
Searching for / utilizing diversity 97

Covariance Matrix Adaptation MAP-Annealing (CMA-MAE) Fontaine and Nikolaidis
2023 introduces a nuanced alteration in the ranking mechanism. This change gradually
reduces the influence of elites in filled cells of the archive, ensuring that the optimization
process does not prematurely shift focus from the objective to exploration. This issue is
especially pertinent in cases involving flat objectives or low-resolution archives. Remark-
ably, this modification is compatible with both CMA-ME and CMA-MEGA, broadening
its applicability.

5.5 Multiobjectivity

While quality diversity focuses on two objectives, one on performance and the other on
diversity, multiobjective optimization in general is a good approach to maintaining diversity
in evolutionary computation. Themotivation once again comes from biology (Miikkulainen
and Forrest 2021). Biological fitness is complex: animals must seek food and shelter, avoid
predators, find mates, and care for the young, and often some of these objectives conflict.
The problem can be solved in many ways, leading to multiple niches, and such diversity
leads to powerful further adaptation.

Note however that biological objectives can be expressed simply as a single high-level
objective: survival of the species. A similar approach can be taken in evolutionary compu-
tation, i.e. a complex optimization task can be expressed simply as winning a game, making
a lot of money, or gaining a lot of publicity. Such objectives allow evolution to be creative;
on the other hand, the fitness signal is weak and may not allow identifying good ideas until
they are fully developed. This approach may need to be paired with neutral mutations, weak
selection, and deep time, placing it closer to biological evolution (Section 9.1.1).

Multi-objective optimization can thus be seen as a practical approach one level below
such a high-level specification. It is often possible to devise performance objectives, cost
objectives, and secondary objectives such as simplicity, accuracy, or appearance, without
specifying the desired solutions directly. In many cases it is useful to have a Pareto front as
a result, i.e. a collection of solutions that each represents a different tradeoff between them
such that no solution is better than any other across all objectives. One solution in the Pareto
front can then be chosen according to other criteria, such as conditions at deployment time,
or human preferences that are difficult to express as objectives.

Because evolutionary computation is a population-based search method, multiobjec-
tive optimization is natural, and several methods have been developed for it (Deb et
al. 2002; Zhang and Li 2007; Coello Coello, Van Veldhuizen, and Lamont 2007). Typ-
ically they work well up to half a dozen objectives, after which the Pareto front starts
to have too many solutions (fewer solutions are better than others across all objectives).
Other techniques have been developed for many-objective optimization, up to hundreds
or thousands of objectives, representing a large number of constraints or tests (Deb and
Jain 2014; Ishibuchi, Tsukamoto, and Nojima 2008). Multiobjective formulation is often
a natural way to approach the problem, as demonstrated many times in this book (e.g.
Sections 6.2.3-6.2.4, 10.4-10.5, and 14.2).

Multiobjectivity is also a natural way to boost diversity: with multiple objectives, there
are many ways of being successful. Niching or speciation may emerge in the population,
andmay be further separately encouraged with mechanisms such as those in NEAT. Species



98 Chapter 5

can then be used to form ensembles, taking advantage of the diversity. Such methods are
reviewed in Section 5.6.

5.6 Ensembling

In general in machine learning, it is often a good idea to train multiple different models
for the task, and then form the final system by ensembling them. The idea is that each
model is somehow different, e.g. has a different architecture, is initialized differently, or is
trained with different training samples. Thus, each of them may end up learning something
the other models do not, and together they can perform better than any model alone. This
idea is consistent with studies in psychology, social science, and business that suggest that
diversity in human teams leads to improved decision-making (Rock and Grant 2016).

Ensembling may be as simple as just averaging the outputs of multiple models, or com-
bining them more intelligently, or selecting one model that’s most likely to have the correct
answer for each input. Methods have also been developed, such as Mixtures of Experts
(Masoudnia and Ebrahimpour 2014) and RHEA (Section 6.2.5), to train and combine dif-
ferent models more systematically. The fact that ensembling works is statistically surprising
and was controversial for a while, but there is now a good understanding of it, especially
in classification tasks (Li, Wang, and Ding 2018). Ensembling intelligent agents requires
more complex methods because behavior often depends on sequences of inputs and deci-
sions and is often based on recurrent neural networks, but it is possible as well. Ensembling
is thus part of the standard machine learning toolbox and can be used routinely to improve
performance.

Ensembling is a particularly natural extension of evolutionary approaches. EAs create
and maintain a population from which the ensemble can be drawn. Moreover, having a
diverse set of candidates is crucial both for evolution and ensembling. Often the individ-
uals in the final population end up with slightly different skills, from which an effective
ensemble can be formed (Islam and Yao 2008). Examples of such diversity include e.g.
the age-estimation network architecture (Section 11.3.6) and training with population cul-
ture (Section 5.7). Such diversity is even more pronounced when the task is multiobjective:
Individuals in the Pareto front form a natural pool from which to select ensemble members.

The NEAT neuroevolutionmethod also employs a speciationmechanism that encourages
diversity in search (Section 3.4). In effect, NEAT runs multiple island-based evolutionary
processes, i.e. separate subpopulations that only periodically cross over, and species that
are created and removed dynamically as evolution progresses. The species are created and
maintained based on topological (i.e. genetic) diversity, but they result in enough behavioral
diversity for ensembling to be effective. Indeed, it is possible to use just the species cham-
pions as the members of the ensemble, and then add a voting, averaging, winner-take-all,
or gating as the ensembling mechanism (Pardoe, Ryoo, and Miikkulainen 2005).

Note that ensembling is related to many neuroevolution ideas and mechanisms discussed
in this book. For instance, the main idea of the ESP method (Section 7.1.1) is to evolve neu-
rons for each location in the network in separate subpopulations; because good performance
requires different neurons, diversity across populations is automatically maintained, and
neurons are evolved that cooperate well together. Such a network can be seen as an ensem-
ble with a very strong combination mechanism. Similarly to the hierarchical mixtures of



Searching for / utilizing diversity 99

(a) Particle chasing task (b) Improvement through ensembling

Figure 5.8: Effect of simple ensembling in a complex control task. (a) When the cart-
pole task is extended with an extensible pole, it becomes a fly-swatting task. The control
dynamics change constantly as the pole changes, making control highly context depen-
dent and well-suited to ensembling. (b) The population of controllers are first evolved with
NEAT for 150 generations, and once the performance plateaus, a gating network to select
among eight species champions. The performance improvement is significant and imme-
diate, suggesting that ensembling is a simple and reliable way to boost performance of
neuroevolution experiments. (Figures from Pardoe, Ryoo, and Miikkulainen 2005)

experts approach in machine learning, ESP can be extended hierarchically to construct a
team of networks, where each network receives different inputs. For instance, each network
can keep track of a different opponent, and at the highest level, a combiner neural network
decides what action to take (Rajagopalan et al. 2011). This approach was used to evolve
both the prey and the predator agents in the coevolutionary arms race example described in
Section 7.2.2.

In MM-NEAT (Section 6.1.4), multiple modules emerge from the evolution of a single
network. They can be seen as ensemble members, and the preference neurons in each mod-
ule as the ensembling mechanism, suggesting how the module output should be combined.
Such preference neurons can be evolved in separate networks as well: In essence, each net-
work places a bet that they have the right answer (Bruce and Miikkulainen 2001). They
are evolved to maximize the return from their bets, and as a result, the bets serve as confi-
dence estimates. Ensembling then consists of simply selecting the network with the highest
confidence. The context+skill approach (Section 6.1.2) can also be seen as an ensembling
mechanism. There are two special ensemble members, one representing context and the
other the most likely action, and a combiner network on top representing the ensembling
mechanism.

However, the most straightforward ensembling approach can already be useful in neu-
roevolution: A NEAT population can be evolved in a control task first, and then a gating
neural network evolved to select which controller to use at each step. The approach was
applied to a more challenging version of the pole-balancing task where the pole is actually
a telescope that can change its length, and the pole’s tip chases a moving target particle–as
if trying to swat a fly (Figure 5.8). Even though there’s only a single pole and the controller
sees the positions and velocities (so that recurrency is not needed), the response of the
pole changes with its length. Thus, the actions change the dynamics of the task, requiring
the controller to adjust its strategy continuously. Such flexible control is hard to achieve
with a single neural network, but easier with an ensemble. After evolving a population
of controller neural networks for 150 generations, the species champions were used as an



100 Chapter 5

ensemble. A gating neural network was then evolved for another 50 generations to pick one
network to control the system at each step. The performance improvement was significant
and immediate, demonstrating how even simple ensembling can add value to an existing
neuroevolution approach.

The approach could easily be extended with various techniques to fit particular prob-
lems. For instance, diversity of the ensemble population could be increased by making
evolution multiobjective. Secondary objectives may be defined naturally in many domains
(such as speed, or cost, in addition to accuracy), but novelty is always a possible such
objective, and highly effective in promoting diversity (Section 5.3). Or, the ensemble mem-
bers could be evolved to optimize not their own performance in isolation, but performance
as a useful member of the ensemble (García, Hervás-Martínez, and Ortiz-Boyer 2005).
This approach could boost the performance of even the simplest ensembling methods, like
voting, averaging, or gating.

Further, the gating network could be evolved not simply to select, but to combine the
outputs of the population members, similar to context+skill approach. The ensemble mem-
bers could indicate confidence as part of their outputs, and the combiner could take that into
account in constructing its actions (instead of simply selecting the most confident network).
The ensemble and combiner networks could be co-evolved to maximize the performance of
the ensemble, similarly to hierarchical ESP and CoDeepNEAT (Sections 7.2.2 and 10.3.2).

In this manner, the general idea of ensembling can take many forms in neuroevolu-
tion. However, it should always be part of constructing the solution. Without some kind
of ensembling in the end, a neuroevolution experiment often leaves money on the table.

More broadly, the simple success of ensembling offers a powerful lesson to problem-
solving and decision-making in general: Diverse teams with multiple viewpoints are likely
to perform better than individual experts, provided that there is some principled way of
combining these viewpoints. Ensembling provides a simple such way: egalitarian learning,
described in the next section, extends it further with learning.

5.7 Utilizing Population Culture and History

The knowledge that exists in the population beyond a single individual can be seen as pop-
ulation culture. There are common elements to it, i.e. knowledge that many individuals
share such as common behaviors, variations of this common knowledge, and also elements
unique to single individuals. Generally culture operates at a time scale between learning
and evolution, but can also emerge even during lifetime of individuals, and can last as
long as the population. It can also include artifacts that exist outside the population. They
may be essential in establishing open-ended evolution in that they permanently alter the
environment where evolution takes place (Lehman et al. 2022).

In evolutionary computation, population culture can be utilized in many ways to make
evolution more effective Belew 1990; McQuesten 2002; Spector and Luke 1996; Reynolds,
Michalewicz, and Cavaretta 1995; Maheri et al. 2021. Just like in human societies, and
essential element of it is diversity. The population includes many different kinds of
solutions; the power of cultural algorithms comes from exploiting such diversity.

The simplest way is to utilize diversity in a single generation of offspring. That is, instead
of generating the usual two offspring at each crossover, dozens or hundreds are created.



Searching for / utilizing diversity 101

They are then quickly evaluated and only the post promising few are kept—and they are
most likely better than those two resulting in the normal process. This mechanism, called
culling, is based on the observation that most crossovers are awful (Whitley, Dominic, and
Das 1991; Nordin and Banzhaf 1995), i.e. result in offspring that are weaker than the par-
ents. This effect is especially severe in neuroevolution with competing conventions, where
most crossovers are wasted on incompatible individuals. Some algorithms forgo crossover
entirely and only rely on mutation. However, crossover is an important vehicle of adapta-
tion in biology, so somehow our implementation of it is lacking. Culling is a way of trying
to fix it. It is motivated by biology in that embryos that are not viable are discarded early
in gestation, and litters are often much larger than one or two individuals. There are prob-
ably other mechanisms at work as well in biology that make crossovers more productive
than crossover in computation, such as more complicated genotype-to-phenotype mappings
(Miikkulainen and Forrest 2021). They can be partially modeled by making culling more
extreme, i.e. generating more offspring and retaining only a few of them, which is easy to
do in evolutionary computation.

The challenge in culling is to recognize the few most promising offspring without having
to run a full fitness evaluation on the whole set. If that is possible, then culling can speed up
evolution. It turns out that such approximate evaluation is possible through culture. A set
of inputs can be formed, i.e. a set of questions, or a syllabus if you will, that’s then given
to each offspring see how they respond. Those answers can then be compared to answers
that other prominent population members would create, such as the parents or population
champions. Those offspring whose answers are very different from the culture can then
be culled. Even though the hope is that some offspring’s answers differ because they are
better than anything seen before, this process is effective in identifying offspring that are
the worst, i.e. nonviable. Most crossovers are awful, it is enough to discard only those. This
process can be very effective, for instance speeding up evolution by a factor of three or
more in neuroevolution for the pole-balancing task (McQuesten 2002).

Similar cultural mechanisms can be applied to other parts of the evolutionary process.
For instance in selecting parents for crossover, the main goal is to combine good traits
of both parents. This goal is challenging because fitness alone does not tell the full story.
Sometimes good genes are incompatible with or dominated by other genes in the individual,
resulting in poor fitness overall (as will be seen in Section 6.2.5). Therefore, parents should
be chosen not only based on fitness, but also distance. That is, the parents should be close
enough in the genotypic space to be compatible, but different enough so that crossover will
generate something new. In this manner, combining the strengths of both parents becomes
more likely.

One practical implementation of this idea is to select the first parent based on fitness only,
as usual, and the second to complement it—that is, while still competent in fitness, to be as
different from the first as possible. The difference can be measured based on the answers
in the syllabus, as in culling. It turns out that in neuroevolution for the acrobot task (i.e.
swinging the jointed pole upright), a better offspring is generated twice as often as without
such parent selection (15% of the time instead of 7%) (McQuesten 2002). Note that the
second parent is usually much worse in fitness, so such high fitness is likely achieved by
combining complementary strengths.



102 Chapter 5

Culture can also be used to maintain diversity directly by focusing on which individuals
are discarded from the population to make room for new offspring. Usually the individuals
with the poorest fitness are removed, but diversity can be used as a secondary measure. One
way to implement this idea is to find two pairs that are the closest in the population in terms
of the answers to the syllabus, and then discarding the less fit of them. Again in acrobot
neuroevolution, such a mechanism resulted in populations that were three times as diverse
(in average distance in answers to the syllabus), making evolution 30% faster (McQuesten
2002).

A fourth way of taking advantage of culture is to use it to leverage learning in evolution.
As discussed in Section 4.2.3, the syllabus of inputs can be paired up with answers of the
parents or population champions, and then used as a training set for gradient descent. In this
manner, those offspring that has the best learning potential can be identified. Even when
the learned weights are not coded back into the genom, evolution becomes more effective
through the Baldwin effect, i.e. more informative selection of offspring. In pole balancing,
this mechanism can make neuroevoultion an order of magnitude faster (McQuesten 2002).

However, even better use of this idea can be made by taking advantage of diversity in the
population culture. That is, the behaviors of all individuals in the population serve as the
cultural heritage; individuals can learn from any of these behaviors, and such learning can
guide genetic evolution in a more diverse and effective way.

At the outset, it is not clear that this idea would work. To be sure, dividing the popula-
tion into teachers and learners, and utilizing parents and population champions as teachers,
makes sense: The new and poorly performing individuals in the population are trained to
be more like those that are known to perform well. However, such training is also bound to
reduce diversity. Much of the population starts copying a few good individuals, which may
make it more difficult for evolution to discover new solutions.

Also, even though the parents and champions perform well overall, some of their actions
can still be quite poor during evolution. Conversely, there may be other individuals in the
population who perform very well in specific situations, even though they do not perform
that well overall. In more broad terms, in evolutionary computation as in society in general,
any individual may have something useful to teach to any other individual. This is one
reason why diverse teams in general may be more innovative than teams that are not (Rock
and Grant 2016).

This principle can be captured computationally in a method called Egalitarian Social
Learning (Tansey, Feasley, and Miikkulainen 2012). The idea is that each agent A observes
the performance of each other agent B in various situations in the task. If B receives a high
reward in a situation x where A receives a low reward, there is a learning opportunity for
A. A training example is formed with x as input, agent B’s action y as output, and gradient
descent is used to modify agent B. In a sense, the entire set of agents and their behaviors
forms a population culture. Each agent is then trained to adopt those aspects of the culture
that are the most successful.

This approach works in domains where rewards can be obtained frequently, and associ-
ated with partial behaviors. To enhance diversity, it is possible to divide the population into
subcultures. Agents in each subculture teach and learn from the other agents in the same
subculture, making it less likely for the population to converge prematurely. The approach



Searching for / utilizing diversity 103

(a) The foraging domain (b) Foraging fitness over evolution

Figure 5.9: The effect of diversity and egalitarian learning. A population of agents need
to forage in an environment with good bad objects. (a) The agents gain fitness by con-
suming food items of various positive values (A), and avoiding items of negative values
(B). They have a limited view (C), requiring them to move around a lot to find the items.
With direct neuroevolution, several strategies develop, some taking advantage of covering
a lot of ground, and others taking advantage of being careful not to miss anything. (b) With
egalitarian social learning (ESL), the evolved agents can also learn from each other during
their lifetime. ESL achieves higher fitness by generation 50 than direct neuroevolution or a
student-teacher approach by Generation 500. This experiment thus demonstrates both the
value of diversity and of learning from population culture. For animations of these behav-
iors, see https://neuroevolutionbook.com/neuroevolution-demos. (Figures from Tansey, Feasley, and
Miikkulainen 2012)

can be implemented through Lamarckian evolution or the Baldwin effect. When diversity
is maintained through subcultures, Lamarckian evolution may be more effective.

The approach was demonstrated in a foraging domain where food items are randomly
scattered and vary in their value from very good to poor to outright poisonous (Figure 5.9).
The agents sense these items in eight 22.5o sectors in front of them and also sense their
own velocity. As their output, they control their velocity and orientation. With egalitarian
learning, many different strategies evolve. Some subcultures focus on high-speed explo-
ration in order to utilize high-valued food. Others move slower and carefully consume all
positive food items. Overall, the egalitarian population is significantly more effective in
utilizing the available food resources than a comparable student-teacher model, and direct
neuroevolution. The experiment thus illustrates the value of diversity in a team of agents,
as well as the value of egalitarian learning.

Instead of using the diverse solutions in a population for training, the knowledge in such
solutions can be abstracted into a statistical model that then guides evolution. The model
predicts how likely the different combinations of elements in these solutions are to result
in high fitness. The approach is similar to CMA-ES (Section 2.1.3), which uses a model
to make intelligent mutations, and estimation of distribution algorithms (EDAs; Lozano et
al. 2006), where solutions are constructed step by step using a statistical model such as a
Bayesian network or a Markov random field. At each step, the model is used to determine
which further elements would be most likely to result in good solutions, given the elements
chosen so far (Pelikan, Goldberg, and Cantú-Paz 1999; Alden andMiikkulainen 2016; Prior
1998).

Instead of building a model of gene statistics, it can be built for neurons or modules
that form a network in approaches such as SANE, ESP or CoDeepNEAT (Sections 7.1.1

https://neuroevolutionbook.com/neuroevolution-demos


104 Chapter 5

and 10.3.2). In such a process, the neuron that correlates most significantly with high fitness
is selected first. When selecting the next neuron, a measure of epistasis (i.e. dependence) is
first used to decide whether the fitness correlations of the next neuron candidates should be
calculated based on only those networks that contain the previous neuron, or all networks in
the population. The neuron with the highest correlation is then chosen as the next neuron. In
this manner, a single offspring is constructed at a time in a probabilistic process that does not
employ crossover or mutation. In problems such as double pole balancing, this approach,
called Eugenic neuroevolution, can find solutions several times faster and more reliably
than methods that evolve partial solutions without it (Polani andMiikkulainen 2000; Alden,
Kesteren, and Miikkulainen 2002). Note that diversity in the population is crucial to form
a good model–and the model is a good way to take advantage of such diversity.

So far the idea of utilizing culture has relied on the current population only. But culture
can extend over multiple generations, and there is no reason why populations from prior
generations couldn’t be utilized in evolutionary algorithms aswell. Themore solutions there
are to define culture, the more diversity there is also likely to be, making cultural algoritms
more effective. Of course, an efficient way to store the solutions and select parents among
them is needed.

Neuroannealing (Lockett and Miikkulainen 2013) provides such a mechanism. All solu-
tions ever encountered in the evolutionary run are organized into a partition tree of solutions.
There are four levels: the first one is partitioned according to number of layers in the net-
work, the second according to the number of nodes in each layer, the third according to
connectivity patterns between layers, and the fourth according to the weight values. A par-
ent is selected by traversing the tree using a Boltzmann distribution on average fitness of
each branch, as in simulated annealing. Once a parent is selected, NEAT-like mutations are
performed to generate new solutions based on it.

Compared to standard NEAT, the neuroannealing process providesmore ways to increase
complexity without forgetting any of the previous solutions. It can thus construct larger and
deeper networks than NEAT. Such networks are particularly useful in particular in fractored
domains such as those that require evolving a behavioral strategy (Section 6.1.4. It outper-
forms NEAT in many such problems, including multiplexer design, concentric spirals, and
double pole balancing.

Neuroannealing can be seen as implementing an extreme form of elitism: any solution
can have useful information in it, and therefore nothing is ever discarded. Thus the popu-
lation grows big over time, and is likely to include more diversity in solutions than smaller
and constant-size populations can. With all this information, it is possible to reprsent the
fitness function more comprehensively.

Each of the methods reviewed in this section point out opportunities for utilizing diver-
sity in population culture in neuroevolution. An interesting challenge for the future is to
find synergies between them: for instance, neuroannealing could be combined with eugenic
evolution to build better models; culling, mate selection, and intelligent discarding with any
generation-based methods; egalitarian learning with eugenic or neuroannealing systems. In
this manner, diversity can be utilized in many more ways than simply powering search
based on crossover.



Searching for / utilizing diversity 105

5.8 Chapter Review Questions

1. Biological and Computational Diversity: Explain why diversity is a cornerstone of
both biological evolution and computational neuroevolution. How does diversity enable
complex solutions to emerge over time and adapt to changing environments?

2. Genetic Diversity: What role does genetic diversity play in evolutionary computation?
Discuss the problems that arise when a population converges too quickly and how these
issues hinder recombination and exploration.

3. Behavioral Diversity: Why is behavioral diversity particularly important in neuroevo-
lution? Contrast it with genetic diversity, and describe a scenario where behavioral
diversity could improve the search process.

4. Diversity Maintenance Techniques: Compare and contrast two methods for maintain-
ing genetic diversity: fitness sharing and crowding. How do these techniques work, and
what are their limitations?

5. Behavioral Characterizations: What is a behavior characterization (BC), and why is
it essential for measuring and promoting behavioral diversity? Provide an example of
how a BC could be defined in a robot navigation task.

6. Multiobjectivity: Explain how multiobjective optimization fosters diversity in neu-
roevolution. What are the benefits of having a Pareto front, and how does it relate to
boosting population diversity?

7. Ensembling: Why is ensembling particularly well-suited for evolutionary algorithms?
Describe how the NEAT method uses speciation to facilitate ensembling, and provide
an example of its application.

8. Cultural Diversity: What is the role of population culture in neuroevolution? How can
cultural mechanisms, such as culling, mate selection, discarding, and training, improve
the efficiency and outcomes of evolutionary processes?

9. Egalitarian Learning: Define egalitarian social learning in the context of neuroevo-
lution. How does it differ from a student-teacher approach, and why does it enhance
diversity in a population?

10. Neuroannealing:How does neuroannealing utilize solutions from previous generations
to enhance evolutionary outcomes? Discuss how its hierarchical storage mechanism
supports diversity and facilitates complex problem-solving.


	Foreword
	Website
	Preface
	Acknowledgments
	1 Introduction
	1.1 Evolving neural networks
	1.2 Extending creative AI
	1.3 Improving the world
	1.4 Plan for the book
	1.5 Hands-on Exercises for the Book
	1.6 Chapter Review Questions

	2 The Basics
	2.1 Evolutionary Algorithms
	2.1.1 Simple Genetic Algorithm
	2.1.2 Simple Evolution Strategy
	2.1.3 Covariance-Matrix Adaptation Evolution Strategy (CMA-ES)
	2.1.4 Natural Evolution Strategies
	2.1.5 OpenAI ES
	2.1.6 Fitness Shaping
	2.1.7 Try these algorithms yourself

	2.2 Neural Networks
	2.2.1 Feedforward Neural Networks (FNNs)
	2.2.2 Recurrent Neural Networks (RNNs)
	2.2.3 Long Short-Term Memory Networks (LSTMs)
	2.2.4 Convolutional Neural Networks (CNNs)
	2.2.5 Transformers

	2.3 Conclusion and End-of-Chapter Questions
	2.4 Chapter Review Questions

	3 The Fundamentals of Neuroevolution
	3.1 Evolution Strategies for Reinforcement Learning
	3.2 Evolving Robust Policies for Bipedal Walker
	3.3 Evolving Convolutional Neural Networks
	3.4 Topology and Weight Evolving Networks: The NEAT Method
	3.5 Neuroevolution vs. deep learning
	3.6 Chapter Review Questions

	4 Indirect encodings
	4.1 Why indirect encodings?
	4.2 Developmental processes
	4.2.1 Cell-Chemistry Approaches
	4.2.2 Grammatical Encodings
	4.2.3 Learning approaches

	4.3 Indirect encoding through hypernetworks
	4.3.1 Compositional Pattern Producing Networks
	4.3.2 Case Study: Evolving Virtual Creatures with CPPN-NEAT
	4.3.3 Hypercube-based NEAT (HyperNEAT)
	4.3.4 Evolvable Substrate HyperNEAT
	4.3.5 General Hypernetworks and Dynamic Indirect Encodings

	4.4 Self-attention as dynamic indirect encoding
	4.4.1 Background on Self-Attention
	4.4.2 Self-Attention as a Form of Indirect Encoding
	4.4.3 Self-attention Based Agents

	4.5 Chapter Review Questions

	5 Searching for / utilizing diversity
	5.1 Genetic diversity
	5.2 Behavioral diversity
	5.3 Novelty Search
	5.4 Quality Diversity Methods
	5.4.1 Novelty Search with Local Competition
	5.4.2 MAP-Elites
	5.4.3 Nuts and Bolts of QD Implementation

	5.5 Multiobjectivity
	5.6 Ensembling
	5.7 Utilizing population culture and history
	5.8 Chapter Review Questions

	6 Neuroevolution of Behavior
	6.1 From control to strategy
	6.1.1 Successes and challenges
	6.1.2 Discovering robust control
	6.1.3 Transfer to physical robots
	6.1.4 Discovering flexible strategies
	6.1.5 Evolving cognitive behaviors
	6.1.6 Utilizing stochasticity, coevolution, and scale

	6.2 Decision making
	6.2.1 Successes and challenges
	6.2.2 Surrogate modeling
	6.2.3 Case study: Mitigating climate change through optimized land use
	6.2.4 Case study: Optimizing NPIs for COVID-19
	6.2.5 Leveraging human expertise

	6.3 Chapter Review Questions

	7 Neuroevolution of Collective Systems
	7.1 Cooperative Coevolution
	7.1.1 Evolving a single neural network
	7.1.2 Evolving a team

	7.2 Competitive coevolution
	7.2.1 Evolving single neural networks
	7.2.2 Evolving multiple teams

	7.3 Cellular Automata
	7.3.1 Evolving Neural Cellular Automata
	7.3.2 Growing functional machines
	7.3.3 Case study: Evolving Video Game Levels with NCAs and QD
	7.3.4 Neural Developmental Programs
	7.3.5 Synergistic Combinations of Neuroevolution and Differentiable Programming

	7.4 Chapter Review Questions

	8 Interactive Neuroevolution
	8.1 The NERO Machine Learning Game
	8.2 Incorporating human knowledge
	8.3 Collaborative Neuroevolution
	8.3.1 Evolving Game Content

	8.4 Making Human Contributions Practical
	8.5 Chapter Review Questions

	9 Open-ended Neuroevolution
	9.1 Openended Discovery of Complex Behavior
	9.1.1 Neutral mutations with weak selection
	9.1.2 Extinction events
	9.1.3 Evolvable representations
	9.1.4 Expressive Encodings
	9.1.5 Major Transitions
	9.1.6 Openended Evolution of Intelligence

	9.2 Cooperative coevolution of body and brain
	9.3 Competitive coevolution of environments and solutions
	9.3.1 The Influence of Environments
	9.3.2 Co-Evolving Agents and Their Environments
	9.3.2.1 Paired Open-Ended Trailblazer (POET)
	9.3.2.2 Learning to Chase-and-Escape


	9.4 Chapter Review Questions

	10 Evolutionary Neural Architecture Search
	10.1 Neural Architecture Search with NEAT
	10.2 NAS for Deep Learning
	10.3 Example NAS successes
	10.3.1 LSTM Designs
	10.3.2 CoDeepNEAT
	10.3.3 AmoebaNet

	10.4 Multiobjective and multitask NAS
	10.5 Making NAS practical
	10.6 Beyond Neural Architecture Search
	10.7 Chapter Review Questions

	11 Optimization of Neural Network Designs
	11.1 Designing complex systems
	11.2 Bilevel neuroevolution
	11.3 Evolutionary Metalearning
	11.3.1 Loss functions
	11.3.2 Activation functions
	11.3.3 Data use and augmentation
	11.3.4 Learning methods
	11.3.5 Utilizing surrogates
	11.3.6 Synergies

	11.4 Neuroevolution of neuromorphic systems
	11.4.1 Neuromorphic computation
	11.4.2 Evolutionary optimization
	11.4.3 Examples
	11.4.4 Future directions

	11.5 Chapter Review Questions

	12 Synergies with Reinforcement Learning
	12.1 RL vs. NE
	12.2 Synergistic Combinations
	12.2.1 Evolutionary Reinforcement Learning
	12.2.2 Evolving Value Networks for RL
	12.2.3 Evolutionary Meta-Learning

	12.3 Evolving Neural Networks to Reinforcement Learn
	12.3.1 Evolving Hebbian Learning Rules
	12.3.2 Learning when to learn through neuromodulation
	12.3.3 Indirectly encoded plasticity
	12.3.4 Learning to continually learn through networks with external memory
	12.3.5 Exercises

	12.4 Scaling Up
	12.4.1 Exercise on Scaling up NE

	12.5 Chapter Review Questions

	13 Synergies with Generative AI
	13.1 Background on Large Language Models
	13.2 Evolutionary Computing Helps Improve LLMs
	13.2.1 Evolutionary Prompt Engineering/Adaptation
	13.2.2 Evolutionary Model Merging

	13.3 LLMs Enhances Evolutionary Computing
	13.3.1 Evolution through Large Models
	13.3.2 LLM As Evolution Strategies

	13.4 World Models
	13.4.1 A Simple World Model for Agents
	13.4.2 Using the World Model for Feature Extraction
	13.4.3 Training an Agent using the World Model as a Neural Simulator of Reality

	13.5 Chapter Review Questions

	14 What Neuroevolution Can Tell Us About Biological Evolution?
	14.1 Understanding neural structure
	14.2 Evolutionary Origins of Modularity
	14.3 Understanding Neuromodulation
	14.4 Developmental processes
	14.4.1 Synergetic development
	14.4.2 Development through genetically directed learning

	14.5 Constrained evolution of behavior
	14.6 Understanding evolutionary breakthroughs
	14.7 Evolution of Language
	14.7.1 Biology of language
	14.7.2 Evolving Communication
	14.7.3 Evolution of Structured Language

	14.8 Chapter Review Questions

	Notes
	References
	Index

