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somewhat more challenging than the trivial 2D version used to produce the visualizations
in this article. Below is a comparison of the performance for various algorithms discussed:
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Figure 2.12: A comparison of the performance for various algorithms discussed in this
Chapter for the 100-Dimensional Rastrigin function.

On this 100-D Rastrigin problem, none of the optimizers got to the global optimum solu-
tion, although CMA-ES comes close. CMA-ES is clearly the best performer. PGPE is in
2nd place, and OpenAlI-ES / Genetic Algorithm falls behind. We had to use an annealing
schedule to gradually lower ¢ for OpenAI-ES to make it perform better for this task.
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Figure 2.13: The final solution that CMA-ES discovered for 100-D Rastrigin function. The
global optimal solution is a 100-dimensional vector of exactly 10.
2.2 Neural Networks

Artificial Neural Networks (ANNs) are a class of machine learning models loosely inspired
by the structure and function of the human brain. They consist of layers of interconnected
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Figure 2.14: Feedforward Neural Network. This example nertwork has three inputs, one
hidden layer with four nodes, and one output layer with two nodes. The input to the network
propagates through the consecutive layers of the neural network to produce the outputs.
Figure from wikipedia.

nodes or “neurons” that process input data to produce an output. ANNs have shown remark-
able success in various domains such as image recognition, natural language processing,
and time-series forecasting. This chapter will provide the basic ideas behind the structure
and function of neural networks, focusing on several key architectures used throughout the
book: Feedforward Neural Networks (FNNs), Recurrent Neural Networks (RNNs), Long
Short-Term Memory Networks (LSTMs), Convolutional Neural Networks (CNNs), and
Transformers.

2.2.1 Feedforward Neural Networks (FNNs)
Feedforward Neural Networks are the simplest type of artificial neural network. They
consist of an input layer, one or more hidden layers, and an output layer (Figure 2.14).
Information flows in one direction, from the input to the output, without loops or cycles.
The network begins with the input layer, which receives raw data. Each node in this input
layer corresponds to a feature or variable from the input dataset or the environment. This
layer does not perform any calculations; it merely passes the input values to the next layer.
After the input layer, the data moves through one or more hidden layers. These layers
are where the actual computations occur. Each hidden layer consists of multiple nodes, or
neurons, which are fully connected to the nodes of the previous layer. Every connection
between nodes has an associated weight that signifies the strength or importance of that
connection. Each neuron also has a bias value that modifies the output.
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For each neuron in a hidden layer, a weighted sum of all incoming inputs is calculated.
This sum is then passed through an activation function , such as ReLU, Sigmoid, or Tanh,
which introduces non-linearity to the model. The non-linearity is crucial because it allows
the network to model more complex relationships between inputs and outputs. The output
of the neurons in one layer becomes the input for the neurons in the next layer.

The final layer in the network is the output layer, which produces the network’s predic-
tion. The number of neurons in the output layer matches the number of possible outputs.
For example, a binary classification task may have one or two output neurons, while a
multi-class classification problem might have as many neurons as there are classes to
predict.

An FNN can be represented mathematically as follows:

y=0(W;-0(Wyi-x+by)+bp)

Here, x is the input vector, W and W, are weight matrices for the first and hidden layers,
respectively. The bias vectors are b; and by,. The activation function, o(-), is a non-linear
function typically chosen to be a sigmoid, ReLU, or tanh. The output vector is denoted as

y.

2.2.2 Recurrent Neural Networks (RNNs)

A Recurrent Neural Network (RNN) (Figure 2.15,left) is a type of artificial neural net-
work designed to recognize patterns in sequences of data, such as time series, text, or
audio. Unlike feedforward neural networks, RNNs have connections that loop back, allow-
ing information to persist. This architecture makes them particularly well-suited for tasks
where context and order matter, enabling them to handle sequences of variable length and
maintain a "memory” of what has been processed.

Let’s have a look exactly how a recurrent neural network works. In the RNN, the neurons
not only receive input from the previous layer but also from their previous states. This allows
the network to maintain a form of memory about the past inputs, which is essential for tasks
like speech recognition, machine translation, or any other problem where the current input
is dependent on the previous inputs.

The network begins with an input layer that receives a sequence of data. Unlike feed-
forward networks, RNNs process sequences one element at a time. For example, in a text
processing task, each word in a sentence might be fed into the network one by one.

The core of an RNN is its hidden layer, which is designed to maintain a hidden state, or
memory, that captures information about the sequence. When an input element is fed into
the network, it is combined with the previous hidden state to produce a new hidden state.
Mathematically, this is often represented as:

ht =f(W “ X+ U- ht—l +b)
where:
« h; represents the hidden state at time step ¢.

« X; is the input at time step .
- Wand U are weight matrices for the input and hidden state, respectively.
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Figure 2.15: Left: Recurrent neural network. Right: Long Short-Term Memory. Figure from
(Greff et al. 2016)

+ b is abias term.
« f is an activation function, typically a non-linear function like tanh or ReLU.

This hidden state is updated at each time step, capturing both the current input and the
past context.

At each time step, the hidden state can produce an output, depending on the specific
task. The output is computed using the current hidden state and a weight matrix. In a text
prediction task, for example, the output at each time step might represent the predicted next
word in a sentence.

In case of supervised learning problems, RNNs are typically trained using backpropaga-
tion through time (BPTT). However, they suffer from issues like vanishing and exploding
gradients, which makes it difficult to capture long-term dependencies in the data.

2.2.3 Long Short-Term Memory Networks (LSTMs)

A Long Short-Term Memory (LSTM) network is a special type of Recurrent Neural Net-
work (RNN) designed to overcome some of the limitations of traditional RNNs, particularly
the problem of learning long-term dependencies (Figure 2.15, right). LSTMs are capable
of learning and retaining information over extended periods, making them highly effective
for tasks involving sequential data, such as language modeling, speech recognition, and
time-series forecasting.

An LSTM network is composed of a series of LSTM cells, which replace the stan-
dard neurons in traditional RNNs. Each LSTM cell has a more complex internal structure
designed to control the flow of information in and out of the cell, using several gates. These
gates regulate which information is added, updated, or forgotten, allowing the network to
maintain long-term dependencies and learn which pieces of information are important for
making predictions.
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An LSTM cell contains three main gates: the forget gate, the input gate, and the output
gate. These gates use sigmoid activation functions to decide whether to let information pass
through or not. Here’s a breakdown of each component:

Forget Gate: The forget gate determines which parts of the cell’s previous state should
be discarded or "forgotten.” It takes the current input (x;) and the previous hidden state
(hy_1) and passes them through a sigmoid function. The output of this function is a value
between 0 and 1 for each number in the cell state (C;_), where 0 represents “completely
forget” and 1 represents “completely retain.”

Ji=0Ws - [he1, x:] + by)
Here:

- f; is the forget gate’s output.

« W; is the weight matrix for the forget gate.
« by is the bias term for the forget gate.

. o0 denotes the sigmoid function.

Input Gate: The input gate decides which new information will be added to the cell state.
It consists of two parts: a sigmoid layer that determines which values will be updated and
a tanh layer that creates a vector of new candidate values that could be added to the state.
The results from these two layers are multiplied together to decide which new information
to keep.

il‘ = G(Wl : [ht—ls-xt] +bl)

Cy=tanh(Wc - [y, x,] + bc)

Here:

« i, is the input gate’s output.

- C, represents the new candidate values to be added.

« W; and W are weight matrices for the input gate and candidate values.
« b; and b are the bias terms for the input gate and candidate values.

Cell State Update: The new cell state C; is updated by combining the old cell state
C;_; multiplied by the forget gate output f; (which determines what to forget) and the new
candidate values C; multiplied by the input gate output i; (which determines what new
information to add):

Ct Zﬁ* Cl‘—l +it * Cl‘

This equation effectively updates the cell state by retaining the necessary information
from the past and incorporating the new relevant information.

Output Gate: The output gate determines the next hidden state &;, which is used for
the next time step and can also be an output for the current time step. The output gate first
passes the current input and previous hidden state through a sigmoid function to decide
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Figure 2.16: A typical architecture of a Convolutional Neural Network (CNN). The input
image passes through multiple layers of convolutions, which extract various features, fol-
lowed by subsampling (pooling) layers to reduce dimensionality. This process is repeated
to create deeper feature maps, which are then flattened and connected to fully connected
layers to generate the final output. Figure from Wikipedia.

which parts of the cell state to output. Then, it multiplies the cell state (after applying the
tanh function to scale between -1 and 1) by the output of the sigmoid gate.

01=0(Wy - [he_1, X1+ by)

h; = o; * tanh(Cy)

Here:

« 0y is the output gate’s output.

« h; is the new hidden state.

« W, is the weight matrix for the output gate.
« b, is the bias term for the output gate.

The gating mechanisms in LSTM cells allow them to remember information for long
periods. This is particularly useful in tasks where the context of earlier parts of a sequence
is essential for making accurate predictions later. Additionally, LSTMs are specifically
designed to mitigate the problem of vanishing gradients, which occurs when training tradi-
tional RNNs on long sequences. The cell state in LSTMs can maintain a more constant flow
of gradients during backpropagation, allowing the network to learn long-term dependencies
effectively.

2.2.4 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network (CNN) is a type of deep learning model specifi-
cally designed to process and analyze data with a grid-like structure, such as images
(Figure 2.16). CNNs are particularly effective for tasks that involve spatial hierarchies in
data, such as image recognition, object detection, and video analysis. The architecture of
CNN:s is inspired by the visual cortex of the brain, where individual neurons respond to
overlapping regions in the visual field.
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A CNN consists of several layers, each with a specific function. The primary building
blocks of a CNN are the convolutional layers, pooling layers, and fully connected lay-
ers. These layers work together to automatically and adaptively learn spatial hierarchies of
features from input data.

Convolutional Layer: The convolutional layer is the core component of a CNN. It per-
forms the convolution operation, which involves sliding a small filter or kernel (a matrix of
weights) over the input data to produce a feature map. The filter captures spatial patterns
such as edges, textures, or colors. This operation can be visualized as taking a small win-
dow of the input image, applying the filter, and generating an output value that represents
a specific feature at that location.

Mathematically, the convolution operation can be expressed as:

K)o y)=Y Y I(x+i,y+)) - K(i,))
i=1 j=1

where:

« [ is the input image.

+ K is the convolution kernel or filter.

- x,y are the coordinates of the pixel in the output feature map.
- m, n are the dimensions of the kernel.

The output of this operation is a set of feature maps that highlight specific patterns or
features in the input data. Multiple filters can be used to detect different features, resulting
in multiple feature maps.

Activation Function: After the convolutional layer, an activation function, typically
the Rectified Linear Unit (ReLU), is applied to introduce non-linearity. This non-linearity
allows the network to learn complex patterns. The ReLU function is defined as:

f(x)=max(0, x)

This activation function outputs the input directly if it is positive; otherwise, it outputs
zero. It helps the network to learn non-linear relationships.

Pooling Layer: The pooling layer, also known as the subsampling or downsampling
layer, reduces the spatial dimensions of the feature maps. This helps to reduce the number of
parameters, computational complexity, and overfitting. The most common type of pooling
is max pooling, which takes the maximum value from a small region of the feature map.

If the input to the pooling layer is a 2x2 window, max pooling selects the highest value
from that window. Mathematically, max pooling over a region can be expressed as:

P(x,y)=max{f(i,j):i,j € window(x, y) }

Here, P(x,y) represents the output of the pooling operation at position (x, ¥), and f(i, j) is
the feature value at position (i, j).

Fully Connected Layer: After several convolutional and pooling layers, the high-level
reasoning in the neural network is done via fully connected layers. In a fully connected
layer, each neuron is connected to every neuron in the previous layer. The output of the
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final fully connected layer represents the class scores (in a classification problem) or other
task-specific outputs.
The fully connected layer can be mathematically represented as:

y=W-x+b

where:

« y is the output vector.

« W is the weight matrix.
« x is the input vector.

+ b is the bias term.

In classification tasks, the output layer often uses a softmax activation function to convert
the output scores into probabilities. The softmax function is defined as:

i

Here, z; represents the output score for class i, and the denominator is the sum of the
exponentials of all output scores. This function ensures that the output values are between
0 and 1 and sum to 1, representing a probability distribution over the classes.

softmax(z;) =

2.2.5 Transformers

A Transformer (Vaswani et al. 2017) is a type of deep learning model that relies entirely
on — what is called — a self-attention mechanisms to process input data, rather than tradi-
tional recurrent or convolutional layers. We will look at the self-attention mechanism in
more detail below and then again in Chapter 4.4.1 in the context of indirect encodings.
Transformers have become the foundation for many state-of-the-art models in natural lan-
guage processing (NLP) and other fields, such as the GPT series, BERT, and more. They
are particularly well-suited for handling sequential data and long-range dependencies, and
they have demonstrated significant improvements in performance for tasks like machine
translation, text generation, and summarization.

The Transformer architecture consists of an encoder-decoder structure, where both the
encoder and decoder are composed of multiple layers of self-attention and feed-forward
neural networks (Figure 2.17). The encoder takes an input sequence and processes it into
an internal representation, which the decoder then uses to generate an output sequence.
Each component in the Transformer leverages self-attention to weigh the importance of
different elements in the input sequence and learn complex patterns.

Input Embedding and Positional Encoding: The input to a Transformer model is first
converted into embeddings, which are fixed-length dense vector representations of the input
tokens (words, subwords, etc.). Since Transformers do not inherently understand the order
of the sequence, positional encodings are added to the embeddings to provide information
about the relative positions of tokens in the sequence. The positional encodings use sine
and cosine functions of different frequencies to create unique position vectors.

Mathematically, the positional encoding for a position pos and a dimension i is defined
as:
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Figure 2.17: Illustration of the Transformer architecture, consisting of an encoder (left) and
adecoder (right). The encoder is composed of a stack of layers, each containing a multi-head
self-attention mechanism followed by a position-wise feed-forward network, with resid-
ual connections and layer normalization applied after each sub-layer. The decoder stack
is similarly structured but includes an additional masked multi-head self-attention mecha-
nism to prevent positions from attending to subsequent positions. Positional encodings are
added to the input embeddings to provide information about the position of the words in the
sequence. The final output is generated after applying a linear transformation and a softmax
function to produce the output probabilities. Figure from Vaswani et al. 2017.

where:

. pos B pos
PE05,2i) = sin (m) » PE(0s2i+1) =cos (m)

- pos is the position of the token in the sequence.
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« i is the dimension index.
* dmodel 18 the dimension of the model’s embedding space.

Self-Attention Mechanism: The core of the Transformer is the self-attention mecha-
nism, which allows the model to focus on different parts of the input sequence when making
predictions. Self-attention computes a weighted representation of each input token based
on its relationship with all other tokens in the sequence. This is done by calculating three
vectors: the query (Q), key (K), and value (V) vectors for each token. These vectors are
derived using learned weight matrices:

0=xw? K=xwk, v=xw'

where:

- X is the input sequence.
- W2, WK WV are weight matrices for the query, key, and value vectors, respectively.

The self-attention scores are computed by taking the dot product of the query and key
vectors and scaling by the square root of the dimensionality of the key vectors. The scores
are then passed through a softmax function to produce attention weights:

. OK”
Attention(Q, K, V) =softmax [ = | V
Vdy

where:
« dy is the dimension of the key vectors.

Multi-Head Attention: To allow the model to jointly attend to information from differ-
ent representation subspaces, Transformers use multi-head attention. Instead of computing
a single set of attention scores, the input is projected into multiple sets of queries, keys, and
values, and the attention mechanism is applied in parallel. The outputs of these attention
heads are concatenated and linearly transformed:

MultiHead(Q, K, V) =Concat(head,, ..., headh)WO

Each head i performs the self-attention computation independently, and the results are
combined to capture different aspects of the input data.

Feed-Forward Neural Network: After the multi-head attention layer, the output is
passed through a position-wise feed-forward neural network. This consists of two linear
transformations with a ReLU activation in between. The same feed-forward network is
applied independently to each position in the sequence:

FEN(x) =max(0,xW; +b1)W, + by
where:

- Wy, W, are weight matrices.
« by, by are bias terms.
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Layer Normalization and Residual Connections: To stabilize and speed up training,
each sub-layer (multi-head attention and feed-forward neural network) is followed by a
layer normalization step, which normalizes the output across the features. Additionally, the
Transformer uses residual connections (skip connections) that add the input of each sub-
layer to its output before applying layer normalization. This helps prevent the vanishing
gradient problem and allows the model to learn more efficiently:

Output = LayerNorm(x + Sublayer(x))

Stacking Layers: The encoder and decoder are composed of multiple identical layers
(typically 6 to 12 in common implementations). Each encoder layer consists of a multi-head
self-attention mechanism followed by a feed-forward neural network, while each decoder
layer contains an additional cross-attention mechanism to attend to the encoder’s output.

Output Decoding: The decoder generates the output sequence one token at a time. At
each step, the decoder attends to all the previously generated tokens using masked self-
attention (to prevent attending to future tokens) and to the encoder’s output using a cross-
attention mechanism. This process continues until the model generates a special end-of-
sequence token.

2.3 Conclusion and End-Of-Chapter Questions

This chapter introduces the fundamental principles of evolutionary algorithms and neu-
ral networks, laying the foundation for their integration in neuroevolution. Evolutionary
algorithms (EAs) are optimization techniques inspired by natural selection, operating on
populations of candidate solutions that evolve over successive generations. Key processes
include selection, mutation, and crossover, which allow populations to explore and exploit
the search space for optimal or near-optimal solutions. The chapter discusses different types
of EAs, such as genetic algorithms (GAs) and evolutionary strategies (ES), and their specific
uses, advantages, and limitations in optimization problems.

Additionally, the chapter introduces neural networks, including basic architectures like
feedforward and convolutional networks. These networks are designed to process and
learn from data, enabling them to make decisions or predictions. When integrated with
evolutionary algorithms, neural networks can evolve their structures and weights through
mechanisms that bypass traditional gradient-based training. This integration can be partic-
ularly useful in tasks that are difficult to model with a clear objective function or gradient.
By understanding the fundamentals of EAs and neural networks, readers will gain insight
into how they can be combined to develop adaptive, resilient Al systems capable of tackling
complex tasks.

Let’s reinforce what you’ve learned in this chapter with a few questions designed to help
you solidify key concepts and think critically about the basics of neuroevolution.

Define evolutionary algorithms and list their key components.

How do genetic algorithms work, and what role do crossover and mutation play?
Explain how fitness selection is performed in evolutionary algorithms.

Compare the roles of crossover and mutation in promoting diversity within a population.

A e

What are some advantages and disadvantages of population-based optimization?
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. Describe how evolutionary algorithms handle multi-objective optimization problems.

. Discuss the significance of mutation rate and crossover rate in evolutionary algorithms.
. Explain how fitness landscapes affect the search process in evolutionary algorithms.

. What challenges arise when applying evolutionary algorithms to neural networks, and

how can these be addressed?

2.4 Chapter Review Questions

10.

. Core Principles of Evolutionary Algorithms (EAs): What are the key components of

evolutionary algorithms? How do these components collectively emulate the process of
natural selection?

. Genetic Algorithm (GA) Operations: Describe the role of crossover and mutation

in genetic algorithms, and explain how they contribute to maintaining diversity in the
population.

. Challenges in Reinforcement Learning (RL): Why are evolutionary strategies (ES)

often used as an alternative to gradient-based optimization in reinforcement learning
tasks, especially when dealing with sparse or noisy reward signals?

. Covariance Matrix Adaptation Evolution Strategy (CMA-ES): How does CMA-

ES adapt its search over successive generations? What advantage does this provide in
comparison to simpler evolution strategies?

. Practical Applications of Fitness Shaping: What is fitness shaping, and how does rank-

based fitness shaping mitigate the impact of outliers in evolutionary optimization tasks?

. Feedforward Neural Networks (FNNs): What is the primary purpose of the activation

function in the hidden layers of a feedforward neural network? Why is non-linearity
crucial for the network’s performance?

. Recurrent Neural Networks (RNNs): How do recurrent neural networks (RNNs)

maintain information about past inputs? Why are they particularly well-suited for
sequential data tasks like language modeling?

. Long Short-Term Memory Networks (LSTMs): What are the roles of the forget,

input, and output gates in an LSTM cell? How do they collectively help mitigate the
vanishing gradient problem?

. Convolutional Neural Networks (CNNs): Describe the purpose of the convolutional

and pooling layers in a CNN. How do these layers work together to extract and
summarize features from input data?

Transformers: What is the self-attention mechanism in a Transformer model? How
does it enable the model to capture long-range dependencies in sequential data?
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