9 Open-ended Neuroevolution

9.1 Openended Discovery of Complex Behavior

Neuroevolution has produced several convincing demonstrations where complex behavior
is discovered in behavioral tasks, sometimes rivaling complexity seen in nature. However,
there is one striking difference: neuroevolution is set up to solve a particular problem,
whereas biological evolution has no goal. In nature, solutions are discovered continu-
ously as challenges and opportunities come up. Such openendedness is still a challenge
for artificial evolution, especially when the goal is to evolve general intelligent agents
(Miikkulainen and Forrest 2021). This section reviews five elements of openendedness in
biology that may, if we can implement them well, lead to openended neuroevolution: neu-
trality with weak selection, enhanced exploration through extinction events, highly evolv-
able representations, powerful genotype-to-phenotype mappings, and major transitions in
complexity.

9.1.1 Neutral mutations with weak selection

Current evolutionary computation approaches, including those that evolve neural networks
for behavior, aim to be strong and efficient. They utilize small populations that can be
evaluated quickly; the crossover and mutation operations are often carefully crafted to make
it likely that fitness is improved; fitness is measured precisely, and selection is strongly
proportional to fitness. As a result, evolution converges the population quickly around the
most promising solutions and finds good solutions there fast. This approach is effective e.g.
in many engineering problems where the search space and fitness are well defined and the
problem consists largely of optimizing the design.

However, this success often comes with the expense of reduced extrapolation and thus
reduced creativity. It is also not very effective when the agents need to be general, i.e. cope
with uncertain and changing environments and solve multiple tasks simultaneously. Other
mechanisms are needed to counterbalance the effective search, such as diversity mainte-
nance methods, novelty search, and quality diversity search (Section 5.3). They are intended
to keep the population of solution diverse for a longer time, and spread it out further in the
solution space. The idea is to not miss solutions that are complex or unexpected, i.e. hard
to find through greedy search.

192 Chapter 9

Interestingly, biological solutions are sometimes highly creative and unexpected, yet do
not seem to result in any special mechanisms for diversity maintenance. If anything, bio-
logical solutions need to be viable always, which seems to counteract the need for diversity.
How does biology do it?

Nature seems to employ an entirely different approach to creativity (Lynch 2007; Wag-
ner 2005; Miikkulainen and Forrest 2021). The populations are very large, and selection
is weak. Often there is also a lot of time for these processes to find solutions. Phenotypic
traits are coded redundantly through several genes, much of the DNA exists in noncod-
ing regions, and many of the mutations are neutral, i.e. do not affect fitness. As a result,
diversity can exist in such populations: there is time to create it, and it stays even if it isn’t
immediately beneficial. The population as a whole can thus stay robust against changes,
develop expertise for multiple tasks, and maintain evolvability through time.

There is a good reason for the strong and impatient approach that EC has taken until
now. Evolutionary optimization is computationally intensive, and such techniques were
necessary in order to take advantage of what was available. However, now that we have
million times more compute than just a couple of decades ago (Routley 2017), it may be
time to rethink the approach. This is precisely what happened with deep learning. Much of
the technology, such as convolutional networks, LSTMs, autoencoders, existed since the
1990s, but they only started working well when taking advantage of the massive increases
in scale (LeCun, Bengio, and Hinton 2015).

A similar opportunity may exist for evolution in general, and neuroevolution in particu-
lar. It may be possible to scale up to large populations, large redundant genomes, noncoding
DNA, neutral mutations, and deep time. It may be possible to take advantage of massive
amounts of behavioral data, and large-scale simulations, to evaluate the solutions. The eval-
uations may be multiobjective and high level, instead of carefully engineered to produce
solutions of expected kind. Eventually it may even be possible to create foundation mod-
els for neuroevolution, i.e. large, diverse populations of neural networks that have many
different abilities and are thus highly evolvable to solve new tasks.

One way to accelerate evolution in such populations is through extinction events, as will
be discussed next.

9.1.2 Extinction events

In biological evolution, large-scale extinction events have occurred several times, often
seemingly changing the course of evolution (Raup 1986; Meredith et al. 2011). For instance,
the Cretaceous-Peleogene extinction displaced dinosaurs with mammals, eventually lead-
ing to the evolution of humans. An interesting question is: Are such events simply historical
accidents, or do they implement a principle that in some way enhances, or hinders, evolu-
tion in the long term? Even though such events obviously destroy a lot of solutions, can
they possibly serve to reset evolution so that better evolvability is favored, which in the
long term results in accelerated evolution and more complex solutions?

While it is difficult to evaluate this hypothesis in nature, it is possible to do so in computa-
tional experiments. It is possible to set up a large population with many different solutions,
representing adaptations to different niches. If evolution runs in a stable manner for a long
time, those niches are eventually filled with good solutions, and evolution stagnates. At
such a point in time, extinction event eliminates most such solutions. Those that remain,

Open-ended Neuroevolution 193

Control

180 Extinction 300
2 Extinction 600
2 160 Extinction 900
8 Extinction Random ¥
3 140 T]
g 120 it
(7] 3 L
5 100 o]
£ " KD o
3 80 5 :
8 / |
o 60|, / ‘
I A § | |
o 40 i [|
3 | |

20 |

: 0
e — 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
(a) Abstract: No extinction (b) Abstract: Random Generations
(15,000 gens) extinctions (15,000 gens) (c) Walker: Niches filled over time

Figure 9.1: Effect of extinction events on evolvability. While extinctions are catastrophic
in the short term, they may empower evolution in the long term. (a) Without extinction
events, the population in the abstract domain evolves to fill in the available niches (i.e. cells
in the 401 x401 grid). A variety of evolvability levels exists in the end, indicated by the
grey-scale values (lighter is more evolvable). (b) With extinction events, higher evolvability
is favored. Such events occurred at random intervals averaging 2,500 generations. In this
snapshot, five individuals survived a recent event, and the population is currently expanding
to fill in the available niches. On average these individuals are about 50% more evolvable
than those in (a), indicated by the lighter color. (c) In the bipedal walker domain, extinction
events rebound quickly, filling in more niches than before the event, and eventually more
than evolution without extinction events. Thus, extinction events accelerate evolution and
result in the discovery of more novel solutions. (Figures from Lehman and Miikkulainen
2015)

even just very few, are then free to evolve to fill the open niches. Such evolution can be
described as radiation from the remaining niches, but note that there is also a meta-level
selection at play: The solutions that are more evolvable, i.e. faster to adapt to the open
niches, will spread faster and wider, making them more likely to survive the next extinction
event. Thus, under repeated extinction events, evolution favors higher evolvability. Extinc-
tion events can thus have a positive long-term effect, accelerating evolution, and possibly
resulting in more complex solutions as well.

To visualize the basic idea, consider a very simple computational setup (Lehman and
Miikkulainen 2015). The niches are cells in a toroidal 401x401 grid world. Individuals
consist of grid coordinates and a probability of changing those coordinates. Thus, adapta-
tion means moving to a new cell, and high evolvability is represented by high probability
of change. Initially there is only one individual at the center, and evolution creates more
individuals by cloning and then mutating grid coordinates, and at the same time, mutat-
ing the probability. Over time, the population spreads to fill in all niches simply through
drift (Figure 9.1a). However, with extinction events, only five individuals at random loca-
tions survive. If such events occur often, there is a strong selection towards individuals that
mutate with a high probability. Thus, after prolonged evolution, the population evolved with
extinction events is more evolvable than a population evolved without them (Figure 9.15).

Do these results hold at the level of behavior as well? Consider again the bipedal walker
domain described in Section 5.3. As before, the controllers are neural networks evolved

194 Chapter 9

with NEAT, taking the location of the two feet (whether on the ground or not) as input,
and torque to the six motors (one in each knee, two in each side of the hip) as output. A
behavioral niche can be defined on the grid as in the abstract domain, i.e. the final location
of the bipedal walker after 15 seconds of simulation. This location is also used to measure
novelty, and evolution is set to maximize novelty. Evolvability can then be measured as the
behavioral diversity of the offspring: The individual is mutated 200 times; the number of
distinct final locations of the offspring represents its evolvability.

As can be seen in Figure 9.1c¢), evolution without extinction events expands to fill in the
various niches monotonically. With extinctions, there is an immediate drop to five niches
and a fast rebound to a higher level than before the event. Moreover, the rebounds become
more effective over time, eventually filling more niches than evolution without extinctions.
Thus, extinction events result in accelerated evolution and solutions with increased novelty.

These computational experiments suggest how extinction events can accelerate evolu-
tion in biology. Although major such events have taken place only a few times, they can
be frequent at a smaller scale, resulting e.g. from fires, volcanic eruptions, climate events,
predator migrations, and even human impact. The results also suggest that the same effect
could be harnessed in engineering applications of computational evolution, leading to bet-
ter results in the long term. Combining it with large populations and weak selection, as
discussed in Section 9.1.1, is therefore a compelling direction for future work.

9.1.3 Evolvable representations

This chapter so far has outlined an approach to open-ended evolution that is still largely
building on genotypic and phenotypic diversity, with a constant mapping between them. An
alternative approach is to take advantage of evolvability, which can be defined as adapting
the genotype-phenotype mapping over time such that the search operators are more likely
to generate high-fitness solutions. High evolvability is often based on indirect encodings,
which can provide a substrate for this adaptation.

The main challenge is that whereas high evolvability provides a future benefit for evo-
lution, it needs to be developed implicitly based on only current and past information. In
biology, evolvability may selected for in three ways (Kirschner and Gerhart 1998): more
genetic variation can be stored in the population (because fewer mutations are harmful); it
makes organisms more tolerant against stochastic development; and it makes it more likely
for the populations to survive in changing environments.

Each of these can be evaluated in computational experiments. Opportunities for the first
one were already discussed above in Section 9.1.1. Opportunities for the second one are
illustrated in sections on development (Sections 4.2 and 14.4. In short, an individual is
not complete at birth, but goes through a period of physical and mental development that
results in a more complex and capable individual (Miiller 2014). Often this period involves
interactions with the environment, i.e. at least some of the complexity is not innate, but
is extracted from the environment. These interactions can be synergetic and encoded into
critical periods of development. For example, human infants need to receive language input
when they are one-to-five years old, otherwise they do not develop full language abilities
(Section 14.7.1). In this manner, instead of coding everything directly into genes, evolution
also encodes a learning mechanism that results in a more evolvable encoding (Elman et
al. 1996a; Valsalam, Bednar, and Miikkulainen 2005).

Open-ended Neuroevolution 195

The third advantage opens up an opportunity that is particularly well aligned with open-
ended evolution. Given a domain with known structure, such as evolution of symmetric
bitstrings, evolution can be given an open-ended series of challenges in the form of dif-
ferent target bitstrings (Reisinger and Miikkulainen 2006). The population has to discover
each target by continuing evolution of the current population (initially random). The target
changes at given intervals, which has to be long enough for success to be possible. The
evolvable representation consists of linkage parameters between bit locations, biasing the
mutations that occur. Over time, evolution discovers linkages that favor symmetric strings,
which makes discovery of targets gradually faster and more likely. In other words, the
representations become more evolvable in this domain.

How can such representations be designed for more complex solutions such as neural
networks and behavior? It turns out that the idea of linkages that adapt to the domain can
be scaled up to neural networks, with an approach that is motivated by Genetic Regulatory
Networks (GRNs; Wang 2013). As was discussed in Section 4.2.1, GRN is one way in
which biology establishes an indirect encoding. Building on the operon implementation of
GRNS in Section 4.2.1, GRNs can be modeled more generally with a set of rules (Reisinger
and Miikkulainen 2007). As usual in rule-based system, each rule has an antecedent that is
matched with the current state of the system, and a consequent that determines what output,
or product, is generated. When used to construct neural networks, the products are either
hidden or output nodes. When the antecedent is matched with currently existing products
within a similarity tolerance, connections are created between nodes. The tolerance, amount
of products, and the resulting connection weights are determined by regulatory factors in
the antecedents. A simple example of this process is depicted in Figure 9.2.

The rules and the regulatory factors in them are modified through evolution in order to
construct a neural network to solve the task. Note that this is a continuous, soft process,
where a given product can gradually increase (through neutral mutations), until a tolerance
is reached. It therefore has significant potential for evolvability: A general GRN structure
is discovered where mutations often lead to viable offspring.

This process was demonstrated in Nothello, a board game similar to Othello but with a
diamond-shaped board of 36 cells and an objective of fewest pieces on the board. It offers
faster evolution with still much of the same complexity than full Othello. The networks were
evolved the serve as heuristic board evaluators for minimax search; a single-ply lookahead
was used to allow for longer evolutionary runs. In a coevolutionary setup, each candidate
was evaluated with a random sampling of other individuals in the population. Note that
coevolution provides an environment where the fitness function is constantly changing.
As discussed above, such an environment should encourage evolvable representations to
emerge. Evolvability is also directly useful because it results in discovering better game
play over time.

Indeed the GRN-based implicit encoding approach results in discovering better net-
works over time compared to e.g. standard NEAT neurovolution, as seen in Figure 9.3a.
This improvement is likely due to increased evolvability. Evolvability was measured as
the average fitness of the local mutation landscape: Each representation was mutated to
increasing extent and the performance of the offspring measured. The GRN-based implicit
encoding results in much more robust mutations, i.e. improved evolvability (Figure 9.3b).
It is also interesting to see that the network structures that results are different. Whereas

196 Chapter 9

similarity antecedent — product . K
(node) .
B
g [G,-B]—
—[H,D] # @D @OH
G —_
H
>@B
* &
e
K

genotype (a) phenotype (b)

Figure 9.2: Constructing neural networks with a GRN. GRNs, a mechanism for decod-
ing genetic representations in biology, it can also be used as an indirect encoding for neural
networks. The GRN is encoded as a set of rules. The current state is represented by prod-
ucts (indicated by letters). The antecedents are matched with the current products, leading
to generation of more products. The match is based on similarity between products, imple-
mented through regulatory factors. In mapping the GRN to a network, products create nodes
and antecedent matches connections between them. In this case, starting with products G
and B as a starting point, matching the first rule creates a negative connection from B to
itself. Because C is a similar product to B, H and D are created as hidden nodes and con-
nected to B. Matching D in turn leads to a recurrent self-connection as well as creating and
connecting to an output node K. In this manner, a recurrent structure is created; it can be
further evolved by modifying the rule set and the regulatory factors. (Figure from Reisinger
and Miikkulainen 2007)

100

95
%0 ESECEEEEEEERSS] 100 |
2 8 ﬂ ﬁﬁ H :g By P 1
S 8 2 2 \I\H]
2 75 2 gl | 0s
70 | ¥ direct encoding L .
65 1.0 " NEAT 40 implicit encoding ~——
60 I implicit encoding —— 30 NEAT, | 0 v
0 50 100 150 200 0O 5 10 15 20 25 30 35 40 45 50 implicit encoding
Generations Mutated Network Distance 205 [K NEAT
(a) Champion performance in 1-ply (b) Performance vs. offspring ARLAAAROBLABOBOGE
search distance (c) Significance of network motifs

Figure 9.3: Performance, evolvability, and structure resulting from GRN-based neu-
roevolution. The GRN-based encoding has several useful properties, as illustrated in the
Nothello game domain. (a¢) The GRN-based indirect encoding evolves better solutions
faster. (b) This result is likely due to evolvability that the system discovers over evolu-
tion, measured by how good the offspring solutions are on average. (c¢) The evolvability is
likely due to more varied networks motifs, taking advantage of recurrent structures. The
significance is measured by comparing to randomly connected networks with the same
size. This example illustrates a fundamental principle of evolvability: It emerges from the
continuously changing fitness function (due to coevolution), and makes coevolution more
effective, and can thus potentially be harnessed for open-ended discovery. (Figure from
Reisinger and Miikkulainen 2007)

Open-ended Neuroevolution 197

Parent 1

O]

a=29 a=1
b =1 b=20
if a+b>1: ifa+b>1:

return [1,..., 1] return [1,..., 11
else: else:

return [0,..., o] return [0,..., 0]

Parent 1 Parent 2

Parent 1 Parent 2

@ ® ©

Figure 9.4: Expressive encodings through GP and Neural Networks. Expressive encod-
ings make evolution more powerful by allowing for large changes. (a) For instance, the
phenotypes of these two GP parents are all zeros, but their crossover results in an offspring
of all ones with a probability of 0.25. They share most of the structure except for special
segments defining the variables a and b. (b) A similar encoding through a neural network.
The input is a constant 1, and output is all zeros; They differ in the weights of the first layer
such that a crossover results in all ones with a probability of 0.25. (¢) Direct encoding of
parents cannot lead to an all-ones offspring. These simple examples illustrates how expres-
sive encodings make such miracle jumps possible when they are not possible through direct
encoding. (Figures from Meyerson, Qiu, and Miikkulainen 2022)

the NEAT networks are entirely feedforward, the GRN-based approach takes advantage of
many different network motifs, many of which are recurrent (Figure 9.3¢). In this manner,
it likely discovers structures that support evolvability, and thereby coevolution, and thereby
open-ended discovery.

9.1.4 Expressive Encodings

The mechanims outlined above can be captured generalized and described mathematically
through the concept of expressive encodings (Meyerson, Qiu, and Miikkulainen 2022). The
idea is that such encodings allow miracle jumps, i.e. large jumps in the search space: For
instance, flipping all bits in a binary encoding from O to 1 might be such a jump. A standard
evolutionary algorithm with a direct encoding would be unlikely to make such changes, and
therefore could not explore the search space as effectively.

Expressive encodings do already exist. For instance, genetic programming utilizes such
an encoding (Figure 9.4a). Programs may share structure, but also have segments that make
large changes in the phenotype, such as conditionals. Small changes in such segments can
create miracle jumps. Neural networks is another expressive encoding (Figure 9.4b): Even
when they are not used as mappings from input to output, but simply to encode vectors of
outputs (with a constant input), small changes in a few weights can create a miracle jump.
Interestingly, such jumps may not be possible through a direct encoding (Figure 9.4c).

The usual approach to making evolutionary algorithms more powerful is to design more
complex and intelligent genetic operators that capture the properties of the domain. For
instance, estimation of distribution algorithms and covariance-matric adaptation evolu-
tionary strategies aim at capturing the statistics between gene combinations and fitness
(Larranaga and Lozano 2002; Nikolaus Hansen and Andreas Ostermeier 1996). In contrast,
expressive encodings can work with basic, simple genetic operators such as crossover and
mutation. In this sense, they capture the essence of biological expressiveness that is obtained

198 Chapter 9

through interactions and development. Theoretically, both genetic programming and feed-
forward neural networks with sigmoid activation functions are expressive encodings for
both uniform crossover and single-point mutation.

Expressive encodings have been shown more powerful than standard evolutionary
approaches in various benchmark challenges, including tasks where objectives change
over time deterministically or randomly, and in large block assembly, both theoretically
and experimentally (Meyerson, Qiu, and Miikkulainen 2022). The approach offers maxi-
mum evolvability, to the extent that there is no catastrophic forgetting when the objectives
change. It is also similar to biology in that much of the solutions are shared—more than
99% of the genes are the same across humans, for example, and much of the DNA is shared
across species (Hardison 2003; Collins, Guyer, and Chakravarti 1997). Only a few crucial
differences cause the differences between individuals and species. It is this expressivity that
the expressive encodings capture.

One particularly interesting opportunity for neuroevolution is to improve the trans-
mission function over time, i.e. the probabilistic mechanisms through which the child
phenotype is generated from the parent phenotypes. Evolution can be used to complexify
transmission functions, thus potentially powering openended evolution. With expressive
encodings and an evolving transmission function it may be possible to create a system that
starts simple, solves problems as they appear, and becomes more effective at it over time.
One remaining challenge is to enable transitions to more complex organizations, as will be
discussed next.

9.1.5 Major Transitions

In biological evolution it is possible to identify several major transitions in complexity
(Maynard Smith and Szathmary 1997; Szathmary 2015). First there were self-replicating
molecules that organized into chromosomes; then these chromosomes were enclosed into
cells; next, cells complexified to include several plastids; such cells joined together and spe-
cialized to form multicellular organisms; the organisms grouped to form eusocial societies
first, and then actual societies, eventually with language and culture. In each of these tran-
sitions, the individuals joined together into groups, specialized into distinct, cooperative
roles, and lost the ability to reproduce independently. Throughout these transitions, infor-
mation for biological organisms is still encoded at the molecular level. However, how that
information is organized, transmitted between individuals, translated into physical struc-
tures, and selected for reproduction changes at each transition. As a result, what it means
to be an individual becomes more complex at each transition.

While the transitions are described in detail in biology, the mechanisms that produce
them are not well understood. In particular, are there multiple levels of selection operating
in parallel, or only one at the highest level? How do the individuals specialize and how do
they lose their individual ability to reproduce? Do multiple phases exist at the same time
and cooperate and compete to eventually lead to a transition? Are the dynamics the same
at each transition, or is each one a separate unique process?

Computational studies could help shed light on such questions, yet it has been very hard
to emulate such transitions (Miikkulainen and Forrest 2021). The closest successes focus
on defining hierarchical mathematical functions, and organizational structures in abstract

Open-ended Neuroevolution 199

mathematical games (J. R. Koza 1992; Turney 2020; Watson and Pollack 2003). How-
ever, they are still far from major transitions in behavior. For instance, the agents might
discover ways to communicate, or to construct permanent artifacts such as roads. Further
evolution might then discover behaviors that take advantage of these constructs: The agents
might communicate to establish flexible roles and coordinate their behavior; they may move
longer distances and harness more resources. More generally, neuroevolution might con-
struct network segments that perform useful subfunctions, then group them together to
construct more complex behaviors, and multiple behaviors at different times (i.e. general
intelligence). Such specialization and grouping could potentially continue for several levels.

Ingredients for such transitions have already been demonstrated in several ways. For
instance, it is possible to predesign the representations at different levels by hand—-for
instance, a syllabus for evolved virtual creatures allows discovering body and brains for
simple locomotion first and build up to fight-or-flight in multiple steps (Daniel Lessin, Don-
ald Fussell, and Miikkulainen 2013). Similarly, mechanisms can be created for discovering
cooperative structures that work together at a higher level—for instance in CoDeepNEAT
method, neural network modules are evolved to work together well in a large composite net-
work (Miikkulainen, Liang, et al. 2023; J. Liang et al. 2019). Also, competitive process can
be established that allow new challenges to emerge—such as the arms race of better runners
and more challenging tracks in POET, or more complex prey behaviors and better predators
in zebra/hyena simulations (R. Wang et al. 2019b; Rawal, Rajagopalan, and Miikkulainen
2010). Multiple agents can communicate through stigmergy, through observing each other,
and through signaling, and thus coordinate their behavior—for example in capturing a
prey or a desirable resource in a video game (Yong and Miikkulainen 2010; Werner and
Dyer 1992; Bryant and Miikkulainen 2018; Rawal, Rajagopalan, and Miikkulainen 2010).
Architectures and approaches have been developed for representing and executing multi-
ple tasks in a uniform manner—for example through a common variable embedding space
(Meyerson and Miikkulainen 2021).

In sum, mechanisms of cooperative and competitive coevolution, multitasking, mul-
tiobjectivity, evolvability, and expressive encodings are potentially useful ingredients in
producing major transitions. However, they do not yet drive actual transitions. How such
transitions can be established is an important challenge for neuroevolution—one that would
also have a large impact on our understanding of biology.

9.1.6 Openended Evolution of Intelligence
Many of the possible ingredients for openended neuroevolution do already exist. The
recently available computational power could be harnessed to set up evolutionary pro-
cesses that harness large populations, weak selection, neutral mutations, and deep time.
While many of the current indirect genotype-to-phenotype mappings still focus on a single
task, the emerging theoretical understanding of expressive encodings could lead to map-
pings that allow searching indefinitely for more complex solutions as the environments and
tasks change. Such mechanisms could be harnessed to establish evolutionary innovation
that operates continuously.

However, openended innovation also requires that the environment presents the evolu-
tionary system continually with new challenges. The environments themselves can change
and evolve, or it may be possible to create multiple competing species in the environment,

200 Chapter 9

thus establishing an evolutionary arms race. While current multiagent and multipopulation
systems still largely focus on solving a single task, evolution in such domains has already
been shown to lead to specialization and discovery of cooperation, which could lead to
major transitions. Multitask and multiobjective evolution is already known to result in more
robust solutions, and in such environments could lead to progressive development of gen-
eral intelligence. Perhaps most promising avenue is to have the agents themselves modify
the environment, building artifacts and complexity into it that persists (Lehman et al. 2022).
In this manner, the environment and the agents in it can complexify indefinitely.

What goals might such experiments be set to achieve? An important one is a better
understanding of biological evolution, i.e. the origins of major transitions and intelligence.
Another one is to construct better artificial systems, i.e. systems that can be deployed in
natural environments and social environments where they adapt to existing challenges and
changes to them indefinitely—much like people do. Such ability is one essential ingredient
in artificial general intelligence.

To make these ideas concrete, the next two subsections review two concrete experiments
on changing environments. In the first one, the body of the agent is co-evolved with the
brain in a cooperative manner. In the second, the environment is coevolved to provide more
difficult challenges in a competitive manner.

9.2 Cooperative Coevolution of Body and Brain

In Section 3.2, we explored the simple idea of evolving the weights of a neural network
to control a bipedal walker, and showed how to use evolution algorithms in the context of
neural networks to learn a set of weights that can allow a neural network with such weights
to perform a given task. If such a network is an agent operating in an environment, we
have so been evolving a policy to manipulate an agent, whose design is fixed, to maximize
some notion of cumulative reward. The design of the agent’s physical structure is rarely
optimized for the task at hand. Unlike gradient-based methods, evolution algorithms are
more flexible and thus can optimize parameters beyond the weights of a neural network
agent. In principle, we can even optimize parameters governing the agent as well. Why
constraint ourselves to weights, when we can also optimize other important design choices
governing our agents?

In this section, we explore the possibility of learning a version of the agent’s design that
is better suited for its task, jointly with the policy. We look at a minor modification to the
environment, where we parameterize parts of an environment, and allow an agent to jointly
learn to modify these environment parameters along with its policy. We show that an agent
can learn a better structure of its body that is not only better suited for the task, but also
facilitates policy learning. Joint learning of policy and structure may even uncover design
principles that are useful for assisted-design applications.

In addition to the weight parameters of our agent’s policy network, the agent’s environ-
ment is also parameterized, which includes the specification of the agent’s body structure.
This extra parameter vector, which may govern the properties of items such as width, length,
radius, mass, and orientation of an agent’s body parts and their joints, will also be treated
as a learnable parameter. Hence the weights w we need to learn will be the parameters of

	Foreword
	Website
	Preface
	Acknowledgments
	1 Introduction
	1.1 Evolving neural networks
	1.2 Extending creative AI
	1.3 Improving the world
	1.4 Plan for the book
	1.5 Hands-on Exercises for the Book
	1.6 Chapter Review Questions

	2 The Basics
	2.1 Evolutionary Algorithms
	2.1.1 Simple Genetic Algorithm
	2.1.2 Simple Evolution Strategy
	2.1.3 Covariance-Matrix Adaptation Evolution Strategy (CMA-ES)
	2.1.4 Natural Evolution Strategies
	2.1.5 OpenAI ES
	2.1.6 Fitness Shaping
	2.1.7 Try these algorithms yourself

	2.2 Neural Networks
	2.2.1 Feedforward Neural Networks (FNNs)
	2.2.2 Recurrent Neural Networks (RNNs)
	2.2.3 Long Short-Term Memory Networks (LSTMs)
	2.2.4 Convolutional Neural Networks (CNNs)
	2.2.5 Transformers

	2.3 Conclusion and End-of-Chapter Questions
	2.4 Chapter Review Questions

	3 The Fundamentals of Neuroevolution
	3.1 Evolution Strategies for Reinforcement Learning
	3.2 Evolving Robust Policies for Bipedal Walker
	3.3 Evolving Convolutional Neural Networks
	3.4 Topology and Weight Evolving Networks: The NEAT Method
	3.5 Neuroevolution vs. deep learning
	3.6 Chapter Review Questions

	4 Indirect encodings
	4.1 Why indirect encodings?
	4.2 Developmental processes
	4.2.1 Cell-Chemistry Approaches
	4.2.2 Grammatical Encodings
	4.2.3 Learning approaches

	4.3 Indirect encoding through hypernetworks
	4.3.1 Compositional Pattern Producing Networks
	4.3.2 Case Study: Evolving Virtual Creatures with CPPN-NEAT
	4.3.3 Hypercube-based NEAT (HyperNEAT)
	4.3.4 Evolvable Substrate HyperNEAT
	4.3.5 General Hypernetworks and Dynamic Indirect Encodings

	4.4 Self-attention as dynamic indirect encoding
	4.4.1 Background on Self-Attention
	4.4.2 Self-Attention as a Form of Indirect Encoding
	4.4.3 Self-attention Based Agents

	4.5 Chapter Review Questions

	5 Searching for / utilizing diversity
	5.1 Genetic diversity
	5.2 Behavioral diversity
	5.3 Novelty Search
	5.4 Quality Diversity Methods
	5.4.1 Novelty Search with Local Competition
	5.4.2 MAP-Elites
	5.4.3 Nuts and Bolts of QD Implementation

	5.5 Multiobjectivity
	5.6 Ensembling
	5.7 Utilizing population culture and history
	5.8 Chapter Review Questions

	6 Neuroevolution of Behavior
	6.1 From control to strategy
	6.1.1 Successes and challenges
	6.1.2 Discovering robust control
	6.1.3 Transfer to physical robots
	6.1.4 Discovering flexible strategies
	6.1.5 Evolving cognitive behaviors
	6.1.6 Utilizing stochasticity, coevolution, and scale

	6.2 Decision making
	6.2.1 Successes and challenges
	6.2.2 Surrogate modeling
	6.2.3 Case study: Mitigating climate change through optimized land use
	6.2.4 Case study: Optimizing NPIs for COVID-19
	6.2.5 Leveraging human expertise

	6.3 Chapter Review Questions

	7 Neuroevolution of Collective Systems
	7.1 Cooperative Coevolution
	7.1.1 Evolving a single neural network
	7.1.2 Evolving a team

	7.2 Competitive coevolution
	7.2.1 Evolving single neural networks
	7.2.2 Evolving multiple teams

	7.3 Cellular Automata
	7.3.1 Evolving Neural Cellular Automata
	7.3.2 Growing functional machines
	7.3.3 Case study: Evolving Video Game Levels with NCAs and QD
	7.3.4 Neural Developmental Programs
	7.3.5 Synergistic Combinations of Neuroevolution and Differentiable Programming

	7.4 Chapter Review Questions

	8 Interactive Neuroevolution
	8.1 The NERO Machine Learning Game
	8.2 Incorporating human knowledge
	8.3 Collaborative Neuroevolution
	8.3.1 Evolving Game Content

	8.4 Making Human Contributions Practical
	8.5 Chapter Review Questions

	9 Open-ended Neuroevolution
	9.1 Openended Discovery of Complex Behavior
	9.1.1 Neutral mutations with weak selection
	9.1.2 Extinction events
	9.1.3 Evolvable representations
	9.1.4 Expressive Encodings
	9.1.5 Major Transitions
	9.1.6 Openended Evolution of Intelligence

	9.2 Cooperative coevolution of body and brain
	9.3 Competitive coevolution of environments and solutions
	9.3.1 The Influence of Environments
	9.3.2 Co-Evolving Agents and Their Environments
	9.3.2.1 Paired Open-Ended Trailblazer (POET)
	9.3.2.2 Learning to Chase-and-Escape

	9.4 Chapter Review Questions

	10 Evolutionary Neural Architecture Search
	10.1 Neural Architecture Search with NEAT
	10.2 NAS for Deep Learning
	10.3 Example NAS successes
	10.3.1 LSTM Designs
	10.3.2 CoDeepNEAT
	10.3.3 AmoebaNet

	10.4 Multiobjective and multitask NAS
	10.5 Making NAS practical
	10.6 Beyond Neural Architecture Search
	10.7 Chapter Review Questions

	11 Optimization of Neural Network Designs
	11.1 Designing complex systems
	11.2 Bilevel neuroevolution
	11.3 Evolutionary Metalearning
	11.3.1 Loss functions
	11.3.2 Activation functions
	11.3.3 Data use and augmentation
	11.3.4 Learning methods
	11.3.5 Utilizing surrogates
	11.3.6 Synergies

	11.4 Neuroevolution of neuromorphic systems
	11.4.1 Neuromorphic computation
	11.4.2 Evolutionary optimization
	11.4.3 Examples
	11.4.4 Future directions

	11.5 Chapter Review Questions

	12 Synergies with Reinforcement Learning
	12.1 RL vs. NE
	12.2 Synergistic Combinations
	12.2.1 Evolutionary Reinforcement Learning
	12.2.2 Evolving Value Networks for RL
	12.2.3 Evolutionary Meta-Learning

	12.3 Evolving Neural Networks to Reinforcement Learn
	12.3.1 Evolving Hebbian Learning Rules
	12.3.2 Learning when to learn through neuromodulation
	12.3.3 Indirectly encoded plasticity
	12.3.4 Learning to continually learn through networks with external memory
	12.3.5 Exercises

	12.4 Scaling Up
	12.4.1 Exercise on Scaling up NE

	12.5 Chapter Review Questions

	13 Synergies with Generative AI
	13.1 Background on Large Language Models
	13.2 Evolutionary Computing Helps Improve LLMs
	13.2.1 Evolutionary Prompt Engineering/Adaptation
	13.2.2 Evolutionary Model Merging

	13.3 LLMs Enhances Evolutionary Computing
	13.3.1 Evolution through Large Models
	13.3.2 LLM As Evolution Strategies

	13.4 World Models
	13.4.1 A Simple World Model for Agents
	13.4.2 Using the World Model for Feature Extraction
	13.4.3 Training an Agent using the World Model as a Neural Simulator of Reality

	13.5 Chapter Review Questions

	14 What Neuroevolution Can Tell Us About Biological Evolution?
	14.1 Understanding neural structure
	14.2 Evolutionary Origins of Modularity
	14.3 Understanding Neuromodulation
	14.4 Developmental processes
	14.4.1 Synergetic development
	14.4.2 Development through genetically directed learning

	14.5 Constrained evolution of behavior
	14.6 Understanding evolutionary breakthroughs
	14.7 Evolution of Language
	14.7.1 Biology of language
	14.7.2 Evolving Communication
	14.7.3 Evolution of Structured Language

	14.8 Chapter Review Questions

	Notes
	References
	Index

