
6 Neuroevolution of Behavior

An important area of neuroevolution is to construct agents that behave intelligently in a
simulated or real environments. Such behavior spans several levels: At the lowest level,
the neural networks optimize control tasks, such as locomotion for robots or production
in bioreactors. At gradually higher levels, they optimize behavioral strategies e.g. for nav-
igation, game play, or cognitive domains. At the very highest level, they may implement
decision strategies e.g. for business, healthcare, and society in general. This chapter reviews
successes and challenges in such domains, and also discusses how human expertise can be
incorporated into the discovery process.

6.1 From Control To Strategy

Neuroevolution is naturally well suited for controlling agents and discovering behavioral
strategies for them, in both physical and virtual environments. However, in many domains
the environment can change in unexpected ways. The behavior has to adapt, sometimes by
tuning existing behaviors, sometimes by deploying distinctly different behaviors at different
times, and sometimes by discovering entirely new behaviors. Neuroevolution approaches to
discovering such flexible behaviors, and indeed prospects for evolving generally intelligent
agents, are reviewed in this section.

6.1.1 Successes and challenges
One of the most natural applications of neuroevolution is to discover effective behavior
through interaction with the environment: The network receives sensor values as input, and
issues control commands to effectors as output. If the network is recurrent, it can integrate
inputs over time, and thus disambiguate partially observable environments. It can under-
stand and take advantage of physical effects such as friction and momentum, remember
objects that may be currently hidden from view, and so on.

For instance, in driving a simulated race car, neuroevolution discovered that it could
get through curves faster by tracing a wider trajectory. This strategy is counterintuitive
because such trajectories are longer; however, they allow for higher speeds which is more
effective in the end. In robot-arm control, neuroevolution discovered a way to compen-
sate for an inoperative main motor: It couldn’t turn around its main (vertical axis), so it
evolved instead to turn the arm away from the target, then swing it toward the target very
fast, creating enough momentum to turn the entire robot around. In controlling a simulated
spacecraft, when it did not have the jets to stop its forward movement, it instead turned
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it around and then stopped the turn, resulting in a hard stop. In playing the Gomoku (or
5-in-a-row) board against other programs submitted into a tournament, it discovered that it
could win by making a move very far away–the other programs expanded their board size
to incorporate it, and crashed because they ran out of memory. There are numerous similar
examples in the literature, demonstrating creative ways of controlling simulated and real
robots, sometimes compensating for problems, other times achieving goals in creative ways
(Fullmer and Miikkulainen 1992; Moriarty and Miikkulainen 1996; Sit and Miikkulainen
2005; Lehman et al. 2020).

Info Box: Neuroevolution at UT Austin Connectionist Models Summer School
was a series of workshops organized in the late 1980s and early 1990s to promote
the burgeoning field of neural networks—or connectionism, as it was then called.
The 1988 version was organized at Carnegie Mellon by Dave Touretzky, Geoff
Hinton and Terry Sejnowski. Some 100 students participated, including me (Risto
Miikkulainen), eager to learn how to bring about a big change in AI. It was an
exuberant convergence of ideas—and one of them was neuroevolution. It wasn’t
actually one of the topics in lectures; it was brought up in one of the breakout ses-
sions by Mike Rudnick, a PhD student from Oregon Graduate Institute. Genetic
Algorithms had gained some popularity, and Mike thought they could be used to
construct neural networks as well. I was working on connectionist natural language
processing then, but the idea seemed fascinating to me and I put it aside hoping to
get back to it someday.

That didn’t take long–in Spring 1991, during my first year as an assistant pro-
fessor at UT Austin, an undergrad named Brad Fullmer wanted to do an honors
thesis, and ended up evolving neural networks for an agent that roamed a virtual
world and decided which objects in it were good and which were bad—launching a
research direction in my lab on virtual agents that continues to this day! Brad devel-
oped amarker-based encoding technique where junkDNA could become functional
later, which I think still should be explored more. Dave Moriarty, a PhD student,
picked up the topic about a year later, and developed his own approach, SANE
(part of an appropriately named system called Sherlock), about evolving a popu-
lation of neurons, i.e. parts of a network instead of full neural networks. Dave’s
solution to forming full networks was to evolve network blueprints. In parallel,
Tino Gomez came up with another solution, Enforced SubPopulations, i.e. evolv-
ing neurons for each location in the network separately. At the time, the ideas were
separate partly so that Dave and Tino could each make a distinct contribution in
their dissertations—it wasn’t until 22 years later that we realized we could bring
them together to evolve deep learning architectures in CoDeepNEAT!

At that time, I was ready to write a book about neuroevolution: The idea of
evolving elements for a dense structure (i.e. neurons for a fully connected net-
work) was elegant and the applications to control and behavior compelling. But
a third PhD student, Ken Stanley, at about 1999 started to make noises about how
the network’s topology mattered as well, and that we could optimize the topology
of a sparse neural network for the task. It didn’t fit the paradigm, and I told him I
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didn’t think it would work—which probably only made him work on it that much
harder. That idea eventually became NEAT, and one of the most enduring ideas in
neuroevolution. Ken went on to build his own group at the University of Central
Florida, and to develop several new ideas with students who’ve in turn formed their
own groups in academia and industry—including a fellow named Sebastian, but
that’s another story.

When discussing behavior, it is often useful to separate it into two different levels. At a
lower level, the challenge is to discover an effective single behavior, i.e. to devise optimal
control. At a higher level, the challenge is to utilize multiple behaviors appropriately, i.e.
to devise an optimal behavioral strategy. The challenges and solutions are different in the
two cases.

Neuroevolution is well suited to discovering single behaviors in challenging domains,
i.e. those that are dynamic, nonlinear, and noisy. For instance, in rocket control the goal is
to keep the rocket flying straight, even though it is an unstable system and can easily lose
stability due to atmospheric disturbances. Large rockets with multiple engines have them
each on a gimble, making it possible to turn them through control algorithms, which is
heavy, expensive, and difficult (indeed, rocket science). Smaller rockets instead have large
fins that create enough drag at the back of the rocket to turn it into a stable system, with
a cost in performance. It turns out a neurocontroller can be evolved simply to control the
amount of thrust in each of the engines, and thus keep the rocket stable even without any
fins at all (Figure 6.1; Gomez and Miikkulainen 2003). Such control is precise, robust, and
effective, and would be difficult to design by hand.

However, by itself such control is not particularly robust. It works well within the con-
ditions encountered during training, but it does not extend well to new conditions. Yet in
the real world, such changes abound. In rocket control, the rocket parameters may vary,
and weather conditions may vary; the rocket may need to fly through atmospheric distur-
bances. A walking robot may need to get around or over obstacles, or deal with a surface
covered with water or ice. Sensors may drift or break entirely; actuators have wear and tear
or may become inoperative. Coping with such variation is, of course, a major challenge for
neural networks: While they interpolate well within the space of their training, they do not
extrapolate well outside it.

Similar successes and challenges can be seen at higher levels of behavior as well, i.e.
in discovering effective behavioral strategies. A good example is the NERO video game
(Stanley, Bryant, and Miikkulainen 2005). In this game, simulated robots are engaged in a
battle in a virtual world where they can sense objects, their teammates, opponents, and line
of fire, and move around and shoot. The player does not control them directly, but instead
has the task of training them to behave effectively in the battle. This goal means coming
up with a curriculum of gradually more complex challenges, such as approaching a target,
shooting accurately, avoiding fire, coordinating an attack, and coordinating a defense. The
player achieves these behaviors bymanipulatingmultiple objectives, i.e. the fitness function
coefficients along several measurable dimensions of behavior. Interestingly, it is possible to
design curricula that are more effective than others, in that they result in more sophisticated
behavior that takes more factors into account. There also does not appear to be a single
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(a) Rocket control (b) NERO video game

Figure 6.1:Neuroevolution of effective control and behavioral strategies. (a) Neuroevo-
lution discovers a controller that can keep the rocket stable by controlling the amount of
thrust to its four engines. It is accurate enough so that fins are no longer required, allow-
ing the rocket to fly much higher with the same amount of fuel. It is, however, difficult
for the controller to generalize to variations in the rocket parameters and environmen-
tal conditions. (b) In the NERO video game, a human player trains the agents through a
curriculum of exercises to attack a target while at the same time avoiding fire from oppo-
nent agents. This is a sophisticated behavior, but a good team needs other behaviors as
well, such as defending and sharpshooting, which are difficult to evolve at the same time.
A challenge for neuroevolution, thus, is to discover flexible, multimodal behavior on its
own, as an important step towards general intelligence. For animations of these behaviors,
see https://neuroevolutionbook.com/neuroevolution-demos. Figure (a) fromGomez andMiikku-
lainen 2003; Figure (b) from Stanley, Bryant, and Miikkulainen 2005

strategy that always works better than others, but team A can beat B, which can beat C,
which can beat A—this is precisely what makes the game interesting for a human player.

However, NERO also illustrates the limitations of the standard neuroevolution approach
in discovering behavioral strategies. Throughout the evolutionary process, it elaborates on
earlier behaviors and usually produces a sophisticated final behavior that subsumes all
of them. However, the most successful teams in the game are composed by hand from
individuals evolved separately toward different goals: sharpshooters, attackers, defenders,
etc. Evolution does not spontaneously evolve agents that could deploy such very different
behaviors at different times, nor a strategy for switching among them appropriately. Yet if
neuroevolved agents are to be deployed in the real world, such flexible multimodal behav-
ior is likely to be required. There are offensive and defensive modes in many games; the
opponent may utilize a different strategy; the agent may be part of a team with different
abilities.

Such flexibility in control and strategy is a hallmark of general intelligence. Much recent
work has focused on techniques that would allow discovering and utilizing it, as will be
discussed in the next three subsections.

https://neuroevolutionbook.com/neuroevolution-demos
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6.1.2 Discovering robust control
Control means managing the effectors of a real or simulated agent so that it reaches its target
in an effective manner. Usually, the controller observes the current state of the agent and
environment through sensors (in a closed-loop or feedback control setting), and therefore
can be naturally implemented in a neural network. The advantage is that such networks
can deal with noise, nonlinear effects, and partial observability in a natural way. It is still
challenging for them to react to changes that were not seen in training, which happens all
the time in any complex environment in the real world. Therefore, several techniques have
been developed to make them robust in such situations.

Perhaps the simplest way of encouraging robust control is to add noise to the outputs
of the controller. Such trajectory noise means that the control does not have precisely the
desired effect, but continually places the controller into situations from which it has to
recover (Gomez and Miikkulainen 2004). Interestingly, trajectory noise is more effective
than sensor noise in producing this effect. Apparently, adding noise to sensors may confuse
the agent about what it should do, but does not similarly place it to useful training situations.

This idea can also be put to work more directly by using evolution to discover such situ-
ations automatically. For instance, if the desired actions can be specified for each situation,
the controller could be trained with gradient descent. But how can the desired actions be
specified? The answer is that a separate neural network can be evolved to generate them.
That is, for each input situation, a teacher network generates the targets, and a controller
network is trained by gradient descent to reproduce them. The teacher’s fitness depends on
how well the controller it trains performs in the task. How is this approach any different
from evolving a network to generate good actions directly? It turns out the targets that the
teacher evolves to generate do not actually correspond to optimal outputs in the task, as
was demonstrated in a foraging robot domain (Nolfi and Parisi 1994a). Instead, they evolve
to represent maximally effective learning experiences, i.e. those that allow learning to pro-
ceed faster and more robustly. They may be exaggerated, more varied, and more difficult
situations, thereby leading to better final performance in the task.

This approach can be generalized further into a setting where problems are coevolved
with solutions. For instance, a set of objective functions can be evolved for maze run-
ning, encouraging solutions that get closer to the goal, but also maximize several novel
objectives. Such evolution was more effective in discovering solutions to harder mazes
than fixed-fitness evolution and novelty search (Sipper, Moore, and Urbanowicz 2019).
Similarly, coevolution of obstacle courses and runners results in more effective running
behavior. Evolution starts with simple courses and gradually complexifies them as better
runners are discovered, eventually constructing behavior that far exceeds what direct evolu-
tion could do. This system, POET (R. Wang et al. 2019b), will be described in more detail
in Section 9.3. Such coevolution can also occur naturally in competitive environments, such
as zebras and hyenas described in Section 7.2.2. Each species evolves to compensate for
the more sophisticated strategies that the other species discovers, resulting in an arms race
of more complex behaviors that would be discovered if the other species were fixed. In all
these cases, neural network controllers are evolved in a task that is not fixed, but becomes
more challenging as evolution progresses, automatically encouraging robust and general
solutions and more complexity that can be achieved in a static setting.
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Novelty search, discussed in more detail in Section 5.3, can be seen as a related but subtly
different approach. In novelty search, individual controllers are rewarded if they generate
behavior that is different from that seen before during evolution. Thus, the idea is to cre-
ate as much diversity as possible, and to explore the space of behaviors as completely as
possible. Eventually, some individuals will be chosen as solutions because they happen to
perform well in the task of interest—which is not driving novelty search directly. Impor-
tantly, the process of discovering these solutions is very different from goal-directed search.
The process may include stepping stones that have little to do with the ultimate task. The
solutions may thus be built on a more general and therefore robust foundation. This result
was seen clearly in the bipedal walk example in Section 5.3: Whereas fitness-based evolu-
tion resulted in a rigid, slow walk that often fails, novelty search discovered a dynamic, fast
walk that is remarkably robust.

In some cases we may know something about the system we are controlling, and it may
be possible to take such knowledge into account in designing the network architecture that is
then evolved to control it. For instance inmultileggedwalking, each leg should be controlled
in a similar way, and there are symmetries between the left and the right side, and possibly
the front and the back. These symmetries result in a number of possible gaits: For instance,
four-legged animals such as horses can trot (move diagonal legs in phase), bound (move
front legs in phase and back legs in phase), pace (move legs on each side in phase), and
pronk (move all legs in phase). These basic gaits can then be adjusted according to the
speed and terrain.

The symmetry-breaking approach can be formalized computationally in bilevel neu-
roevolution approach (Valsalam and Miikkulainen 2011; Valsalam et al. 2013). Each leg
controller, or a module, receives the angle of the leg it controls as its input, and outputs
the desired angular velocity of that leg. In addition, through intermodule connections, it
receives input from all the other modules (Figure 6.2). The process starts with a popula-
tion of fully symmetric individuals, where all leg controllers are identical, and they are
all connected with the same intermodule connections. The connection weights are initially
assigned randomly, and evolved as usual through mutation and crossover in order to find
the best individuals with the current symmetry.

At the higher level, evolution then explores different symmetries. Through symmetry
mutations, the initial symmetry is broken and the connections start to diverge. Some of the
modules are no longer constrained to be the same, and some of the intermodule connections
are no longer constrained to be the same. In this manner, evolution evaluates more symmet-
ric solutions before evaluating less symmetric ones. This bias allows it to discover simpler
andmore general gaits first, andmore complex ones later if they turn out necessary. Interest-
ingly, on flat ground, highly symmetric individuals evolve that are capable of all four main
gaits. Depending on how their leg positions are initialized, they may pace, trot, bound, or
pronk. Also, they can dynamically switch between them. For instance, an individual may
start with a bound gait, but hit a simple obstacle that prevents it from moving its legs the
way it attempts–it can then switch to a trot, which moves the legs over the obstacle one at
a time. Such robustness emerges automatically from the constraints of maximal symmetry
among the controllers.

However, the environment may also present challenges where less symmetric solutions
are required. The terrain may be cluttered with major obstacles, or slippery and inclined;
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(a) Leg controller (b) Overall symmetry (c) Walking sideways on an incline

Figure 6.2: Evolving symmetries for four-legged walking. In this experiment, neuroevo-
lution was extended to take advantage of symmetry in the four-legged robot. (a) Each leg
has its own controller neural network, and each one receives input from the others. (b) Evo-
lution starts with fully symmetric designs and breaks the symmetry as needed, i.e. allowing
the weights on the different connections to diverge (as indicated by the colors). Such highly
symmetric networks allow the robot to take advantage of the four main gaits on the flat
ground. (c) A controller crossing a slippery incline requires a less symmetric solution than
a straightforward walk on flat ground: It evolved to use the front downslope leg primarily
to push up so that the robot could walk straight. In this manner, neuroevolution can demon-
strate how principles such as symmetry help construct robust behavior. For animations of
these behaviors, see https://neuroevolutionbook.com/neuroevolution-demos. (Figures (a) and (b)
from Valsalam and Miikkulainen 2011)

faults may occur in the system, i.e. some legs may be damaged or inoperative and no longer
move as expected. It turns out the symmetry evolution approach can discover solutions
for many such cases by breaking more of the symmetry. For instance when it has to walk
sideways on a slippery incline, the front downslope leg evolved a role of simply pushing
the agent upwards, while the other three propelled it forward. It would be difficult to design
effective gaits for such situations by hand; yet the systematic approach to understanding the
symmetry of the agent and constraining evolution to take advantage of it makes it possible
to discover them effectively and robustly.

Another powerful approach to dealing with variation in the environment is to model it
explicitly within the controller. That is, the system consists of three neural network com-
ponents: A skill network that takes actions, a context network that models the environment,
and a decision network that uses the current representation of the context to modulate the
actions of the skill module (Figure 6.3; Li and Miikkulainen 2018; Tutum, Abdulquddos,
and Miikkulainen 2021).

This context+skill approach was first developed for opponent modeling in poker, where
it resulted in a surprising ability to generalize against new opponents. When evolved to
play well against only four canonical simple behaviors (always raise, always call, always
fold, follow raw hand strength statistics), it was able to beat Slumbot, the best open-source
poker player at the time. The skill module evolved to make reasonable actions based on the
sequence in each game; the context module evolved to recognize the canonical behaviors
that Slumbot used at different times; and the decision-maker evolved to adjust the actions
based on the context.

https://neuroevolutionbook.com/neuroevolution-demos
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(a) Context+skill network (b) Context+skill control (c) Skill-only control

Figure 6.3: Modeling the environment explicitly with a context network. In many
domains, conditions can vary significantly and unexpectedly, requiring extrapolation
beyond training. For instance in an extended Flappy Bird domain, the strength of the for-
ward flap, upward flap, gravity, or drag can change. (a) In such settings, it can be beneficial
to model the variation explicitly with a context network; the decision maker can then use
the context to modulate the actions of the skill network appropriately. (b) The context
network evolves to standardize the variation so that the decision-maker sees little of it
(shown here through the first principal components of the context and skill module out-
put over time on top, lined up with the bird’s location in the bottom). It can thus perform
well in a new situation, such as the decreased strength of the upward flap, or an increased
drag. (c) Without context, the skill network outputs vary much more, making it difficult
for the decision maker to generalize. In this manner, explicit understanding of the context
extends the behavior robustly to variations of the domain. For animations of these behaviors,
see https://neuroevolutionbook.com/neuroevolution-demos. (Figures from Tutum, Abdulqud-
dos, and Miikkulainen 2021)

It turns out that the approach can be generalized to robust control more generally,
including games such as Flappy Bird, Lunar Lander, and CARLA (simulated driving). For
instance in flappy bird, it can be used to play robustly when the game conditions change. In
this game, a bird flies at a constant speed through a horizontal track where it has to avoid hit-
ting pipes that appear at constant intervals. The player takes a “flap” action to push the bird
up, and gravity will pull it down constantly. Precise timing of the flap actions is required to
avoid the pipes, and they have to anticipate not just the next pipe but the location of those
that follow as well. In an extended version of the game, another action, a forward flap is
added, causing a forward push that is constantly slowed down by drag. Different versions
of the game can be generated by simply adjusting the strength of the up and forward push
and the strength of gravity and drag.

It turns out that without the context module, the flappy bird controller does not general-
ize much at all beyond the versions seen during training, i.e. with +/-20% of variation on
the four parameters. As is usual in neural networks, the controller can interpolate between

https://neuroevolutionbook.com/neuroevolution-demos
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situations it has seen before, but cannot handle situations that would require extrapolation.
With context, however, it can fly robustly in conditions that vary +/- 75%, i.e. in conditions
that require significant extrapolation.

It is interesting to analyze how context modulation achieves such robustness. One might
expect that the context network outputs change significantly in new situations, making it
possible for the decision-maker to modulate the skill network’s actions accordingly. How-
ever, the opposite is actually true: The outputs of the context and skill actually change very
little, requiring very little new behavior from the decision-maker. In effect, the context net-
work evolved to standardize the different situations and map them to a limited range where
the actions are known. Such a principled understanding of the domain extends to a much
broader range of conditions, and therefore leads to extrapolation.

The context+skill approach can also be useful in coping with environments that change.
As will be discussed in Section 6.1.3, the real world is rarely constant, but instead, there
are changes due to outside factors, wear and tear in the mechanics, noise and drift in the
sensors, and so on. The context module can learn to anticipate such changes and modulate
the skill module accordingly. For instance in the gas sensor drift domain (Warner, Devaraj,
and Miikkulainen 2024), it learned the direction and magnitude of such changes over time,
allowing it to classify future examples significantly more accurately than a model that was
simply trained to be as general as possible.

Changes in the environment may not always be predictable over time and may exceed
the generalization ability of the controller networks. In such cases, some kind of rapid
online adaptation may be necessary. However, neuroevolution is usually applied as an
offline method, i.e. the controllers are evolved during a training period ahead of time and
then deployed in the application. Further adaptation would then require another period of
offline evolution. Continuing evolution during deployment is difficult because it creates
many candidates that are not viable. Indeed the exploratory power of evolution, which is
its greatest strength, makes it difficult to apply it online, where every performance eval-
uation counts. Historically, this was the main difference between reinforcement learning,
which was intended as an online lifelong learning method, and evolutionary computation,
which was an offline engineering approach. This difference has blurred recently: Many
reinforcement learning approaches are now offline—and similarly, there are versions of
neuroevolution that can work online (Section 8.1; Agogino, Stanley, and Miikkulainen
2000; Metzen et al. 2008; Cardamone, Loiacono, and Lanzi 2009; Silva et al. 2015).

For instance, once the initial neurocontrollers have been evolved offline, they can be
refined online using particle swarming (PSO; Gad 2022; Kennedy and Eberhart 2001).
PSO is loosely based on the movement of swarms such as birds or insects. A population
is generated around a well-performing individual, and changes made to each individual
by combining its own velocity (i.e. history of changes) with that of the best individuals in
the population. PSO therefore provides a way to find local optima accurately. Combining
a GA and PSO thus provides for both exploration and exploitation: GA can make large
changes to the solutions, discovering diverse approaches and novelty, and PSO can refine
them through local search. Such combinations of global and local and search, or memetic
algorithms, are useful in neuroevolution in general, including neural architecture search
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(Lorenzo et al. 2017; Lorenzo and Nalepa 2018; ElSaid et al. 2023). They can also imple-
ment online adaptation: Assuming the changes in the environment are gradual, they can
create alternative solutions that still perform well but also track the changing requirements.

For instance in the bioreactor control domain, micro-organisms grow by consuming a
nutrient substrate which is continuously fed into the reactor. The growth process is dynamic,
nonlinear, and varies unpredictably. The best production is achieved close to the maximum
liquid level of the reactor; however, this level must not be exceeded, otherwise the reac-
tor needs to be shut down. While the initial controllers constructed through neuroevolution
were able to keep the reactor operational, fine-tuning through PSO improved the produc-
tion significantly. When changes were introduced into the simulation, online adaptation
through PSO was able to keep the operation safe, while still tracking the economic opti-
mum closely (van Eck Conradie, Miikkulainen, and Aldrich 2002b, 2002a). In this manner,
online adaptation can be used to add robustness to the control that would be difficult to
achieve otherwise.

Thus, neuroevolution can naturally deal with noisy and nonlinear domains, and there are
many ways to make it robust when the domain varies significantly. But are such solutions
robust enough to cope with variation in the physical world? This question will be addressed
next.

6.1.3 Transfer to physical robots
There is generally a reality gap between simulation and physical reality: Simulations are
clean and deterministic, and real world is noisy, nondeterministic, includes external factors
that are not part of the simulation, there’s give and wear and tear in the wheels and motors,
etc. As a matter of fact, the robotics community is often not very impressed even with very
impressive simulation results, and justifiably so.

However, neuroevolution is in a good position to make transfer to real robots possible. By
its very nature, controllers are evolved to cope with imperfections, and even take advantage
of them, as was seen in the robot with an inoperative main motor in Section 6.1.1. A similar
result was obtained in the four-legged walking domain (Valsalam et al. 2013). An actual
physical four-legged robot was constructed with a similar structure to the simulations. Its
four legs were each angled away from the center and rotated around a circle, thus each
propelling it forward with a slight angle (Figure 6.4a). Such a gait made it possible to walk
forward as well as turn at will. Most remarkably, when one of the legs became inoperative,
an asymmetric gait evolved where the remaining leg on the same side traced a wider arc
than the two on the other, allowing the robot to still walk straight. Thus, not only did the
neuroevolution approach transfer to physical robots, it also came up with a solution to a
situation that would have been very difficult to design by hand.

If transfer to the physical world is anticipated, the simulation can be extended with mech-
anisms that simulate the physical challenges. For instance, factors such as wind, variable
friction, and uneven terrain can be programmed into the simulation. However, it is more
difficult to simulate all possible imperfections that might occur, such as slippage, blocked
sensors, loose connections, battery drainage, and wear and tear. One way to deal with such
issues is to add noise and stochastic blockage to the simulated sensors and effectors. Both
kind of noise allow simulating the world more realistically. As mentioned above, effector
(or trajectory) noise also allows training the controller in more varied situations.
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(a) Physical four-legged robot (b) Dreamer robot with Mekahand

Figure 6.4: Transfering control to physical robots. In these two examples, the controller
neural network is evolved in simulation and then used to control the corresponding phys-
ical robot. (a) A four-legged physical robot evolved to walk straight even with one leg
inoperative. (b) An accurate simulator of a robotic arm was used to evolve controllers
that generalize well to new situations and imprecise computation. In this manner, it is
not only possible to transfer to physical robots, but also construct controllers that are
robust against noise, faults, and new situations. [Figure (a) from Valsalam et al. 2013
and Figure (b) from Huang et al. 2019.] For an animation of the four-legged robot, see
https://neuroevolutionbook.com/neuroevolution-demos

Recently, robotics simulators have become accurate enough to support transfer in many
cases. For instance in robotic grasping, it is possible to evolve a neural network controller
and transfer it into the physical robot as is (Huang et al. 2019). NEAT was used with the
Graspit! simulator and transferred to the Dreamer robot’s Mekahand (Figure 6.4b). The
resulting controller was surprisingly robust, coping with sensor and effector inaccuracies as
well as novel objects well. Most interestingly, it was robust against imprecise computation:
When the grasping had to be completed very fast, only approximate information about the
process was available, yet the controller managed to grasp the object safely in most cases.

Even though neuroevolution of behavior mostly focuses on virtual agents, much if it
actually originates from robotics. The field of evolutionary robotics emerged in the 1990s
and continues to this day (J. C. Bongard 2013; Doncieux et al. 2015; Vargas et al. 2014; Nolfi
and Floreano 2004). The controllers and sometimes also the hardware is evolved, and often
the controllers are simple neural networks. The original motivation was that robot control
is difficult to design by hand, and can be more readily done through neuroevolution (Cliff,
Harvey, andHusbands 1993). Simulations are often a useful tool, however, it is also possible
to evolve the controllers directly on robotic hardware. For instance, recurrent discrete-time
neural networks were evolved on the Khepera miniature mobile robot to develop a homing
behavior (Figure 6.5a; Floreano and Mondada 1996a). The network developed an internal
topographic map that allowed it to navigate to the battery charger with minimal energy
simply in order to survive.

An interesting direction is to evolve both the controllers and hardware at the same time.
Indeed, such coevolution can facilitate evolution of more complex and robust solutions

https://neuroevolutionbook.com/neuroevolution-demos
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(J. Bongard 2011). For instance in evolving locomotion, the robots may start with an eel-
like body plan and gradually lose it in favor of a legged design. The gaits on robots that go
through such a process can be more robust than those evolved on the legged design directly.
To make morphological innovations feasible, it may be useful to protect them by temporar-
ily reducing evolutionary selection pressure (Cheney et al. 2018). Such protection is a useful
general principle in discovering complexity, similar to speciation in NEAT (Section 3.4).

The most extreme demonstration of this approach is GOLEM (genetically organized life-
like electromechanics;Figure 6.5b Lipson and Pollack 2000). Not only were the hardware
designs and the neural network controllers coevolved, but the robots themselves were 3-D
printed according to the evolved designs. The designs were evaluated for their locomotive
ability in simulation. The best ones were then printed and evaluated in the physical world,
and found to perform as expected. The evolved virtual creatures (Dan Lessin, Don Fussell,
and Miikkulainen 2014; Daniel Lessin, Donald Fussell, and Miikkulainen 2013) discussed
in Section 14.5 extend this approach to more complex morphologies and behaviors, all the
way to fight-or-flight, albeit in simulation and with a hand-constructed syllabus. However,
it is possible to imagine a future where robot bodies and brains are coevolved automati-
cally, the results created on multimaterial 3D printers—and once the printing is finished,
the robots wake up and walk off the printer on their own.

Evolutionary robotics has already been scaled up to swarms, i.e. robot teams that exhibit
collective behavior (Dorigo, Theraulaz, and Trianni 2021; Trianni et al. 2014). The chal-
lenge in this area is to evolve the swarm to perform tasks that single robots could not. For
instance, such robots can hook up and form a linear train that can get over obstacles and
gaps that a single robot could not (Figure 6.5c). Many interesting issues come up in evolving
neural controllers for such robots. For instance, should they all be clones of each other, or
each evolved to fill a specific role in the team? Collective behavior in general is an important
area of neuroevolution, discussed in depth in Chapter 7.

6.1.4 Discovering flexible strategies
The neuroevolved solutions so far have focused on control. At this level, adaptation most
oftenmeansmodulating or adjusting a single existing behavior: Throttle one of the engines a
little more, move one leg a little faster, flap a little harder. When behavior extends from such
low-level control to a high-level strategy, goal-driven coordination of multiple behaviors is
required. For instance, offensive vs. defensive play in robotic soccer may require getting
open vs. covering an opponent; actions required of a household robot are very different
when it is vacuuming vs. emptying the dishwasher vs. folding laundry; game agents may
need to gather resources, attack, and escape.

Evolving high-level strategies is challenging not only because the agent must have com-
mand of a much larger repertoire of behaviors, but it also needs to know when and how to
switch between them. Proper switching is difficult for two reasons: first, in some cases it
may have to be abrupt, i.e. small changes in the environment may require drastically dif-
ferent actions; second, sometimes the different strategies need to be interleaved or blended
instead of making a clean switch.

The first challenge can be illustrated e.g. in the half-field soccer domain, where five
offenders try to score on five defenders, using eight behaviors: getting open and intercept-
ing the ball, and holding the ball, shooting at the goal, and passing it to one of the four
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