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such as weight decay is also needed, for instance:
AWU = aijOin—ﬂijWij, (421)

where wj; is the weight between neurons i and j with activations o; and o, and «;; and S are
learning and decay rate parameters. Unlike gradient descent, Hebbian learning is entirely
local to each connection and requires no learning targets at the output. In this sense, it is
closer to biological learning than gradient descent, and therefore a proper comparison to
adaptation based on recurrency. Note that Hebbian learning also provides an alternative
that avoids the second question in this section, i.e. where the targets for development come
from—it does not need them. On the other hand, it cannot take advantage of targets either,
and therefore it is generally not as powerful as gradient descent.

Nevertheless, Hebbian learning is a compelling approach to developmental indirect
encoding on its own. Networks with Hebbian learning can change their behavior based
on what they observe during their lifetime. For instance, they can evolve to first perform
one task such as turn on a light, and then switch to another such as travel to a target area (D.
Floreano and J. Urzelai 2000). While it is biologically plausible, an interesting practical
question arises: Can such low-level adaptation be more effectively implemented through
recurrent activation?

The above foraging domain with good and bad food items can be used to study this
question (Stanley, Bryant, and Miikkulainen 2003). The usual NEAT method for evolving
recurrent networks can be compared with a version that takes advantage of Hebbian learn-
ing: It evolves the learning rate and decay rate parameters o;; and f3; for each connection,
in addition to the weights and the network topology. Each evolved network is placed into
the foraging environment where it can consume food items; if an item is good, it receives
a pleasure signal, and if bad, a pain signal. All items in a trial are the same so after it con-
sumes the first item, it needs to either eat all of them or none of them to receive maximum
fitness.

While both approaches evolved successful networks, NEAT without adaptation required
about half the generations to do so. There were fewer parameters to optimize, and evalua-
tions were more consistent. Indeed the solution networks look very different (Figure 4.6):
While the fixed-weight recurrent networks were parsimonious with recurrency focused at
the output, the adaptive networks were more complex and holistic, using many more adap-
tive weights throughout the network. Because many weights adapt, it was not possible to
rely on only a few loops, and the behavior became encoded redundantly throughout.

Thus, in such a simple task recurrency was more effective than Hebbian adaptation. It
is of course possible that in more complex situations adaptation provides additional power
that may be needed. What such tasks might be is an interesting topic for future work.

4.3 Indirect Encoding Through Hypernetworks

A common features of the indirect encodings we have encountered in the previous sections
is that a specific phenotypic component at a given point in development influences the
states of nearby components. In other words, here development progresses through local
interactions. This section reviews a particularly popular indirect encoding that, when



Indirect encodings 63

(a) With Hebbian learning (b) No Hebbian learning

Figure 4.6: Networks evolved with NEAT with and without Hebbian learning. Nodes
are numbered through historical markings. Black lines represent excitatory and blue lines
inhibitory connections; loops indicate recurrent connections; line thickness corresponds to
connection weight. (a) With Hebbian adaptation, performance is encoded more holistically,
utilizing plastic synapses throughout the network. () Without Hebbian adaptation, the net-
work is more parsimonious, with adaptation coded into recurrent connections at the outputs.
While both types of solutions are successful, Hebbian adaptation provides a larger search
space that is more difficult to navigate. In simple tasks at least it is thus more effective to
rely on recurrency to represent adaptation. (Figure from Kenneth O. Stanley 2003).

first introduced, broke with the strong tradition of such local interactions and temporal
unfolding.

This approach, now known under the name hypernetwork, is based on the idea of one
neural network (the hypernetwork) encoding the parameters of a potentially much larger
phenotype in one-shot, i.e. each component in the phenotype is determined independently
of any other component. Whereas many indirect encoding approaches illustrate opportu-
nities for utilizing biological principles but do not yet perform as well as the best direct
approaches, such hypernetworks already perform better in many standard benchmarks. Ini-
tially tested on indirectly encoding images, which we will discuss in the next section, this
approach can be extended to many other domains, such as 3D robot morphologies, and even
to encode artificial neural networks themselves (Section 4.3.3).

4.3.1 Compositional Pattern Producing Networks

The most common way to implement hypernetworks in neuroevolution is through com-
positional pattern-producing networks (CPPNs; Kenneth O Stanley 2007). Even though
they are fundamentally distinct from developmental systems, CPPNs are inspired by devel-
opmental biology: Structures are built within a geometric space analogously to chemical
gradients that define the axes of the embryo. For example, when the embryo of Drosophila
melanogaster (one of developmental biologists’ favorite pets and commonly known as the
fruit fly) develops, chemical gradients establish axes from front to back, head to tail, and
left to right. This way, structures such as the wings can be situated at their correct posi-
tions. Inside these structures and substructures, such as the intricate patterning of the wings
which are placed within the local coordinate system of the wing itself. In our own bodies,
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Figure 4.7: CPPN Encoding. (a) To create a 2D image, the CPPN is queried with the (x,
y) location of a specific pixel and then outputs its greyscale value. (b) A CPPN is similar
to a traditional neural network but instead of only one type of activation functions, they are
chosen from a small set of activation functions to create patterns with particular regulari-
ties. Composing functions with each other allows the system to produce complex patterns.
Figure from Kenneth O Stanley (2007).

such gradients help define the position of e.g. the legs, arms, and hands and within these
structures substructures such as the fingers of the hands. It would be expensive to simulate
the underlying process of the diffusion of morphogens, which is why CPPNs simplify this
process into a network of function compositions represented as a graph. On a high-level,
CPPNs are generative neural networks that create structures with regularities in one shot
and without going through a period of unfolding/growth.

We will start by looking at how a CPPN can be used as an indirect encoding for image
generation but later explore how it can be easily extended to other domains such as gen-
erating neural network connectivity patterns, morphologies of 3D soft robots, or agent
environments. A CPPN generates an image by taking as input the coordinates of a 2D loca-
tion p=(x, y) and outputting the RGB color or grayscale value of the pixel at that location.
By repeating this process for all the pixels of a two-dimensional grid, a two-dimensional
image can be created (Figure 4.7a). In contrast to a direct encoding, in which each pixel
in the image would be optimized separately, one advantage of the CPPN representation is
images can be generated at any resolution, by only changing the resolution of locations we
sample and without increasing the number of genotypic parameters of the CPPN itself.

As discussed earlier in this chapter, one common goal of indirect encodings is to be able
to express patterns such as symmetry, repetition, etc. In order to allow CPPNs to more eas-
ily express such patterns, nodes in these networks do not all implement the same activation
function as in traditional neural networks (including the networks traditionally evolved by
NEAT) but are chosen from a small set of activation functions, such as Gaussian, sigmoid,
and sine wave functions. For example, a Gaussian function can create something similar
to a symmetric chemical gradient, while a sigmoid generates an asymmetric one, and a
sine wave can create a repeating pattern. Things get more interesting when functions are
composed with each other, which is in some way analogous to the morphogens creating
local coordinate systems in real organisms, enabling their incredible levels of complex-
ity. For example, a sine wave composed with the square of a variable sin(x>) produces a
pattern that is repeating but with some type of variation. Such patterns are ubiquitous in
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Figure 4.8: CPPN Examples. CPPNs can produce patterns with repetition (a) and repetition
with variation (b). They can also create symmetric patterns such as the sun glasses shown in
(c), which is encoded through the CPPn shown in (e). By changing only a single connection,
varying degrees of symmetry can be produced, such as the morphed glasses in (d). Figure
from Kenneth O Stanley (2007)

D

many patterns seen in nature. These networks can produce surprisingly complex structures
with few nodes and connections, making them useful in a wide range of applications, as
we’ll see throughout this book. An example of such a CPPN with different activation func-
tions is shown in Figure 4.7b, which creates the symmetric and repeating pattern shown in
Figure 4.7a.

How can we evolve these CPPNs? Traditionally, CPPNs are evolved with NEAT which
enables the optimization of both the weights and the network architecture. Additionally,
NEAT enables CPPNs to slowly complexify and to produce more and more complex pat-
terns. Augmenting NEAT to evolve CPPNs instead of the typical ANNSs is straightforward.
Every time a structural mutation is adding a node to the network, the activation function
of that node is randomly chosen from a pre-defined set of activation functions, often with
equal probability. However, it is certainly possible to also use a method like ES (Chapter 3)
to optimize the weights of a fixed-topology network which includes randomly assigned
activation functions for each node. We will leave this as an exercise for the reader.

[TODO: Add figure of CPPN images from original CPPN paper?; figure that shows
elaboratiion on a concept; and a 3D example; not the same ones we show for Picbreeder
later]

One way to explore the representational power of an encoding is through interactive evo-
lutionary computation (IEC) (Takagi 2001). Instead of evolving towards a certain target, in
interactive evolution, the user guides the evolutionary search by selecting parents from a set
of candidate solutions (often by visually taking a look at them and deciding what they like
most). The benefit of IEC is that it can reveal an encoding’s ability to being able to encode
a diversity of artefacts, while being able to establish and exploit regularities We’ll further
discuss how this idea of interactive evolution allows human designers to drive evolutionary
discovery, how it enables multiple humans to collaboratively evolve artefacts, and how it
can even lay the foundation for new types of machine learning-based games in Chapter 8.

Exploring the space of CPPN-encoded images through IEC demonstrates that the rep-
resentation is able to capture many of the desirable regularties we identified earlier in
this chapter (Figure 4.8). For example, it is able to create patterns that show repetition
(Figure 4.8a) but also repetition with variation (Figure 4.8b). Figure 4.8c illustrates a set of
”sunglasses” that exhibit bilateral symmetry, meaning they are mirror images on either side.
This symmetry serves as an example of how genetic elements can be effectively reused. In
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this case, the CPPN-based function that defines one lens (the left one) are identically used
for the other lens (the right one). Intriguingly, modifying just one connection gene, as shown
in Figure 4.8e, can alter the symmetry of the lenses, resulting in a slight asymmetry while
still preserving the overall pattern’s coherence, as seen in Figure 4.8d. Even though the
“genetic code” is the same for both sides, one lens displays a variant of the pattern seen in
the other. This ability to evolve and refine specific features without disrupting the funda-
mental pattern is significant and possible because changes in the coordinate frame within a
CPPN do not ruin the overall pattern being created. Therefore, even if the symmetry of the
underlying coordinates is disrupted by a single gene alteration, the intricate pattern created
within these coordinates remains intact and unaltered.

Additionally, one of the fundamental properties of natural evolution is that it is able to
elaborate on discovered designs in subsequent generations. For example, the fundamen-
tal bilateral body plan, discovered early on during the Cambrian explosion, has undergone
extensive development over hundreds of millions of years, yet its core structure has been
consistently preserved. In a similar vein, the question arises: Can a CPPN effectively repli-
cate a bilateral body plan and, over generations, both preserve and refine this bilateral
symmetry. [EC experiments demonstrate that after discovering a spaceship-like design with
bilateral symmetry (Figure 4.9a), that design can then be elaborated upon, with the underly-
ing regularities becoming more complex in subsequent generations. Importantly, the basic
parts that form the spaceship are conserved during this elaboration, such as its nose, tail,
and wings. In the subsequent sections, will see that this ability to elaborate on previous
discoveries is an important property of CPPNs.

CPPNss are also not restricted to 2D and can easily be extended to generate 3D-forms
instead of 2D-images by adding a third z-input and can even encode locomoting 3D soft
robots, as we will see in the next section.

4.3.2 Case Study: Evolving Virtual Creatures with CPPN-NEAT

A good test domain for different indirect encodings are evolved virtual creatures, which
refer to digital entities that interact within a computational environment. These creatures
are typically part of a simulation in which various forms of artificial life compete, sur-
vive, reproduce, and evolve over time based on certain predefined criteria or environmental
pressures. In this section we will have a look at how the morphologies of such creatures
can be defined through a CPPN. We will encounter virtual creatures again throughout the
book, such as in the context of collective intelligence (Section 7.3.2) or co-evolving of
morphology and control (Section 9.2).

Unlike the static CPPN-encoded images we have encountered in the previous section,
virtual creatures often have to interact with their environment, requiring a form of embod-
ied cognition. This dynamism challenges the encoding schemes to not only create viable
forms but also to encode behaviors that are effective in a given environment. Virtual crea-
tures, with their varied morphologies and behaviors, present a complex and diverse space
to explore. This complexity makes them ideal for testing the capabilities of indirect encod-
ings to generate a wide range of solutions, where there is a coherent link between form and
function.

The particular virtual creatures we are looking at next are three-dimensional soft robots
(Cheney et al. 2014). Each robot is made out of an arrangement of voxels, where each voxel
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Figure 4.9: CPPN pattern elaboration over generations. The figure shows a chronologi-
cal sequence of CPPN-encoded designs, discovered and elaborated upon during interactive
evolution. Together with the designs, the number of hidden node functions and connections
are also shown. Figure from Kenneth O Stanley (2007).

(b) Direct
(a) Indirect encoding encoding

Figure 4.10: 3D soft robot generated with the indirect CPPN encoding (a) and a direct
encoding (b) in which each voxel is optimized independently. In contrast to the direct
encoding, the CPPN-based encoding is able to produce 3D structures with symmetries and
repeating motifs. Figure from (Cheney et al. 2014)

can be one of four materials, displayed as different colors (Figure 4.10). Voxels colored
green undergo periodic volumetric actuations at 20% intervals. Voxels colored light blue
are passive and soft, with no inherent actuation; they deform only in response to the actions
of nearby voxels. Red voxels behave like green ones but with counter-phase actuations.
The dark blue voxels are also passive, but they are more rigid and resistant to deformation
than their light blue counterparts. These soft robots do not have sensors and the patterns
of material types thus fully determines the robot’s actuation pattern. This means that the
optimisation task equals finding a pattern of materials that makes the robot move as fast as
possible.

The robot-generating CPPNs take as input the x, y, and z coordinates and distance from
center (d) of each voxel. One of the network’s outputs indicates the presence of material,
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while the other four outputs, each representing the specific material mentioned above, out-
put the maximum value indicating the type of material present at that voxel. Separating the
phenotypic component’s presence and its parameters into distinct CPPN outputs has been
demonstrated to enhance performance. If there are several disconnected patches, only the
central patch is considered in creating the robot morphology.

Optimizing these CPPN representations with NEAT shows that they are indeed not
restricted to generating static structures but can produce fully functional three-dimensional
soft robots. An example of such an evolved robot locomoting is shown in Figure 4.10a. This
robot morphology, together with other morphologies discovered during evolution, display
interesting regularties often including symmetry and repetition. This is in stark contrast
to robots that use a direct encoding, in which the parameters of each voxel are encoded
individually. These robots often fail to perform well without any clear regularities in their
morphologies (Figure 4.10b). A direct encoding makes it more challenging to find struc-
tures that display the globally coordinated behaviors necessary for efficient locomotion
strategies.

CPPNs can generate structures with regularities by giving the network access to the loca-
tions of each element of the structure to be generated. In biological systems, this information
is not directly available so it is an interesting question if we are also able to generate complex
patterns artificially solely based on the local communication of the structure’s components.
We’ll return to this question in Section 7.3 on neuroevolutionary approaches for collective
intelligence, where we will also again encounter three-dimensional soft robots.

4.3.3 Hypercube-based NEAT (HyperNEAT)

We started this chapter with a discussion of the intricate structure of the human brain and its
complex regularities. For example, in the brain, we often find neural modules with repeating
connectivity patterns and left/right symmetry. Given a CPPN’s ability to express complex
2D and 3D patterns, it makes sense to also consider if they could be used to generate such
complex neural connectivity patterns as well. With this goal in mind, the question becomes
what should such a CPPN look like and what should its input be.

To answer this question, we again consider convolutional connectivity patterns. In a con-
volutional neural network, one of the fundamental building blocks in deep neural networks,
the same feature detector is employed at multilple locations in a network. If we want our
algorithm to discover such heuristics by itself, we need a method that can learn that there
should be correlations between the weights of nearby neurons. Essentially, this involves
generating weight patterns based on the geometry of the input and output domains. For
instance, if the input and output domains are both two-dimensional, the weight of a con-
nection between two neurons can be expressed as a function f of the positions (x1,y1) and
(x2,y2) of the source and target neurons respectively.

This is the fundamental insight behind the method called hypercube-based NEAT
(hypercube-based NEAT) (Stanley, D’ Ambrosio, and Gauci 2009), which can be viewed as
one of the most foundational and impactful applications of CPPNs. In essence, in Hyper-
NEAT every neuron is given a role (e.g. input, hidden, output) and a location in space
(traditionally by a user but this process can also be automated, as we will see in the next
section). The collection of roles and positions in HyperNEAT is often refered to as the sub-
strate, to distinguish it from the CPPN itself. The connecitivty patterns between the neurons
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Figure 4.11: HyperNEAT Substrates. Two different types of HyperNEAT substrates are
shown, which are the arrangement of nodes and their roles. In (a), nodes are arranged on a
2D plane. The CPPN is queried with all pairs of nodes to determine how they are connected
to each other. A more complex substrate for evaluated checker board game position is shown
in (b). The input layer reflects the geometry of the board. The output layer C has one node
that determines the quality of a board state. The CPPN has two outputs AB and BC. To
query a connection from layer A to B, output AB is used while for layer B to output layer
C, it uses output BC. Figure from (Gauci, Stanley, et al. 2008)

are determined by CPPNs evolved through NEAT, which take as input the location of two
nodes. Querying the CPPN with every possible connection between two points, with the
output of the CPPN representing the weight of the connection, produces an artificial neural
network. This process is visualized in Figure 4.11a. To not only produce fully connected
networks, connections might only be expressed if the CPPN output is higher than a cer-
tain threshold. In other HyperNEAT variants, a second output determines if a connection
should be expressed (Verbancsics and Stanley 2011). This approach can be helpful because
it decouples the pattern of weights from the pattern of expressed connections

Given neurons positions in space, allows us to create a variety of regular connectivity pat-
terns. For example, in a typical convolutional network, a filter is applied across the geometry
of the input space. HyperNEAT can invent the concept of convolution by itself, because it
can be expressed as a function based on the distance of the source to the target neuron:
x1—xp and y; —y;. The intriguing aspect of HyperNEAT lies in its ability to go beyond
conventional convolution as the sole significant pattern of connectivity. Through Hyper-
NEAT, evolved neural networks have the potential to uncover and leverage various patterns
of regularity, inaccessible to traditional learning algorithms for neural networks.

For example, consider the task of creating a neural network that evaluates board positions
in the game of checkers, that is, a specific board configuration is given to a neural network as
input and it has to determine how good this position is. This game is intuitively geometric,
with the movement rules for each piece being the same for every location on the board. The
HyperNEAT approach should be able to take advantage of the CPPN’s ability to calculate
the connection weights based on the positional differences between two nodes enables it to
uniformly apply a repeating concept throughout the entire board. In a sense, HyperNEAT
is able to see the geometry of the task. We thus expect that an indirect representation that
can learn to repeat strategies across the board should have an advantage when compared to
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a direct encoding like NEAT, which has to learn this pattern for each square on the board
separately. In the adaptation of HyperNEAT for the game of checkers, the input layer is
designed as a two-dimensional structure, mirroring the checkerboard’s layout, as illustrated
in Figure 4.11b (Gauci and Stanley 2010). This substrate has one input A and one hidden
layer B and a single output node C, which role it is to output is an evaluation of the board
position. Note that the CPPN here has two outputs AB and BC. Therefore, the x and y
coordinates of each node are adequate to pinpoint the specific connection being queried,
with the two separate outputs differentiating the connections between A&B and B&C from
each other.

HyperNEAT is able to find a high-performing board evaluator significantly faster than
NEAT, which is in part due to HyperNEAT’s ability to search through a smaller genotypic
space. Additionally, when comparing the most general solutions found by both approaches
to randomized opponents, HyperNEAT shows a significantly higher win rate and also loses
significantly fewer games than NEAT solutions. These improved generalization abilities
are due to HyperNEAT ability to discover the necessary regularities in the geometry of the
game. This observation is supported by examinations of the connectivity patterns of the
most general HyperNEAT solutions, which are often smoother and more continuous than
less general solutions.

Beyond board games, we hypothesized at the beginning of this chapter that indi-
rect encodings should also be useful for tasks such as controlling a quadruped robot
(Figure 4.12a), taking advantage of the task’s symmetry and regularities. For HyperNEAT,
the positions of sensor and motor neurons within a quadruped body can be exploited to
efficiently develop consistent gait patterns that rely on connectivity patterns unrelated to
convolution (Clune, Stanley, et al. 2011). Each leg can be viewed as a repeated module,
with different gaits having different regularities themselves. For example, in a typical horse
trot gait, the diagonal pairs of legs move forward at the same time while in other gaits such
as the pace gait, the two legs legs on the same side move forward at the same time. The
HyperNEAT substrate, which features three 2D sheets for the inputs, hidden layer, and
output layer is shown in Figure 4.12b. Input on the substrate are arranged to reflect the
geometry of the task, with each row receiving information about the state of a single leg
(e.g. the current angle of the three joints of the leg, a sensor that indicates if the leg is
touching the ground). The output substrate also reflects the morphology of the robot, with
the three elements in each row outputting the desired new joint angle.

It is interesting to look at the performance of indirect vs. direct encodings across the con-
tinuum of regularity. For example, in the quadruped domain, the regularity of the problem
can be decreased by introducing faulty joints, in which noise is added to the requested joint
angle and the actual motor command that is send. As expected, HyperNEAT’s performance
increases with increased task regularity, outperforming all other approaches (NEAT and
FT-NEAT, which is a variant of NEAT that has a fixed number of hidden nodes, which is
the same as the number used in the HyperNEAT substrate) with no or 1 faulty joint. When
problem regularity is sufficiently low (8 and 12 faulty joint treatment), FT-NEAT and NEAT
start to outperform HyperNEAT. The important lesson here is that the type of method to be
used, highly depends on the target domain and how much regularities there are to exploit.

Interestingly, going beyond pure quantitative results, the gaits produced by HyperNEAT
are also often more regular and coordinated than the ones from NEAT. HyperNEAT often
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Figure 4.12: A neural Network controller for a quadruped robot produced by HyperNEAT.
The HyperNEAT substrate has three layers: input, hidden, and output. The input and output
nodes are arranged in a way to take the task geometry into account. A front view of the
network is shown to the left, and a view from the back on the right. Input nodes are shown
in yellow, and output nodes in blue. Line thickness represents the magnitude of the weight.
HyperNEAT is able to create connectivity patterns with varying degrees of regularity, based
off the location of the nodes in space. Figure from (Clune, Stanley, et al. 2011).

produces two types of gaits. In one of them, all legs move forward in unison at the same
time, which suggests that HyperNEAT repeated the same connectivity pattern for each leg.
The other gait resembles more of a horse gallop gait, in which three legs move together
and one of the legs moving in opposite phase. This gait indicates that HyperNEAT can
also produces regularities with variation (i.e. one leg moves different to the other three
legs). These regularities are also reflected in the HyperNEAT-produced weight patterns.
Figure 4.12c and d shows the view of the same network from the front and from the back,
respectively. Observe the intricate and consistent geometric patterns of weight distribution,
such as the inhibitory connections from input nodes directed towards the upper hidden
nodes and excitatory connections aimed at the lower hidden nodes. Additionally, there is a
notable regularity with variations, exemplified by the spread of inhibitory connections into
the output nodes, which changes along both the x and y axes.

In summary, an indirect encoding such HyperNEAT can offer great benefits, allowing
relativity compact CPPNs with only a handful of connections to encode functional neural
networks with millions of weights. In fact, even before DeepMind demonstrates that it is
possible to learn to play Atari games from pixels, which has been a significant milestones
in their early successes and shaping the landscape of deep RL, HyperNEAT was the first
method used to train neural networks to play Atari games from pixels alone (Hausknecht
et al. 2014). However, HyperNEAT is also not panacea for every task; it does perform best
in domains where regularities can be exploited but works less well in domains with many
irregularities. There have been attempts at combining the best properties of both direct and
indirect encodings. One such method is Hybridized Indirect and Direct encoding (HybrID),
which discovers the regularities of the domain with an indirect encoding but then accounts
for the irregularities through a fine-tuning phase that optimizes these weight parameters
directly (Clune, Beckmann, et al. 2011). Another more biologically plausible solutions is a
combination of an indirect encoding together with lifetime learning. While indirect encod-
ings are useful to create regular neural structures, these provide a good starting point for
local learning rules such as the Hebbian rules we first encountered in Section 4.2.3. And
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indeed, neuroevolutionary experiments show that neural connectivity motifs that are indi-
rectly encoded and thus more regular do demonstrate the best learning abilities in a simple
operant conditioning task (Tonelli and Mouret 2013), when compared to directly encoding
those starting weights.

This strong relationship between indirect representations and synaptic plasticity under-
scores a crucial interplay between development and adaptability in biological systems.
Synaptic plasticity interacts closely with the structured neural connectivity formed dur-
ing development. This interplay allows for both the initial formation of efficient networks
and their subsequent adaptation to new information and experiences. In biological systems,
such connectivity patterns are not only shaped by genetic encoding but are also dynami-
cally refined through experience-dependent plasticity. Understanding this connection could
significantly impact the types of representations that will define the next generation of indi-
rect encodings. However, despite its potential implications for developing more adaptable
neural networks, this interplay between indirect encoding and synaptic plasticity has yet to
receive substantial attention from the broader neuroevolutionary research community.

4.3.4 Evolvable Substrate HyperNEAT

While HyperNEAT showed that NE can benefit from neurons that exists at locations in
space, one drawback of its original formulation is that the location and number of hidden
nodes have to be defined by the user. While it is often clear how the location of the inputs
relate to the output units and thus where they should be place within the substrate (e.g. the
rangefinders of a robot should relate to the network’s outputs that control its movement),
how to decide on the position of the hidden nodes is less straightforward. A less obvious
effect is that requiring a hidden node # to be at position (a, b), as specified in the original
HyperNEAT, inadvertently demands that any weight pattern created by the CPPN must
intersect exactly at position (a, b) with the appropriate weights. This means the CPPN in
HyperNEAT has to align the correct weights precisely across all coordinates (a, b, x2, y2)
and (x1, y1, a, b). However, this raises the question: why enforce such a random constraint
on weight locations? The CPPN might more easily represent the desired pattern slightly off
the specified location, but this would not work with the constraints set by the user.

These limitations are addressed by an extension of HyperNEAT, called Evolvable Sub-
strate HyperNEAT (ES-HyperNEAT) (Risi and Stanley 2012b). The basic idea behind
ES-HyperNEAT is that the weight pattern generated by the CPPN should give some indi-
cation of where the hidden nodes should be placed and how many there should be. That is,
areas in the 4D hypercube that contain a lot of information, should result in more points
being chosen from these areas. Remember, each point in that 4-dimensional weight space
is a connection in two dimensions.

For example, take a hypercube whose weights are all uniform, meaning that
CPPN(x1,yl,x2,y2) =k for all different input combinations; it would not make much sense
to express many connections if there is not much information in the underlying weight pat-
tern. On the other hand, if the variance of the weight pattern is high in some regions, it
might indicate that there is more information available and thus more connections should
be expressed. In ES-HyperNEAT, if a connection is chosen to be expressed, the nodes
that it connects must therefore also be expressed. Which nodes to include thus becomes
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Figure 4.13: Evolvable-Substrate HyperNEAT. (a) Starting from the input nodes, ES-
HyperNEAT analyses sequences of 2D slices through the hypercube weight pattern to
discover areas of high variance. This information is then used to determine which connec-
tions, and thereby nodes should be expressed. The approach continues from the discovered
hidden nodes (b) until some maximum depth has been reached. (c) Similarly we start from
the output nodes, so determine to which hidden nodes they should be connected. (d) Once
the approach has run a maximum number of iterations or when no new nodes are discov-
ered, the resulting ANN is pruned, removing any nodes that do not connect both to the
inputs and outputs of the network. Figure from (Risi and Stanley 2012b).

implicit in the question which connections to include from the infinite set of potential con-
nections encoded by the CPPN. By making the number and location of nodes depending
on the CPPN-generated pattern, we give the system a “language”, i.e. a way to increase or
decrease the number of connections (and thus nodes) and change their location by varying
the underlying pattern.

For this approach to work, it is useful to have a datastructure that can represent space at
variable levels of granularity. One such datastructure is the quadtree, which has found suc-
cessful applications in various fields, including pattern recognition and image encoding,
and partitions a two-dimensional space by recursively subdividing it into four quad-
rants or regions. This process creates a subtree representation, where each decomposed
region becomes a descendant with the original region as the parent. The recursive split-
ting continues until the desired resolution is achieved or until further subdivision becomes
unnecessary, indicating that additional resolution would not reveal new information.

ES-HyperNEAT works as follows: For each input neuron at position (p1, p2) apply the
quadtree to analyse regions for their variance of the 2-dimensional sub-slice through the
hypercube spanned by CPPN(p1, p2, x2, y2) (Figure 4.13). In areas of high variance, as
detected by the quadtree algorithm, connections and their corresponding nodes are created.
The process is then repeated from those discovered hidden nodes until some maximum
depth is reached, after which only the neurons are kept that have a path to an input and
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(a)  Generation 24 (b)  Generation 30 (c)  Generation 106 (d) Generation 237
ANN: 30 n, 184 ¢ ANN: 52 n, 280 ¢ ANN: 42 n, 310 ¢ ANN: 40 n, 356 c
CPPN:2n,9c¢ CPPN: 3n,10 ¢ CPPN:3n, 10 ¢ CPPN: 5n, 18 ¢

fitness = 0.85 fitness = 0.93 fitness = 5.96 fitness = 10.00

Figure 4.14: ES-HyperNEAT Example Lineage Shown are four milestones in one of the
maze solution lineages. The CPPN is shown at the top with the decoded neural network
in the middle (CPPN activation functions are G=Gaussian, A=absolute value, S=sigmoid,
Si=sine). In addition to the location of nodes, the CPPN also receives the length L of a
connection as an additional input. The resulting maze navigation behaviour is shown at the
bottom, together with the number of connections and nodes in the neural network and in the
CPPN. One can observe a gradual increase in the complexity of the CPPN which increases
the information in the underlying hypercube pattern and thus results in an increase in the
number of ANN weights and neurons.

output neuron. After this process is repeated for each input (and output) node, the ANN is
constructed and can be applied to the task at hand.

A good domain to evaluate this approach should test its ability to build and elaborate on
previously discovered stepping stones. While it is easy to see how a method such as NEAT
would be able to accomplish this task, it is less obvious how an indirect encoding would fare.
For example, the original HyperNEAT has the tendency to often produce fully connected,
which makes it harder to elaborate on intermediate milestones since all connections are
already used for the current partial solutions. On the other hand, ES-HyperNEAT should be
able to do so because it can increase the number of nodes and connections in the substrate.

One such task is the hard maze domain, originally introduced to study more explorative
search methods such as Novelty Search (Section 5.3). Here, the agent has rangefinder sen-
sors to detect walls and a pie-slice radar sensors that fire when the goal is within the agent’s
corresponding pie-slice sensor (Figure 4.14). To encourage the agent to discover the inter-
mediate stepping stones, the origianl task is modified to specifically reward the agent for
traversing the green way points (which are not visible to the agent).
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As hypothesized, the original HyperNEAT indeed struggles with this task, and only finds
solutions in 45% of 20 independent evolutionary runs. ES-HyperNEAT on the other hand,
is able to find a solution in 95% of all runs. As shown in Figure 4.14, analysis of an example
lineage shows that ES-HyperNEAT is able to elaborate on previously discovered stepping
stones. This figure shows four milestone ANNs (middle row), together with the underlying
CPPN (top) and the resulting agent trajectory (bottom). Interestingly, all the ANNs dis-
play common geometrical features which are kept during evolution, such as the symmetric
network topology. While larger changes happen earlier in evolution, the networks from
generations 106 and 237 show a clear holistic resemblance to each other, with strong con-
nections to the three output neurons. These results also demonstrate that ES-HyperNEAT
is able to encode a larger network with a compact CPPN. In fact, the solution ANN with
40 hidden nodes and 256 connections is encoded by a CPPN with only 5 nodes and 18
connections.

4.3.5 General Hypernetworks and Dynamic Indirect Encodings

More generally, HyperNEAT and its variations are particular examples of a family of
algorithms now called hypernetworks (Ha, Dai, and Le 2016). Hypernetworks generalize
HyperNEAT to any approach in which one network (termed the hypernetwork) generates
the weights of another target neural network. They hypernetwork is typically a smaller
network designed to learn a mapping from a low-dimensional input space to the high-
dimensional weight space of the target network. The target network is the actual network
that performs the main task, such as classification, regression, or controlling an agent. Pio-
neering work on hypernetworks goes back to the early 90s, where Schmidhuber (1992)
introduced the idea of Fast Weight Programmers, where a ’slow” neural network trained
through gradient descent learned the “fast” weights of another network.

Mathematically, given an input x to the target network, a hypernetwork H takes an
auxiliary input z and outputs the weights Oy for the target network. This relationship is
expressed as Ory = H(z). The target network then uses these weights to perform its task,
represented as y=T(x; Ory), where x is the input to the target network, z is the auxiliary
input to the hypernetwork, Oy are the weights generated by the hypernetwork, and y is the
output of the target network.

In the previous section on HyperNEAT, we have seen a special case of such a hypernet-
work, that was geometrically-aware, i.e. the auxiliary input z gave nodes locations in space,
and which was trained through NEAT. Other approaches, such as Compressed Network
Search (Koutnik, Gomez, and Schmidhuber 2010) do not employ CPPN-NEAT but instead
use discrete cosine transformations (DCS) to compress the weights of a larger weight matrix
into a smaller number of DCS coefficients, resembling the popular JPEG compression. It
is also possible to combine evolving the neural architecture with gradient-based weight
training, which was demonstrated in an approach called Differentiable Pattern Producing
Networks (DPPNs) (Fernando et al. 2016).

More recently, Ha, Dai, and Le 2016 showed that the phenotype can be made directly
dependent on the network’s input, by training a hypernetwork end-to-end through a
gradient-descent-based training approach. This work strikes a balance between the Com-
pressed Network Search approach, where a DCS prior limits the type of weight matrixes
that can be produced, and the more flexible HyperNEAT approach which requires evolving
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layer index
and other information
about the weight

Figure 4.15: Static Hypernetwork. In this example, the hypernetwork (shown in orange)
generates the weights of each layer of the main network (shown in black) by conditioning
the network on layer embeddings. Figure from Ha, Dai, and Le 2016.

both the architecture and weights (which adds significant complexity for many practical
problems). In Ha et al.’s approach, a hypernetwork generates the weights of a feedforward
network one layer at a time by conditioning the hypernetwork on the specific layer embed-
ding (Figure 4.15). These layer embeddings can either be fixed or they can also be learned,
allowing the system itself to learn approximate weight sharing within and across layers. This
approach was able to produce the weights for deep convolutional network for CIFAR-10
classification, with only a small decrease in classification accuracy but a drastic reduction in
the number of trainable model parameters. Interestingly, when applying the hypernetwork
approach to create the weights for a target network that is fully-connected, it is able to learn
convolutional-like filters when the location of the target weight and the x, y location of each
input pixel is provided.

Importantly, hypernetworks offer the intriguing ability to serve as a dynamic indirect
encoding, in which the produced weight pattern is allowed to change over time and made
dependent on the inputs for the task at hand. For example, a hypernetwork can be trained
to produce the weights of an RNN target network for handwriting sequence generation,
which can change over time and is dependent on the agent’s internal state and the inputs
(the previous output of the RNN) (Figure 4.16). In other words, a hypernetwork takes a
low-dimensional representation of the input character and the hidden state of the RNN as
inputs and outputs the weights for the next prediction step. This approach allows the RNN to
dynamically adapt its parameters based on the current context and is a good demonstration
of how concepts from neuroevolution are being effectively combined with those from the
traditional machine learning field.

In summary, hypernetwork-like approaches can significantly reduce the number of train-
able parameters while still perform well across different domains. This type of dynamic
indirect encoding is also closely related to the idea of neural self-attention, which we will
have a look at in the next section and which has been the basis for many recent deep learn-
ing revolutions such as the transformer architecture. Here larger input-dependent weight
matrices are created through the outer product of two smaller matrices called keys and val-
ues. As we will see, this type of indirect encoding allows encoding Matrix A, of size O(n?)
using only O(d) number of genotype parameters.
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Figure 4.16: Application of dynamic hypernetworks for handwriting sequence gen-
eration. In the dynamic indirect encoding approach, the hypernetwork takes as input the
internal state of the neural network and its previous action to dynamically generate the
weights of the RNN target network (shown as four different colours) Figure from Ha, Dai,
and Le 2016.

4.4 Self-Attention As Dynamic Indirect Encoding

In the preceding section, we explored the concept of hypernetworks, illustrating their role
as indirect encoding methods where one neural network, the hypernetwork, generates the
weights for another network, termed the target network. Typically, hypernetworks gener-
ate these weights without directly considering the specific input x to the target network.
Transitioning from this, we introduce the concept of self-attention mechanisms, which
embody a sophisticated method of dynamically generating contextual relationships within
data. Unlike hypernetworks, self-attention mechanisms inherently account for the input x
during the processing phase, tailoring the computational focus in a data-driven manner.
This capability not only allows self-attention to act as a form of indirect encoding but also
enhances it to be a dynamic encoding process. The dynamic nature arises from its ability
to adjust the internal model representations in response to the particularities of the input
data at any given moment, thereby offering a more flexible and context-aware approach to
encoding information.

4.4.1 Background on Self-Attention
The attention mechanism (Vaswani et al. 2017), a groundbreaking innovation in the field
of neural networks, particularly in natural language processing, has revolutionized how
models handle and interpret sequential data like text and time series. At its core, atten-
tion allows a model to focus on different parts of the input sequence when producing each
part of the output sequence, mimicking the human cognitive process of focusing more on
certain aspects while perceiving or processing information. The introduction of attention
mechanisms, especially in architectures like BERT (Devlin et al. 2018) and GPT (Brown
et al. 2020; OpenAl 2023) models, has led to substantial improvements in various complex
tasks in language understanding and generation.

While modern attention mechanisms can adopt various configurations, including posi-
tional encoding and scaling, its fundamental concept can be described by the following
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equations:
1
A =softmax (ﬁ(xqwq)(kakﬂ)
Y=Ax (XqWy)

where Wy, Wi, Wy € % >4 are the matrices that map the input matrix X € "% to com-
ponents called Query, Key and Value (i.e., Query =X,W,, Key =X Wy, Value=X,Wy).
Since the average value of the dot product grows with the vector’s dimension, each entry in
the Query and the Key matrices can be disproportionally too large if d is large. To counter
this, the factor ﬁ is used to normalize the inputs. The attention matrix A € Z"*" is obtained
by applying a non-linear activation function, typically a softmax operation, to each row of
the matrix. This mechanism is referred to as self-attention when X, =Xy; otherwise it is
known as cross-attention.

4.4.2 Self-Attention as a Form of Indirect Encoding

As we described previously, indirect encoding methods represent the weights of a neural
network, the phenotype, with a smaller set of genotype parameters. How a genotype encodes
a larger solution space is defined by the indirect encoding algorithm. As we have seen,
HyperNEAT encodes the weights of a large network via a coordinated-based CPPN-NEAT,
while Compressed Network Search (KoutniK et al. 2013) uses discrete cosine transform
(DCT) to compress the weights of a large weight matrix into a small number of DCT coef-
ficients, similar to JPEG compression. Due to compression, the space of possible weights
an indirect encoding scheme can produce is only a small subspace of all possible combi-
nation of weights. The constraint on the solution space resulting from indirect encoding
enforces an inductive bias into the phenotype. While this bias determines the types of tasks
that the network is naturally suited at doing, it also restricts the network to a subset of all
possible tasks that an unconstrained phenotype can (in theory) perform.

Similarly, self-attention enforces a structure on the attention weight matrix A that makes
it also input-dependent. If we remove the Query and the Key transformation matrices, the
outer product XleI defines an association matrix where the elements are large when two
distinct input terms are in agreement. This type of structure forced in A has been shown
to be suited for associative tasks where the downstream agent has to learn the relationship
between unrelated items. For example they are used in the Hebbian learning (Hebb 2005)
rule, inspired by neurons that fire together wire together, which is shown to be useful for
associative learning (Ba et al. 2016; Miconi, Stanley, and Clune 2018).

Because the outer product X,X, has no free parameters, the corresponding matrix A
will not be suitable for arbitrary tasks beyond association. The role of the small Query
and Key transformation matrices (i.e., Wy and Wy) allow A to be modified for the task at
hand. Wy and Wy can therefore be viewed as the genotype of this indirect encoding method.
Wq, Wk € R%n*d are the matrices that contain the free parameters and dj, is a constant
depending on the inputs. The number of free parameters in self-attention is therefore in the
order of O(d), While the number of parameters in A is in the order of O(n?). This form of
indirect encoding allows us to represent the phenotype with a much smaller set of trainable
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genotype parameters. Additionally, this type of indirect encoding dynamically adapts to
various inputs.

Building on the concepts discussed in the previous section, we formulated the output of a
hypernetwork H as 07y = H(z) where Opy are the parameters for a target network (TN) and z
is an auxiliary input (e.g., layer index). In a similar vein, self-attention can be conceptualized
as Ory =SA(x) where x is the target network’s input. This adaptation allows for a more
flexible and responsive model configuration, tailored to specific input characteristics and
demands.

Furthermore, the aforementioned dynamic adaptation mechanism in self-attention, which
allows real-time modulation of connection strengths based on input, also echoes the con-
cept of “Fast Weights” (Schmidhuber 1992) where the idea of rapidly adaptable weights that
could temporarily store information over short sequences was introduced. Similarly, self-
attention leverages dynamic encoding to adjust the attention matrix A, effectively using Wy
and Wy to reshape the network’s responses based on the input characteristics. This adapt-
ability is critical for tasks where the relevance of specific input features varies markedly
across contexts, akin to how fast weights facilitate short-term synaptic plasticity for rapid
learning adaptation.

4.4.3 Self-attention Based Agents

AttentionAgent (Tang, Nguyen, and Ha 2020), inspired by concepts related to inattentative
blindness — when the brain is involved in effort-demanding tasks, it assigns most of its
attention capacity only to task relevant elements and is temporarily blind to other signals,
is one of such adaptation that utilizes an attention-based agent for video game play, offering
enhanced interpretability in pixel-space reasoning, as illustrated in Figure 4.17.

This approach is grounded in self-attention (specifically, Xk =X), with cropped game
screen image patches serving as inputs. Key modifications to the attention mechanism in
AttentionAgent include: (1) condensing the attention matrix into an importance vector, and
(2) omitting the Value component in favor of extracting the top-k (k=10 in the paper) most
significant patch features as the output Y. This extraction is achieved through sorting and
pruning, detailed in Figure 4.18 and the paragraphs below.

Concretely speaking, given an input game screen, AttentionAgent segments the input
image into small square patches in a fashion similar to how a 2D convolution layer works.
It then flattens these patches treats the output of shape N x CM? as the input X € Z2"*%n
(see Figure 4.18 left). Here N is the number of patches, C is the number of channels in the
image and M is the length/width of each patch, therefore n=N and di, = CM?.

Upon receiving this transformed data, the self-attention module follows the equations
we mentioned above to get the attention matrix A of shape (N, N). After softmax, each
row in A sums to one, so the attention matrix can be viewed as the results from a voting
mechanism between the patches. If each patch can distribute fractions of a total of 1 vote to
other patches (including itself), row i thus shows how patch i has voted and column j gives
the votes that patch j acquired from others. In this interpretation, entry (i, ) in A is regarded
as how important patch j is from patch i’s perspective. Taking sums along the columns of
A results in a vector that summarizes the total votes acquired by each patch, and this vector
is called the patch importance vector (see Figure 4.18 middle). Unlike the self-attention we
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Figure 4.17: Demonstrating indirect encoding in AttentionAgent for enhanced interpretabil-
ity. White patches on the game screens signify the agent’s focus areas, with their opacity
indicating the relative importance of each patch. Figure from (Tang, Nguyen, and Ha 2020).
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Figure 4.18: Method overview of AttentionAgent. Key modifications to the attention mech-
anism include (1) condensing the attention matrix into an important vector, and (2) omitting
the value component in favor of extracting the top-k most significant patch features as the
output Y. Figure from (Tang, Nguyen, and Ha 2020).

introduced earlier, AttentionAgent relies solely on the patch importance vector and does
not utilize the Value component of self-attention.

Finally, based on the patch importance vector, AttentionAgent picks the K patches with
the highest importance and throws away the rest. It passes the indices of these K patches
into a feature retrieval function, which returns the features extracted from the corresponding
patches. These features are then fed into a neural network based controller to output the
appropriate actions the agent should take (see Figure 4.18 right). By discarding patches of
low importance, AttentionAgent becomes temporarily blind to other signals, this effectively
creates a bottleneck that forces it to focus on patches only if they are critical to the task. Once
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learned, it is possible to visualize the K patches and have agent’s reasoning interpreted in the
pixel space. Given the non-differentiable nature of the sorting and the pruning operations,
AttentionAgent is optimized using CMA-ES.

The major building block of AttentionAgent is the self-attention mechanism. Although
slightly modified in that context (i.e., the Value component is not utilized), as we have
established previously, the indirect-encoding nature of the mechanism remains the same.
More explicitly, the patch importance vector is based on the attention matrix A, which is
the phenotype that is controlled by the two parameter matrices Wy, Wy, the genotype.

The advantages of employing indirect encoding in this context are clear: First, for an
input image of size n (which can be substantial, e.g., 100px x 100px, translating to tens of
thousands of pixels), the attention matrix spans a space of size O(n?). Conversely, Wy, Wi
transition image patches from dj, =3 (representing RGB colors) to a lower feature dimen-
sion d < n, resulting in a more manageable size of O(d). Despite this significant reduction
in representation space, the inductive bias inherent in the model’s design enables the geno-
type to effectively map to a set of phenotypes that are pertinent to the task at hand. As a
result, AttentionAgent can solve complex problems with only a few thousand parameters,
unlike other methods which may require hundreds of thousands or even millions of param-
eters. Second, the dynamic adaptive capability of self-attention allows AttentionAgent to
flexibly adjust its decision-making based on the received inputs, resulting in more robust
decisions that are not susceptible to external extractions such as changed background colors
or hovering text on the screen, see Figure 4.19 for examples.

Agent Observation Modified Observations

Figure 4.19: CarRacing and DoomTakeCover. Left: Original tasks. Right: Modified Car-
Racing environments: Color Perturbation, Vertical Frames, Background Blob. Modified
DoomTakeCover environments: Higher Walls, Different Floor Texture, Hovering Text.
Figure from (Tang, Nguyen, and Ha 2020).
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4.5 Chapter Review Questions

10.

. Direct vs. Indirect Encoding: What is the primary difference between direct and indi-

rect encodings in neuroevolution? Why is indirect encoding particularly advantageous
for tasks requiring large and complex neural networks?
Biological Analogy: How does the process of morphogenesis in biology inspire the
concept of indirect encodings in neuroevolution? Provide an example of a biological
principle that aligns with the goals of indirect encoding.

. Regularity in Neural Networks: Why is the concept of regularity, such as symmetry

and repetition with variation, important in indirect encodings? How does this principle
enhance the efficiency and functionality of evolved solutions?

. Applications of Indirect Encodings: How can indirect encodings be applied to a task

such as evolving a quadrupedal robot controller? Discuss how they can utilize patterns
and symmetries without manual intervention.

. Challenges of Direct Encoding: Why is NEAT limited to smaller networks, and how do

indirect encodings address this limitation? Provide an example illustrating how indirect
encodings can simplify the representation of a complex neural network.
Hypernetworks Overview: What distinguishes hypernetworks from traditional local
interaction-based indirect encodings? How does the “one-shot” generation of pheno-
types make hypernetworks different from development-based approaches?

. CPPNs in Neuroevolution: How do Compositional Pattern-Producing Networks

(CPPNs) leverage geometric space and function composition to generate complex
patterns? Provide an example of a regularity that CPPNs can encode effectively.

. HyperNEAT Substrate: Explain how HyperNEAT utilizes neuron positions in a

geometric space to generate connectivity patterns. Why is this approach particularly
advantageous for tasks involving spatial regularities like controlling a quadrupedal
robot?

. Strengths and Limitations: In what types of tasks do HyperNEAT and CPPNs perform

better compared to direct encodings like NEAT? Conversely, what are the limitations of
these indirect encodings when applied to irregular or noisy domains?

Evolvable Substrate HyperNEAT (ES-HyperNEAT): How does ES-HyperNEAT
improve upon the original HyperNEAT by evolving the substrate? Discuss how this
extension enables the discovery of new nodes and connections in the network.
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