8 Interactive Neuroevolution

The previous two chapters discussed how the behavior of agents that operate embedded
in an environment can be discovered through neuroevolution. Starting from reactive con-
trol and expanding all the way to sequential decision making strategies, effective solutions
can be discovered that may be surprising to human designers. Moreover, discovery can be
embedded in a collective environment, where opponents and cooperators are evolving as
well, thereby providing new and creative challenges. In some cases, however, it may be
useful for human designers to drive this discovery process more explicitly. They may have
knowledge that’s difficult to capture in a formal objective function. For instance, the desired
behavior may be complex and multifaceted, or depend on believability or esthetic values. In
such cases, neuroevolution can be made interactive. The construction of new individuals is
still done through evolutionary operators, but the selection is at least partially due to human
judgement. This chapter reviews how interactive neuroevolution can be set up effectively,
and demonstrates it in several examples in various game domains.

8.1 The NERO Machine Learning Game

Setting up neuroevolution experiments sometimes feels like a game. You have a goal in
mind, i.e. an idea what you want the evolved agents to do. You have to think about how to
express that behavior in terms of objective function, which in turn depends on behavioral
descriptors that can be readily measured. You may need to come up with a shaping strategy,
starting with simpler behaviors and gradually making the objective function more demand-
ing. You may need to try out many different such setups before finding some that achieve
effective behavior. There may be several such solutions, and some of them may even sur-
prise you. Finding such solutions, and perhaps better than those seen before, is what makes
this game appealing.

NERO (Stanley, Bryant, and Miikkulainen 2005) is an actual game build on this very idea.
It can be seen as a pioneering effort to establish a new game genre, machine learning games.
Unlike in other genres, such as first-person shooter games or sims, the human player is not
controlling game agents directly. Instead, the player takes the role of a teacher/coach/drill
sargent, designing a curriculum of learning challenges for actual agents in the game. Those
agents solve the challenges using machine learning. After learning, the agents engage in
a head-to-head competition with other similarly trained agents, in order to determine how
good the training was.
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More specifically, in NERO the game agents are battle robots controlled by neural net-
works evolved with NEAT (Figure 8.1c,d). The entire population of them is placed in the
environment at once. The environment is usually an enclosed area with walls, buildings,
trees, and other objects, allowing the agents to move around, hide, and take cover. Simple
algorithmically controlled enemy agents can be placed in it, including static enemies (and
flags) that act as targets, static enemies that fire at the agents, and mobile enemies that fire
and approach the agents. As their input, they observe the number and distance to enemy
agents as well as teammates in sectors around them, distance to walls and other static objects
in several directions, whether their weapon is on target, and the direction from which the
fire from the nearest enemy is coming. As their output, they can move forward and back,
turn left and right, and fire their weapon.

In such an environment, NEAT can evolve networks that exhibit interesting behaviors.
The agents can charge the enemy, approach from different directions, disperse in order to
be less likely to hit, converge to increase firepower, take temporary cover behind walls, hide
in order to survive until the end of the game, and many others. The interesting question is:
what kind of behaviors are useful in a battle against an actual enemy? Further, how can we
encourage evolution to discover such behaviors, while still encouraging open innovation as
well? This is precisely the question interactive neuroevolution aims to address.

In NERO, the human player has a number of tools at their disposal (Figure 8.1a,b). They
can place various objects in the field, such as walls, static and mobile enemies, and flags.
They can control a number of sliders that correspond to coefficients in the objective func-
tion, such as approach/avoid the enemy, hit a target, avoid getting hit, follow teammates,
disperse, etc. Both objects and sliders can be changed dynamically as the training pro-
gresses, therefore making it possible to design a curriculum. For instance, it is may be
useful to reward the agents for approaching the enemy first, then do it while avoiding fire,
then while avoiding fire from moving enemies, then while utilizing walls as cover, etc.
(Figure 8.2). Such curricular evolution, or shaping, can result in more complex and effec-
tive behaviors than could be achieved with a single static objective function without human
guidance.

One interesting extension needs to be made to the NEAT method, however. Note that the
entire population is evaluated in the environment at the same time. This approach makes
the evolution efficient, since the evaluations are done in parallel. The population is also
always visible to the human player, making it easier to understand how well the evolution
is progressing. However, if the entire population is replaced at the same time, as is usual
in generational evolution, the game appears discontinuous and difficult to follow. Instead,
evolution needs to progress continously one agent at a time.

In this real-time extension to of NEAT, called rtNEAT, among all the agents that have
been evaluated sufficiently long, the worst agent is removed from the population. The
species are recalculated and an offspring generated as usual in NEAT. This offspring is then
placed in the environment to be evluated. This replacement takes place at regular intervals,
and because it involves only one individual at a time, is largely invisible to the human player.
In this manner, evolution progresses continuously while the population is being evaluated.
Although it was designed for the visual effect in NERO, the same approach can be useful
in other domains where continuous adaptation is needed.
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Figure 8.1: Setting up a NERO experiment. The NERO game allows specifying increas-
ingly challenging environments so that complex behavior can be evolved. (a) The human
player can place various objects in the environment to create challenges, including walls,
flags, static enemies, and moving enemies. () The human player controls the fitness by
adjusting sliders with continuous positive or negative values along various dimensions such
as approach enemy, approach flag, hit target, avoid getting hit, and stay together with team-
mates. (c¢) Each agent in the game is controlled by a neural network evolved through NEAT.
As its input, it senses the environment around it, including enemies, teammates, walls and
other objects; it also senses whether its weapon is on target, and the direction from which
the nearest fire is coming. As its output, it issues actions to move forward and back, turn left
and right, and fire. (d) During evolution, the entire population of agents is evaluated together
in an enclosed environment that may contain multiple objects. In this case the agents spawn
on the right and are rewarded for approaching the flag on the left. At regular intervals, the
worst agent is replaced by offspring in a continous replacement process. In this manner,
the human player can create a curriculum of increasingly challenging tasks that prepares
the team well for battle against other teams. For animations of various training scenarios,
see https://neuroevolutionbook.com/neuroevolution-demos. (figures from Stanley, Bryant, and
Miikkulainen 2005)

After the curricular evolution is complete, the teams are evaluated in a battle mode of
NERO. Two teams are placed in the same environment which may be the same used in
training, or something completely different. At this stage (in NERO 1.0) the agents operate
independently of the human player, applying what they were trained to do in competition
with another team. If an agent is hit a sufficient number of times, it is removed from the
environment. The game ends when one team is annihilated, or the clock runs out, in which
case the team with most agents still on the field wins. Note that the battle domain is obvi-
ously a violent game, similar to many video games in the first-person shooter genre. The
principles are more general, however, and apply to other less violent settings as well, such as
the gardening game of Petalz (Risi et al. 2016). A robotic battle domain, however, provides


https://neuroevolutionbook.com/neuroevolution-demos

174 Chapter 8

Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls| Battle

“?, R . T
a a ., a -
.— Vg .— ‘ N -_ 7 ‘ooo " br

LY -
4 ) o 4 ) 4 bt L4 - A O] o

Figure 8.2: Training NERO teams through interactive neuroevolution. The player first
specifies a simple task such as approaching a static enemy that fires (a “turret”), so the
agents learn to approach it from different sides. In the next scenario, they learn to approach
one turret while minding fire from another. Next, the turrets move and turn, and the agents
need to take cover behind walls. Through multiple such increasingly challenging senarios,
the agents learn effective battle behaviors. The team is then placed into a battle against
another team, evaluating how well the human player was able to train them. NERO thus
aims at creating intelligent behavior strategies through interactive neuroevolution. (Figure
from Stanley, Bryant, and Miikkulainen 2005)

clear and compelling measures and visualizations of performance, which was useful for a
pioneering example of machine learning games. Often interesting interactions result that
were not anticipated, suggesting ideas for further interactive neuroevolution of the team.

One of the first behaviors is often to approach a firing enemy. The agents quickly evolve
to avoid fire by going around and approaching from the side. This behavior is general and
adapts easily to enemies that are turning. If subsequently the “approach” slider is abruptly
changed to “avoid” (i.e. negative rewards for approaching), and interesting demonstration
of evolutionary search can be seen. As always, there are individuals in the population that
do not perform very well. Even if most agents approach the enemy, some of them may
stand still, roam around, or run away. When the slider changes, they become the seed for the
behavioral change. They receive higher fitness, and their offspring takes over the population,
resulting in avoidance in a few reproductions.

In some cases, careful curricular design can be used to construct effective desired behav-
iors. For instance it is possible to evolve the agents to run through a maze to a target on the
other side. First the environment may consist of a single wall, and gradually more walls in
complex configurations as the agents evolve to run around them (Figure 8.3a). The result-
ing behavior can be quite general and effective, despite involving no actual path planning.
It is enough for the agents to know the general direction and they can navigate around even
complex mazes, as long as they do not contain deceptive traps. Combined with the objec-
tive of dispersing, the agents also take different paths through the maze—which is effective
because it is difficult to defend against an enemy that approaches from many directions at
once.

On the other hand, evolution can still discover surprising and effective behaviors as well.
One such result was that the agents sometimes evolve to run backwards (Figure 8.3b). This
seems odd at first, but does serve a purpose in some cases. If the enemy tends to pursue
the agents persistently, running backwards is useful because the weapon remains pointed
to the enemy. Another discovery was that extremely avoidant behavior can be effective in
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Figure 8.3: Discovery of expected and unexpected behaviors in NERO. What makes
the game interesting is that the player has some control of what will happen, but evolution
will also find surprising solutions. (a) By gradually adding more walls, and rewarding the
agents for staying away from each other, they evolve to take various paths through the maze,
without any explicit path planning. (b) An effective strategy for hitting the target while not
getting hit is to run backwards while shooting. (¢) An avoidant team can be effective when
they have time to back up against a wall, forming a firing squad. (d) A subteam of three
agents is agile and has significant fire power. These discoveries and many more like them
were surprising, resulting from evolution solving the challenges posed by the human player.
In this manner, humans can provide guidance while still letting evolution to find creative
solutions. For animations of these and other battle behaviors, see https:/neuroevolutionbook
.com/neuroevolution-demos. (figures a — ¢ from Stanley, Bryant, and Miikkulainen 2005)

battle (Figure 8.3¢). That is, most of the time aggressive teams are evolved that approach the
enemy and pursue it if they retreat. An avoidant team, however, would retreat until they have
their back against the wall. It turns out if they are fast enough to do it so there is still enough
of them, they form a firing squad that is very difficult to approach, and aggressive pursuers
are often eliminated. Yet another surprising discovery was that some teams evolved to form
subteams of three agents (Figure 8.3d): they approach the enemy together, they fire at the
same enemy, and they retreat together. Such a subteam is effective because it has significant
firepower yet is very agile. Evolution discovered it independently, however this principle
turned out to be well established in actual military training.

One interesting question in NERO is: Is there an actual best strategy in the game, or does
it support several different strategies that each dominate some, but not all, other strategies?
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This is a crucial question for machine learning games in general, as well as interactive
neuroevolution. While it is difficult to answer this question conclusively, it is possible to
conduct a large scale experiment with many players and evaluate the resulting strategies.

The first MOOC on Artificial Intelligence in 2011, run by Peter Norvig and Sebastian
Thrun, provided such an opportunity (Karpov, Johnson, and Miikkulainen 2015). As an
optional assignment in the course, the students designed NERO teams, and a comprehensive
round robit tournament was run with them. Out of the 156 submissions, some performed
much better than others, and the teams could be ranked according to total wins: The best
one won 137 times, then next 130, then two teams at 126, then 125, 124, 123 etc.

When the behavior was characterized in terms of actions taken in various situations, 10
major behavioral strategies were identified. However, none of them were clearly more suc-
cessful than others; what mattered the most was how well they were implemented. What is
most interesting, however, is that there was clear circularity among the best teams: Team A
beat Team B which beat Team C which beat Team A. This result suggests that it is unlikely
that one best strategy exists, but different behaviors are required to do well against different
opponents. Both of these properties make the game more interesting to human players, and
suggest that machine learning games is indeed a viable genre. They also suggest that human
intuition in interactive evolution can be useful, and can provide an outlet for human creativ-
ity, as is also demonstrated in following sections of this chapter. Furthermore, combining
human and machine insight is a powerful approach for designing complex systems.

The software for the original NERO as well as its open source version is available from
the book website. The original NERO includes a version 2.0 of the game, which includes
human guidance also during the battles, as well as an ability to construct teams by com-
bining individuals from different evolutionary runs. The goal was to make the teams more
versatile and the game-play more interactive; the interactive evolution aspect remained the
same. OpenNERO was also designed to support other Al and machine learning methods,
making it possible to compare and demonstrate different approaches to intelligent agents.
They can serve as a starting point for exercises and projects in this book.

8.2 Incorporating Human Knowledge

NERO is one of the first examples of a genre of machine learning games, i.e. the gameplay
consists of players interacting with a machine learning system. Its focus was on one partic-
ular kind of interaction, i.e. on shaping neuroevolution through human insight. However,
it is possible to incorporate human knowledge into neuroevolution in other ways as well,
including explicitly through rule-based advice and implicitly through behavioral examples.

Note that these approaches are useful in creating intelligent agents in general; for
instance, advice can be used in prey capture to help the agent evolve a corralling strategy,
pushing the prey into the corner rather than chasing it in circles (Fan, Lau, and Miikkulainen
2003). Similarly, examples can be used to train agents in a strategy game to establish behav-
ioral doctrines that also observe safety constraints, resulting in visibly intelligent behavior
that does not easily emerge on its own in neuroevolution (Bryant and Miikkulainen 2007).
However, advice and examples can be most clearly demonstrated and evaluated in NERO
because it is an interactive evolution environment to begin with.
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Figure 8.4: Utilizing rule-based advice in NERO. It is sometimes useful to be able to
guide the evolutionary discover with human knowledge. Such knowledge can be expressed
as rules and incorporated into the population of networks.(a) As an example, two rules about
going around the wall on the right side are encoded as a partial network structure. (b) This
structure is then spliced into NEAT networks like any mutation. The networks continue to
evolve to take advantage, modify, or co-opt the advice to perform better. (¢) A snapshot
of NERO with the three sequential positions identified. The agents were first rewarded for
going to the flag in the middle, then to the one at left, then the one at right. (d) The advice
suggested going to the first flag around the right side, and it sped up evolution compared to
having no advice. When the flag was moved to the left, networks with advice adapted very
quickly, utilizing the same advice structure with different output actions. After the flag was
moved again, there was no difference in adaptation with or without advice, suggesting that
the advice had become incorporated into the network like any other structure in it. (figures
from Yong et al. 2006)

In NERO, successful behaviors are discovered through exploration. This means that even
the most obvious ones, like moving around a wall without getting stuck, take many itera-
tions of trial and error. This process is often frustrating to watch because effective behavior
is obvious to the observer, and s/he might as well tell the agents what they should do. Evo-
lution can then use that advice as a starting point, modify it further, and move on to more
interesting discoveries faster.

A mechanism for incorporating such advice into evolving neural networks can be built
based on knowledge-based artificial neural networks (KBANN; Towell and Shavlik 1994).
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The knowledge is first specified in a set of rules, such as “if a wall is some distance in front,
then move forward and turn right” and “if a wall is near 45 degrees to the left, then move
forward and turn slightly right.” The rules are then converted into partial neural network
structures: The conditions are coded as input nodes and consequents as output nodes, with
hidden nodes mapping between them (Figure 8.4a,b; Yong et al. 2006). These structures are
spliced into each existing neural network in the population, thus adding the wall-circling
behavior to their existing behaviors. Weight values are usually constant, with a positive or
negative sign, but can also be graded to indicate e.g. the degree of turn. Note that such
additions are natural in NEAT, which already has mechanisms for growing the networks
through add-node, add-connection, and change-weight mutations. Evolution then continues
to modify these networks, incorporating the advice into the general behavior, modifying the
advice to make it more useful, or even rejecting it entirely and changing it into something
else. Confidence values can be used to specify how likely such modifications are, i.e. how
immutable or plastic the advice is. Given that the evolutionary changes modify rules that
were originally interpretable, the modifications may be interpretable as well, i.e. it may be
possible to explain what new knowledge evolution discovers in this process.

Experiments demonstrate that such advice indeed helps learn the task of e.g. going around
the wall faster (Figure 8.4¢,d). Remarkably, if the task changes so that it is now better to go
around the left side instead of the right, adaptation is very fast: evolution quickly changes the
output actions to the left while the rest of the advice network structure stays the same. If the
task changes again to make the right side better, there’s little difference between networks
that evolved with advice or not. In both cases, the advice has become incorporated into
the general network structure. In this manner, advice helps evolution discover the needed
behaviors but does not constrain evolution in the longer term.

In some cases, it may be difficult or inconvenient to write down advice as rules, but it may
be easy to demonstrate the desired behavior by driving an agent in the game. For instance,
the knowledge about going around a wall can be presented in this way. The agent is placed
in a starting location, the player takes possession of it, and gives movement commands that
take it to the target flag. At each step, the inputs and outputs to the agent are recorded and
used as a training set with backpropagation through time; alternatively, the path of the agent
can be divided into segments, and the actions that keep the agent on the example path used
as targets. The agent is first trained to reproduce the first segment, then the first two, and so
on until it successfully replicates the entire example. The weight changes are encoded back
to the genetic encoding of the network (implementing Lamarckian evolution), and are thus
inherited by its offspring.

It is interesting to evaluate how well each of these methods for incorporating human
knowledge i.e. shaping, advice, and examples, work in interactive neuroevolution. To this
end, a human-subject study was conducted (Karpov, Valsalam, and Miikkulainen 2011). A
total of 16 participants were given three tasks: going around the wall, catching a moving
target, and traversing a trajectory consisting of multiple waypoints (Figure 8.5). They were
instructed to solve these tasks by two different methods: by writing a set of rules, i.e. a
script for the entire behavior, and one other method which was either advice, examples, or
shaping, randomly chosen and in random order. Their performance was recorded and they
were surveyed afterward; the performance was also compared with plain neuroevolution
from scratch without any human knowledge.
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Figure 8.5: Tasks for evaluating methods that incorporate human knowledge in NERO.
Plain neuroevolution from scratch on one hand and full scripting of behavior on the other
were compared with advice, examples, and shaping. Plain neuroevolution turned out more
successful than scripting, and at least one of the human-guided methods more successful
than plain neuroevolution: examples in (a), advice in (b), and shaping in (c¢). Thus, the dif-
ferent methods of incorporating human knowledge can play a different role in constructing
intelligent agents in interactive neuroevolution domains. (figures from Karpov, Valsalam,
and Miikkulainen 2011)

The surveys suggested that the example-based approach was favored as the best quality
approach, then scripting, shaping, and advice. Shaping was found to be low quality in the
moving-target task, advice low quality in the waypoints task, and all methods were found
good in the wall-circling task. These ratings did not always correlate with rate of success,
suggesting that they mostly measure how easy or fun it was to use each method—which is
useful information on its own.

The recordings were used to measure the average time to a successful solution, with a
30-minute upper bound. It turned out that scripting was the most difficult way to achieve
successful performance: even plain neuroevolution was more successful. Interestingly, at
least one human-assisted method performed better than plain neuroevolution. Advice was
most effective in catching the moving target. It was possible to specify an intercept course
rather than chasing the target indefinitely. In general, advice makes sense when the behavior
can be expressed as a general rule. In contrast, examples were best in going-around-the-
wall task. Indeed, this approach is most appropriate when the desired behavior is concrete
and specific. Shaping, the usual staple of the NERO game, was the most effective in the
waypoint task, where it was possible to start with a single target and then add gradually
more waypoints. The approach makes sense in general in tasks where it is possible to start
with a simplified or partial version and then gradually make the task more demanding. In
this manner, each of the different ways of incorporating human knowledge into interactive
neuroevolution can play a different role in constructing intelligent agents.

When exactly should each of these methods be used? An interesting possibility for the
future is for the interactive evolution system itself to request advice, examples, and shaping
when it deems it most helpful (Karpov et al. 2012). For instance, the system can identify
parts of the state space where it has little experience, or that are least likely to lead to success,
or where the population of agents disagrees the most, and where its previous advice or
examples do not apply. It can then present the user with an advice template specifying such
a situation and ask the user to fill in the blanks. Alternatively, it can present a starting point
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Figure 8.6: A proposal for active human-guided neuroevolution. The human expert pro-
vides advice, examples, and shaping for the neuroevolution process. The process monitors
itself and determines what kind and when such input would be most useful. In this manner,
humans and machines can work synergetically to construct intelligent agents. (Figure from
Karpov et al. 2012)

for the agent and ask the user to provide an example. If evolution seems to have stagnated, it
could propose the user to shape either the rewards or the environment to get evolution going
again. It could even make specific suggestions, such as adjusting the sliders to make the task
more demanding, or rolling back prior simplifications. Such an ability would eventually
result in interactive neuroevolution where human knowledge and machine exploration work
synergetically in both directions to solve problems (Figure 8.6).

8.3 Collaborative Neuroevolution

While NERO enabled players to shape the evolution of their team of agents, the game did not
allow many humans to collaboratively train their teams by building on the interesting behav-
iors found by others. This chapter showcases some examples of interactive neuroevolution
applications and games that were developed to incorporate such collaboration.

In particular, we’ll take a closer look at Picbreeder (Secretan et al. 2011a), a highly influ-
ential generative Al system that came out of the lab of Kenneth Stanley. Picbreeder is a great
example of a system that allows users to perform collaborative interactive neuroevolution,
enabling them to explore a large design space together. Similarly to Dawkin’s BioMorphs
from his book The Blind Watchmaker, the basic idea in Picbreeder is to breed images.
Users are presented with several images and asked to select the ones they like the most
(Figure 8.7). The selected images are then used as parents to produce a new generation
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