the tokens) and keeps track of the candidates and
their fitness scores.

3. Select & Sort Context Generations. In addition to the default way of picking the best-
performing solutions seen so far, EvoLLM also considers selecting randomly from the
buffer or selecting the most recent K generations evaluated on the problem (see Prompt
2 in Figure 13.12).

4. Select & Sort Context Candidates. Similarly, besides the default option of taking the
“best-within-generation”, EvoLLM supports random selection and picking the “best-up-
to-generation” options.

5. Query LLM for Search Improvement. EvoLLM samples and constructs the prompt
repeatedly at each generation. When the generated solution failed to improve the fitness,
EvoLLM uses a backup strategy and samples around the previous best evaluted solution.

6. Sample & Evaluate New Candidate. EvoLLM samples around the proposed mean
xLLM, evaluates all the populations and adds them to the context buffer.

7. Scale to Larger Search Spaces.Once the context becomes too long, LLMs start to give
non-informative outputs. To avoid this limitation when handling high dimensional data,
EvoLLM groups a set of dimensions that fits into the context of an LLM and perform
multiple queries per generation. In the extreme case, each LLM call processes a single

300 Chapter 13

dimension d. This trade-off of increased inference time allows EvoLLM to scale to a
larger number of search dimensions.

To evaluate the performance of EvoLLM, the authors measured its performance on 4
different tasks from BBOB and compared with standard ES algorithms. The LLM-based
ES outperformed random search and Gaussian Hill Climbing with different search dimen-
sions and population sizes. On many of the considered tasks, EvoLLM is even capable
of outperforming diagonal covariance ES algorithms. Moreover, EvoLLM is more effi-
cient in generating solutions, i.e. less than 10 generations. EvoLLM’s design is generally
applicable across different LLMs. In their paper, the authors conducted experiments with
Google’s PaLM2 (Anil, Dai, et al. 2023), OpenAI’s GPT-4 (OpenAI 2023), and the open-
source Llama2 (Touvron et al. 2023). An interesting observation is taht the LLM model
size inversely affects the performance of EvoLLM - larger models tend to perform worse
than smaller models (see the right part of Figure 13.11. Later on, the authors expanded
their evaluation to include control tasks CartPole-v1 and Acrobot-v1 from OpenAI’s Gym
tasks (Brockman et al. 2016), where EvoLLM needs to evolve 16 to 40 parameters of a
feedforward neural network that acts as the control policy. EvoLLM was able to evolve the
control policy to solve both tasks, and again capable of even outperforming competitive
baselines with smaller compute budgets.

The promising results from the evalution of EvoLLM suggests that languagemodel based
ES holds significant potential for enhancing optimization processes. As this field is still in
its nascent stages, the full scope and impact of integrating LLMs with EC are yet to be fully
realized.

13.4 World Models

Deep learning models, in particular, deep generative models, are effective tools of learn-
ing representations of vast amounts of training data. Furthermore, such models are able to
generate data to resemble the actual data distribution it learned from real training data, and
such models can be primed with relatively low dimensional latent vectors to produce rich
and expressive outputs.

Given the expressiveness of deep generative models, one can attempt to use these models
to learn all about the environment in which an artificial agent interacts with. We call a
generative model of the agent’s environment a “world model” because like our own internal
“mental world model” of the world, an agent can incorporate such a model into its own
decision making process.

Figure 13.13: In this section, we explore training generative models of popular visual envi-
ronments such as CarRacing (Klimov 2016) and VizDoom (Kempka et al. 2016)

Synergies with Generative AI 301

In this section, we describe methods and approaches which combine generative models
with evolutionary computation. In particular, we explore the approach of using deep learn-
ing to train a world model on an agent’s environment, and use evolutionary algorithms to
train a controller that, as the name suggests, controls the actions of an agent. While much
has been done in this area, this section is based on an early paper called World Models (Ha
and Schmidhuber 2018), which laid the foundation for much work in this area.

13.4.1 A Simple World Model for Agents
Here, wewill describe a simplemodel inspired by our own cognitive system, to demonstrate
how aworldmodel can be used by an agent acting in its environment. In this model, summa-
rized in Figure 13.14, our agent has a visual sensory component that compresses what it sees
into a small representative code. It also has a memory component that makes predictions
about future codes based on historical information. Finally, our agent has a decision-making
component that decides what actions to take based only on the representations created by
its vision and memory components.

Figure 13.14: Our agent consists of three components that work closely together: Vision
(V), Memory (M), and Controller (C).

Vision Model (V)
The environment provides our agent with a high dimensional input observation at each

time step. This input is usually a 2D image frame that is part of a video sequence. The role
of the V model is to learn an abstract, compressed representation of each observed input
frame.

A Variational Autoencoder (VAE) (Kingma and Welling 2013) is used as the V model in
our experiments. As shown in Figure 13.15, this VAE model can compress an image frame

302 Chapter 13

Encoder z Decoder

Original Observed Frame Reconstructed Frame

Figure 13.15: Example of a Variational Autoencoder (VAE) trained on screenshots of Viz-
Doom.

into a low dimensional vector z. This compressed representation can be used to reconstruct
the original image. In our experiments, the size of this latent vector is 16 dimensions, and
is used to represent the spatial part of the agent’s environment.
Memory Model (M)

While it is the role of the V model to compress what the agent sees at each time frame,
we also want to compress what happens over time. For this purpose, the role of theMmodel
is to predict the future. The M model serves as a predictive model of the future z vectors
that V is expected to produce. While many models in the deep learning literature are able to
train and predict sequential data, for the works described in this section, we will use simple
recurrent neural networks (RNN) to train our RNN to predict the next latent vector z given
the current and past information available to it. Given the predictive power of recurrent
neural networks, our RNN’s internal hidden state vector, h, can be used to represent the
temporal part of the environment, and also be considered to be the internal state of our
agent, encapsulating our agent’s memory.

In our experiments, we gather data from the agent’s environment using a random policy
and collecting around 10,000 example rollouts, and use this data to train both V and M. Ha
and Schmidhuber 2018 also further discuss promising approaches of iteratively gathering
data to incrementally improve the agent’s world models as the agent interacts with the
world.We refer the reader to read the original paper for an accessible guide about the details
of the particular VAE and RNNs architectures used in the experiments, and also the training
procedures.
Controller Model (C)

The Controller (C) model is responsible for determining the course of actions to take in
order to maximize the expected cumulative reward of the agent during a rollout of the envi-
ronment. In our experiments, we can deliberately make C as simple and small as possible
(a small linear layer), and trained separately from V and M, so that most of our agent’s
complexity resides in the world model (V and M).

The simplest C is a simple single layer linear model that maps t and I directly to action
at each time step. We will also explore the effects of making C more complex later on, such
as incorporating an additional hidden layer.
Putting Everything Together

Figure 13.16 is a flow diagram illustrates how V, M, and C interact with the environment.

Synergies with Generative AI 303

Figure 13.16: Flow diagram of our Agent model. The raw observation is first processed by
V at each time step t to produce zt. The input into C is this latent vector zt concatenated
with M’s hidden state ht at each time step. C will then output an action vector at for motor
control. M will then take the current zt and action at as an input to update its own hidden
state to produce ht+1 to be used at time t + 1.

This minimal design for C also offers important practical benefits. Advances in deep
learning provided us with the tools to train large, sophisticated models efficiently, pro-
vided we can define a well-behaved, differentiable loss function. Our V and M models are
designed to be trained efficiently with the backpropagation algorithm using modern GPU
accelerators, so we would like most of the model’s complexity, and model parameters to
reside in V and M. The number of parameters of C, a linear model, is minimal in compari-
son. This choice allows us to use very flexible evolutionary algorithms to train C to tackle
more challenging RL tasks where the credit assignment problem is difficult.

To optimize the parameters of C, we chose the Covariance-Matrix Adaptation Evolu-
tion Strategy (CMA-ES) as our optimization algorithm since it is known to work well for
solution spaces of up to a few thousand parameters. We evolve parameters of C on a single
machine with multiple CPU cores running multiple rollouts of the environment in parallel
Ha and Schmidhuber 2018. We will also explore an additional interesting approach of also
evolving the controller network’s architecture using NEAT.

13.4.2 Using the World Model for Feature Extraction
A world model contains many useful internal latent information that the agent can leverage
as useful features extracted from the environment into themodel. These features can even be
used entirely for the agent’s decision making process, bypassing the direct use of the actual
observations from the environment. We will demonstrate this concept using the CarRacing
task.

CarRacing is a top-down car racing from a pixel-observation environment. The agent is
given a high dimensional pixel frame at every timestep, and is tasked with navigating its
car, controlled with three continuous commands (gas, steer, brake) is tasked with visiting
as many tiles as possible of a randomly generated track within a time limit.

304 Chapter 13

While it is possible, in principle, to feed the high dimensional input into a large policy
network trained to output an action, such an approach requires training the entire neural
network using the reward signal to guide changes in the weights, which will require the
use of reinforcement learning or evolutionary algorithms applied to train the entire policy
network.

By using a world model, we can considerably limit the size and complexity of the policy
network. We find that even the vision model, a variational autoencoder, can be quickly
trained to compress an entire input frame into a 16-dimensional latent vector z, which is
expressive enough to reconstruct the image meaningfully enough for the driving task.

Figure 13.17: A variational encoder trained to compress a frame in CarRacing into a 16-
dimensional latent vector z. The frame can be regenerated using the latent vector alone.

By using the visionmodel (V) alone, without even using thememorymodel (M), wewere
able to train a small linear network with 17 parameters (16 latent vectors and an additional
bias) to compute the action vector (brake, gas, and steer), which required only evolving only
51 parameters for this simple linear model. The resulting model achieved an average score
of 632± 251 over 100 trials. While the navigation policy makes the car go a bit wobbly,
due to the simplicity of the linear model and the lack of predictive power from using the
vision model alone, it does generally do the job of completing most tracks.

If we are confined to only using a vision model (V) but still want to increase the agent’s
performance, the next step is to beef up our controller, from a simple linear controller,
to a controller with one hidden layer, to provide the agent with additional computational
capabilities in its decision making. In our experiments, incorporating an extra hidden layer
to the controller increases its performance to an average score of 788± 141 over 100 trials.

For those who want to stubbornly stick to using the vision model only for this task, and
still not satisfied with this result, let’s take this to the extreme! We can evolve the network
with NEAT. To make things interesting, NEAT here is allowed to use all sorts of different
activation functions such as sinusoids, step functions, and ReLUs. Figure 13.18 is the best
NEAT network we evolved for our controller, which got us an incredible performance of
an average score of 893± 74 over 100 trials!

Synergies with Generative AI 305

 lin

 inv

 abs

lin

 lin

 tanh

 sin

 sin

inv

 inv

 abs

 tanh

 ReLU

 tanh

 tanh

 sin

 inv

 sin

lin

 ReLU

 sig

 ReLU

 step

 ReLU

 Gaus

 sig
 tanh

 ReLU

 sin

 inv

 tanh

 abs

 sig

 Gaus

 sig

 sin

 tanh Gaus

 tanh

 lin

 Gaus

 ReLU

 tanh

 ReLU

 sin

 lin

 step

 inv

 inv

 ReLU

 sin

 tanh

 sig

 step

 ReLU

 step
 tanh

 Gaus
 ReLU

 step

 lin

 sig

 sig

 sig sin lin

 abs

 step

 tanh

 ReLU

 inv

 step

 inv

 step

 abs

 step

 Gaus

 abs

 inv

 ReLU

 tanh

 inv

 inv
 sin

 tanh

z1

z2

z3

z4

z5

z6

z7

z8
z9

z10

z11

z12

z13

z14

z15
z16

bias

Brake

Gas
Steer

Figure 13.18: Pushing the limits of the Vision-only model by evolving a NEAT controller
for CarRacing which only uses the latent vector z of the Vision model to output the action.

Okay, maybe we went too far with going all the way to evolve the architecture of the
Controller network. Let’s step back a bit, and question whether the performance of a simple
linear-only controller can be drastically improved by giving the controller more features to
workwith. So far, we stubbornly only allowed ourselves to use theVisionmodel only, which
contains only static features representing the spatial properties of the agent’s environment,
but has no predictive power.

Now let’s incorporate the memorymodel (M) into the agent’s world model, and allow our
controller to use the full extent of the features from the visionmodel and the recurrent neural
network. We showed that by concatenating the latent vector z from the vision model, and
the hidden state h of the predictive recurrent neural network model, our controller achieved
the very best performance resulting in an average score of 906± 21 over 100 trials, even
though this controller is still a simple linear model. At the time of publication several years
ago, this model was the first solution to have solved this car racing task, which required an
average score above 900. The results for all of the approaches for different controllers (C)
is described in the table here.

306 Chapter 13

Controller and Input Average Score

1-Layer, z 632 ± 251
2-Layer, z 788 ± 141
NEAT, z 893 ± 74
1-Layer, z and h 906 ± 21

Table 13.3
CarRacing scores with various controllers described.

13.4.3 Training an Agent using the World Model as a Neural Simulator of Reality
So far, we have demonstrated the usefulness of using a world model for the purpose of
extracting important features that tell the agent useful things about its environment, par-
ticularly with spatiotemporal features through the Vision and Memory components of the
world model.

But a world model is far more useful than being merely a feature extractor. If we are
interested in feature extraction alone, there might be more direct ways of training neural
networks for that purpose. The key capability of a generative world model is the ability
to generate and simulate the actual environment, in latent space, kind of like running a
quick simulation in our minds. For instance, the memory component of our world model,
the recurrent neural network, is able to simulate approximate future trajectories of the
environment from the data the agent has collected.

The agent, in principle, can even act inside this neural-network simulated environment
of the world, and observe hypothetical responses, and learn from the consequences of its
actionswithout actually performing such actions in reality.We believe this aspect of running
mental simulations inside of the agent’s world model is its most promising feature.

Figure 13.19: The VizDoom: Take Cover environment.

In the World Models work, we demonstrate this ability in an experiment that uses a
VizDoom environment, which uses parts of the Doom video game. In our particular envi-
ronment called VizDoom-TakeCover, which takes place in a closed virtual room, the agent’s
task is to learn to avoid fireballs shot by monsters from the other side of the room with the
sole intent of killing the agent. There are no explicit rewards in this environment, so to

Synergies with Generative AI 307

mimic natural selection, the cumulative reward can be defined to be the number of time
steps the agent manages to stay alive during a rollout. Each rollout of the environment runs
for a maximum of 2100 time steps (roughly a minute of actual gameplay), and the task is
considered solved if the average survival time over 100 consecutive trials is greater than
750 time steps of gameplay.

To train our world model, like the CarRacing experiment, the agent explored the environ-
ment using a random policy, and recorded trajectories over thousands of random gameplays.
Once the world models are trained, our agent is able to produce simulated gameplays in
latent space, using the RNN module alone. Interestingly, since the vision model is already
trained, one can even play inside of the world model as a human player with a keyboard,
and we invite interested readers to try the demo referenced in Ha and Schmidhuber 2018.

The recurrent neural network is trained to produce not a deterministic prediction of the
next latent states of the world, but a probabilistic distribution which can sample future latent
states. As such, this distribution can be parametrized to artificially produce wider or nar-
rower distributions using a temperature parameter τ . This allows us to bias the distribution
to output the mode always, or produce outputs with more uncertainty, and this feature is
quite important for training an agent entirely inside the world model. This table displays the
results when we use an evolutionary algorithm (CMA-ES) to train a controller to perform
well inside the worldmodel, and how the policies learned transfer to the actual environment.

Temperature τ Virtual Score Actual Score

0.10 2086 ± 140 193 ± 58
0.50 2060 ± 277 196 ± 50
1.00 1145 ± 690 868 ± 511
1.15 918 ± 546 1092 ± 556
1.30 732 ± 269 753 ± 139

Random Policy N/A 210± 108
Table 13.4
VizDoom: Take Cover scores at various temperature settings.

We note that in the deterministic model (low temperature), the agent can easily find faults
in its model of the world, and exploit them so that the learned policy will only do well in its
dream, but not in reality. In contrast, as we increase the uncertainty of the model, this makes
the virtual environment generated by the agent’s world model much more difficult to beat,
leading to policies that are transferable to the actual environment. Varying the temperature
in generation is just one of several possibilities of approaching the transfer problem between
performing a task inside a learned world model and performing a task in the actual world.

The experiments outlined in this section describe only the simplest methods of combining
generative world models with evolutionary algorithms. There are great opportunities to
extend this concept, such as the aforementioned approach of iterative data collection for
refining the world model, and incorporating other approaches in the evolution literature
such as novelty search or multi-agent settings. We invite the reader to explore the limitless
possibilities.

308 Chapter 13

13.5 Chapter Review Questions

1. Large Language Models (LLMs): What role does the transformer architecture and
self-attention mechanism play in the performance and scalability of Large Language
Models (LLMs) like GPT?

2. Evolutionary Prompt Engineering: How do evolutionary algorithms, such as those
used in EvoPrompt, enhance prompt engineering for LLMs? Why are these methods
particularly suitable for black-box APIs?

3. Promptbreeder: What is the self-referential mechanism in Promptbreeder? How does
it differ from EvoPrompt in optimizing task-specific prompts for LLMs?

4. Performance of EvoPrompt: How did EvoPrompt improve performance on challeng-
ing tasks like the Big Bench Hard (BBH) benchmark? What are the key contributions
of the Genetic Algorithm (GA) and Differential Evolution (DE) approaches?

5. Evolutionary Model Merging: What are the key differences between merging models
in data flow space and parameter space? How does evolutionary model merging generate
new composite models with emergent capabilities?

6. LLMs in Genetic Programming: How are LLMs utilized in enhancing genetic pro-
gramming through ”diff-based mutation”? What advantages do these mutations offer
over traditional random or deterministic approaches?

7. EvoLLM as Evolutionary Strategies: How does EvoLLM transform an LLM into
an evolutionary strategy operator? What unique design choices make it effective for
optimization tasks such as BBOB and control tasks?

8. World Models: What are the roles of the Vision (V), Memory (M), and Controller (C)
components in world models? How do these components collectively allow agents to
act effectively in simulated environments?

9. UsingWorldModels for Feature Extraction: In the CarRacing task, how does the use
of latent features from the vision model reduce the complexity of the controller? What
are the advantages of evolving controllers with NEAT?

10. Simulated Learning withWorldModels:How do world models enable agents to train
within a neural simulator of reality, as demonstrated in the ”VizDoom: Take Cover”
environment? How does adjusting the temperature parameter influence policy transfer
to the actual environment?

	Foreword
	Website
	Preface
	Acknowledgments
	1 Introduction
	1.1 Evolving neural networks
	1.2 Extending creative AI
	1.3 Improving the world
	1.4 Plan for the book
	1.5 Hands-on Exercises for the Book
	1.6 Chapter Review Questions

	2 The Basics
	2.1 Evolutionary Algorithms
	2.1.1 Simple Genetic Algorithm
	2.1.2 Simple Evolution Strategy
	2.1.3 Covariance-Matrix Adaptation Evolution Strategy (CMA-ES)
	2.1.4 Natural Evolution Strategies
	2.1.5 OpenAI ES
	2.1.6 Fitness Shaping
	2.1.7 Try these algorithms yourself

	2.2 Neural Networks
	2.2.1 Feedforward Neural Networks (FNNs)
	2.2.2 Recurrent Neural Networks (RNNs)
	2.2.3 Long Short-Term Memory Networks (LSTMs)
	2.2.4 Convolutional Neural Networks (CNNs)
	2.2.5 Transformers

	2.3 Conclusion and End-of-Chapter Questions
	2.4 Chapter Review Questions

	3 The Fundamentals of Neuroevolution
	3.1 Evolution Strategies for Reinforcement Learning
	3.2 Evolving Robust Policies for Bipedal Walker
	3.3 Evolving Convolutional Neural Networks
	3.4 Topology and Weight Evolving Networks: The NEAT Method
	3.5 Neuroevolution vs. deep learning
	3.6 Chapter Review Questions

	4 Indirect encodings
	4.1 Why indirect encodings?
	4.2 Developmental processes
	4.2.1 Cell-Chemistry Approaches
	4.2.2 Grammatical Encodings
	4.2.3 Learning approaches

	4.3 Indirect encoding through hypernetworks
	4.3.1 Compositional Pattern Producing Networks
	4.3.2 Case Study: Evolving Virtual Creatures with CPPN-NEAT
	4.3.3 Hypercube-based NEAT (HyperNEAT)
	4.3.4 Evolvable Substrate HyperNEAT
	4.3.5 General Hypernetworks and Dynamic Indirect Encodings

	4.4 Self-attention as dynamic indirect encoding
	4.4.1 Background on Self-Attention
	4.4.2 Self-Attention as a Form of Indirect Encoding
	4.4.3 Self-attention Based Agents

	4.5 Chapter Review Questions

	5 Searching for / utilizing diversity
	5.1 Genetic diversity
	5.2 Behavioral diversity
	5.3 Novelty Search
	5.4 Quality Diversity Methods
	5.4.1 Novelty Search with Local Competition
	5.4.2 MAP-Elites
	5.4.3 Nuts and Bolts of QD Implementation

	5.5 Multiobjectivity
	5.6 Ensembling
	5.7 Utilizing population culture and history
	5.8 Chapter Review Questions

	6 Neuroevolution of Behavior
	6.1 From control to strategy
	6.1.1 Successes and challenges
	6.1.2 Discovering robust control
	6.1.3 Transfer to physical robots
	6.1.4 Discovering flexible strategies
	6.1.5 Evolving cognitive behaviors
	6.1.6 Utilizing stochasticity, coevolution, and scale

	6.2 Decision making
	6.2.1 Successes and challenges
	6.2.2 Surrogate modeling
	6.2.3 Case study: Mitigating climate change through optimized land use
	6.2.4 Case study: Optimizing NPIs for COVID-19
	6.2.5 Leveraging human expertise

	6.3 Chapter Review Questions

	7 Neuroevolution of Collective Systems
	7.1 Cooperative Coevolution
	7.1.1 Evolving a single neural network
	7.1.2 Evolving a team

	7.2 Competitive coevolution
	7.2.1 Evolving single neural networks
	7.2.2 Evolving multiple teams

	7.3 Cellular Automata
	7.3.1 Evolving Neural Cellular Automata
	7.3.2 Growing functional machines
	7.3.3 Case study: Evolving Video Game Levels with NCAs and QD
	7.3.4 Neural Developmental Programs
	7.3.5 Synergistic Combinations of Neuroevolution and Differentiable Programming

	7.4 Chapter Review Questions

	8 Interactive Neuroevolution
	8.1 The NERO Machine Learning Game
	8.2 Incorporating human knowledge
	8.3 Collaborative Neuroevolution
	8.3.1 Evolving Game Content

	8.4 Making Human Contributions Practical
	8.5 Chapter Review Questions

	9 Open-ended Neuroevolution
	9.1 Openended Discovery of Complex Behavior
	9.1.1 Neutral mutations with weak selection
	9.1.2 Extinction events
	9.1.3 Evolvable representations
	9.1.4 Expressive Encodings
	9.1.5 Major Transitions
	9.1.6 Openended Evolution of Intelligence

	9.2 Cooperative coevolution of body and brain
	9.3 Competitive coevolution of environments and solutions
	9.3.1 The Influence of Environments
	9.3.2 Co-Evolving Agents and Their Environments
	9.3.2.1 Paired Open-Ended Trailblazer (POET)
	9.3.2.2 Learning to Chase-and-Escape

	9.4 Chapter Review Questions

	10 Evolutionary Neural Architecture Search
	10.1 Neural Architecture Search with NEAT
	10.2 NAS for Deep Learning
	10.3 Example NAS successes
	10.3.1 LSTM Designs
	10.3.2 CoDeepNEAT
	10.3.3 AmoebaNet

	10.4 Multiobjective and multitask NAS
	10.5 Making NAS practical
	10.6 Beyond Neural Architecture Search
	10.7 Chapter Review Questions

	11 Optimization of Neural Network Designs
	11.1 Designing complex systems
	11.2 Bilevel neuroevolution
	11.3 Evolutionary Metalearning
	11.3.1 Loss functions
	11.3.2 Activation functions
	11.3.3 Data use and augmentation
	11.3.4 Learning methods
	11.3.5 Utilizing surrogates
	11.3.6 Synergies

	11.4 Neuroevolution of neuromorphic systems
	11.4.1 Neuromorphic computation
	11.4.2 Evolutionary optimization
	11.4.3 Examples
	11.4.4 Future directions

	11.5 Chapter Review Questions

	12 Synergies with Reinforcement Learning
	12.1 RL vs. NE
	12.2 Synergistic Combinations
	12.2.1 Evolutionary Reinforcement Learning
	12.2.2 Evolving Value Networks for RL
	12.2.3 Evolutionary Meta-Learning

	12.3 Evolving Neural Networks to Reinforcement Learn
	12.3.1 Evolving Hebbian Learning Rules
	12.3.2 Learning when to learn through neuromodulation
	12.3.3 Indirectly encoded plasticity
	12.3.4 Learning to continually learn through networks with external memory
	12.3.5 Exercises

	12.4 Scaling Up
	12.4.1 Exercise on Scaling up NE

	12.5 Chapter Review Questions

	13 Synergies with Generative AI
	13.1 Background on Large Language Models
	13.2 Evolutionary Computing Helps Improve LLMs
	13.2.1 Evolutionary Prompt Engineering/Adaptation
	13.2.2 Evolutionary Model Merging

	13.3 LLMs Enhances Evolutionary Computing
	13.3.1 Evolution through Large Models
	13.3.2 LLM As Evolution Strategies

	13.4 World Models
	13.4.1 A Simple World Model for Agents
	13.4.2 Using the World Model for Feature Extraction
	13.4.3 Training an Agent using the World Model as a Neural Simulator of Reality

	13.5 Chapter Review Questions

	14 What Neuroevolution Can Tell Us About Biological Evolution?
	14.1 Understanding neural structure
	14.2 Evolutionary Origins of Modularity
	14.3 Understanding Neuromodulation
	14.4 Developmental processes
	14.4.1 Synergetic development
	14.4.2 Development through genetically directed learning

	14.5 Constrained evolution of behavior
	14.6 Understanding evolutionary breakthroughs
	14.7 Evolution of Language
	14.7.1 Biology of language
	14.7.2 Evolving Communication
	14.7.3 Evolution of Structured Language

	14.8 Chapter Review Questions

	Notes
	References
	Index

