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thus establishing an evolutionary arms race. While current multiagent and multipopulation
systems still largely focus on solving a single task, evolution in such domains has already
been shown to lead to specialization and discovery of cooperation, which could lead to
major transitions. Multitask and multiobjective evolution is already known to result in more
robust solutions, and in such environments could lead to progressive development of gen-
eral intelligence. Perhaps most promising avenue is to have the agents themselves modify
the environment, building artifacts and complexity into it that persists (Lehman et al. 2022).
In this manner, the environment and the agents in it can complexify indefinitely.

What goals might such experiments be set to achieve? An important one is a better
understanding of biological evolution, i.e. the origins of major transitions and intelligence.
Another one is to construct better artificial systems, i.e. systems that can be deployed in
natural environments and social environments where they adapt to existing challenges and
changes to them indefinitely–much like people do. Such ability is one essential ingredient
in artificial general intelligence.

To make these ideas concrete, the next two subsections review two concrete experiments
on changing environments. In the first one, the body of the agent is co-evolved with the
brain in a cooperative manner. In the second, the environment is coevolved to provide more
difficult challenges in a competitive manner.

9.2 Cooperative Coevolution of Body and Brain

In Section 3.2, we explored the simple idea of evolving the weights of a neural network
to control a bipedal walker, and showed how to use evolution algorithms in the context of
neural networks to learn a set of weights that can allow a neural network with such weights
to perform a given task. If such a network is an agent operating in an environment, we
have so been evolving a policy to manipulate an agent, whose design is fixed, to maximize
some notion of cumulative reward. The design of the agent’s physical structure is rarely
optimized for the task at hand. Unlike gradient-based methods, evolution algorithms are
more flexible and thus can optimize parameters beyond the weights of a neural network
agent. In principle, we can even optimize parameters governing the agent as well. Why
constraint ourselves to weights, when we can also optimize other important design choices
governing our agents?

In this section, we explore the possibility of learning a version of the agent’s design that
is better suited for its task, jointly with the policy. We look at a minor modification to the
environment, where we parameterize parts of an environment, and allow an agent to jointly
learn to modify these environment parameters along with its policy. We show that an agent
can learn a better structure of its body that is not only better suited for the task, but also
facilitates policy learning. Joint learning of policy and structure may even uncover design
principles that are useful for assisted-design applications.

In addition to the weight parameters of our agent’s policy network, the agent’s environ-
ment is also parameterized, which includes the specification of the agent’s body structure.
This extra parameter vector, whichmay govern the properties of items such as width, length,
radius, mass, and orientation of an agent’s body parts and their joints, will also be treated
as a learnable parameter. Hence the weights w we need to learn will be the parameters of
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the agent’s policy network combined with the environment’s parameterization vector. Dur-
ing a rollout, an agent initialized with w will be deployed in an environment that is also
parameterized with the same parameter vector w.

def rollout(agent, env):
  obs = env.reset()
  done = False
  cumulative_reward = 0
  while not done:
    a = agent.action(obs)
    obs, r, done = env.step(a)
    cumulative_reward += r
  return cumulative_reward

def rollout(agent, env_params, env):
  env.augment(env_params)
  obs = env.reset()
  done = False
  cumulative_reward = 0
  while not done:
    a = agent.action(obs)
    obs, r, done = env.step(a)
    r = augment_reward(r, env_params)
    cumulative_reward += r
  return cumulative_reward

Figure 9.5: Gym framework for rolling out an agent in an environment (left; (Brockman
et al. 2016)). We propose an alteration where we parameterize parts of an environment,
and allow an agent to modify its environment before a rollout, and also augment its reward
based on these parameters (right).

The goal is to learn w to maximize the expected cumulative reward, E[R(w)], of an agent
acting on a policy with parameters w in an environment governed by the same w. In our
approach, we search for w using PGPE discussed earlier.

Armed with the ability to change the design configuration of an agent’s own body, we
also wish to encourage the agent to challenge itself by rewarding it for trying more difficult
designs. For instance, carrying the same payload using smaller legs may result in a higher
reward than using larger legs. Hence the reward given to the agent may also be augmented
according to its parameterized environment vector.

Figure 9.6: Examples of evolved morphology. Biped + Morphology (top) develops a
thicker but short rear lower limb for the easy flat ground version of the environment. Biped
Hardcore + Morphology (bottom) develops a larger rear leg. Here, its thigh is larger than
the lower limb.

Learning a better version of an agent’s body not only helps achieve better performance,
but also enables the agent to jointly learn policies more efficiently. In this environment,
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the agent generally learns to develop longer, thinner legs, with the exception in the rear leg
where it developed a thicker lower limb to serve as a useful stability function for navigation.
Its front legs, which are smaller and more maneuverable, also act as a sensor for dangerous
obstacles ahead that complement its LIDAR sensors. While learning to develop this newer
structure, it jointly learns a policy to solve the task in 30% of the time it took the original,
static version of the environment.

Allowing an agent to learn a better version of its body obviously enables it to achieve
better performance. But what if we want to give back some of the additional performance
gains, and also optimize also for desirable design properties that might not generally be
beneficial for performance? For instance, we may want our agent to learn a design that
utilizes the least amount of materials while still achieving satisfactory performance on the
task. Here, we reward an agent for developing legs that are smaller in area, and augment its
reward signal during training by scaling the rewards by a utility factor of 1 + log( orig leg area

new leg area ).
This encourages development of smaller legs.

When rewarded for small leg size, the agent learned a lean minimal design where every
inch matters. It also learned movements that appear more insect-like. Here, the agent learns
the smallest pair of legs that still can solve BipedalWalkerHardcore-v2 (Figure 9.7).

Figure 9.7: Agent rewarded for smaller legs for the easier flat version of the task (top). Agent
learns the smallest pair of legs that still can solve BipedalWalkerHardcore (bottom).

Figure 9.8: If we remove all design constraints, the optimizer came up with a really tall
bipedal walker robot that “solves” the task by simply falling over and landing near the exit!
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Wedemonstratedmore interesting, life-like results, whenwe added additional constraints
such as also optimizing for lighter and smaller agent legs. What if we do the opposite
and remove these constraints altogether? Without any design constraints, it develops an
extremely tall bipedal walker agent that “solves” the task by simply falling over and land-
ing at the exit (Figure 9.8). In this manner, body-brain coevolution provides an avenue for
openended discovery of better solutions. As the agent gets better at controlling the body,
it can become more efficient. An alternative is to coevolve the task with the brain: as the
agent gets better, it faces more difficult challenges in an open-ended manner. This is the
topic of the next section.

9.3 Competitive Coevolution of Environments and Solutions

9.3.1 The Influence of Environments
Our thought processes and behaviors are significantly influenced by the specific time and
place we inhabit on earth. These elements are shaped by distinct circumstances, cultural
understandings, prevailing beliefs, and local customs. Together, they create a framework
that both defines and restricts our experiences and the patterns of our thoughts Ryan Rug-
giero 2012. Take the concept of individualism versus collectivism for example, which varies
widely across cultures. In many Western societies, such as the United States, there’s a
strong focus on individual achievement and independence. This cultural context fosters
a thought pattern that emphasizes personal goals and self-reliance. In contrast, many East-
ern societies, like Japan, emphasize collectivism, where the focus is on group harmony and
community. In such cultures, thought patterns and behaviors are more aligned with group
goals and the collective well-being. Inhabiting a different era or being part of a distinct
culture would fundamentally transform who we are, reshaping our identity in profound
ways.

This principle that humans are shaped by their environments applies similarly to AI
and ML systems. For example, large language models (LLMs) such as BERT, GPT-4, and
Llama2 are deeply influenced by their training data. If trained on scientific literature, the
model will excel in technical explanations, whereas training on conversational texts results
in more colloquial responses. This extends to the biases and perspectives inherent in the
data. Similarly, in image generation, diffusion models produce different outputs based on
their training datasets: models trained on classical art will generate different images than
those trained onmodern digital art. In the realm of reinforcement learning (RL), the training
environment crucially defines an agent’s skills. For instance, an agent trained in a simulated
urban setting will develop different capabilities and strategies compared to one trained in a
virtual natural landscape.

Just as human experiences are shaped by our environments and cultures, AI and ML
agents are similarly molded by their training contexts and data environments. The quality
and diversity of their training inputs are crucial, emphasizing the importance of co-evolving
AI systems with their environments to enhance their capabilities, behaviors, and ethical
alignment. This approach mirrors human development and extends it into the digital realm.
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9.3.2 Co-Evolving Agents and Their Environments
In exploring the co-evolution of agents and their environments, it is pivotal to differentiate
between static and dynamic environmental settings. Static environments, such as the terrain
a bipedal walker traverses, provide consistent, unchanging challenges that evolve gradually
with the agent’s abilities. This approach is highlighted in our first example below, where the
walking skill of a bipedal robot is simultaneously evolved with the complexity of the terrain
it must navigate. Conversely, dynamic environments involve interactions with changing ele-
ments within the system, exemplified by our second example where a quadrupedal robot’s
locomotion controller evolves in response to the locomotion skills of a dynamically adapt-
ing opponent. These examples illustrate how AI development benefits from environments
that not only challenge but evolve in response to the AI.

9.3.2.1 Paired Open-Ended Trailblazer (POET)
POET R. Wang et al. 2019a is an algorithm designed to simulate an ongoing, open-ended
process of discovery within a single run, by co-evolving environments and their respective
agents. It begins with an initial simple environment, such as a flat-ground obstacle course,
paired with a randomly initialized neural network agent. Throughout its operation, POET
executes three core tasks within its main loop:

• Environment Generation POET generates new environments by mutating the parame-
ters of existing ones. The parameters of the environment includes (1) stump height, (2)
gap width, (3) stair height, (4) number of stairs, and (5) surface roughness. This process
is selective, adding new environments to the active population only if they provide a suit-
able challenge and introduce novelty. For example, in their paper a minimum criterion
(MC) of Smin < Echild(θ child) < Smax, where Smin and Smax are pre-defined scores thresh-
olds, is used to filter out child environments that appear too challenging or too trivial, yet
fostering a diverse range of challenges.

• Agent Optimization Each agent is continuously optimized within its environment using
evolutionary strategies, though other reinforcement learning methods could also apply.
The objective is to maximize performance metrics relevant to each environment, such
as traversing an obstacle course efficiently. This optimization happens independently for
each pair, which facilitates parallel processing and enhances computational efficiency.

• Agent Transfer To foster cross-environment adaptation, POET attempts to transfer
agents between different environments. This strategy can help agents escape local optima
by applying successful strategies from one context to another. For example, an agent per-
forming well in a mountainous terrain might offer insights when transferred to a rocky
terrain, potentially leading to breakthroughs in performance.

POETmaintains a controlled number of environment-agent pairs in its active list, capped
at a maximum size to manage computational resources. Environments that become obso-
lete or overly familiar are phased out to make room for new ones, ensuring the population
remains dynamic and conducive to continuous learning.

Results

POET operates on the hypothesis that solutions to complex challenges are more likely to
be found through a divergent, open-ended process rather than direct optimization. This is
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illustrated by the fact that when directly optimizing agents using ES in environments created
by POET, the agents often prematurely converge to suboptimal behaviors.

Experiments conducted by POET using different types of obstacles (such as gaps, rough
terrain, and stumps) reveal that challenges generated and solved by POET are far too
difficult for ES when tackled directly, see Figures 9.9 and 9.10. For example, agents opti-
mized by ES in these environments tend to stop and avoid moving further to prevent
penalties rather than learning to navigate obstacles effectively. This behavior contrasts
starkly with the capabilities developed by agents under POET, which successfully navigate
these complex environments. Additional results highlight that POET not only engineers
these challenging environments but also devises innovative solutions that ES alone cannot
achieve. This includes agents developed by POET that can navigate wide gaps and rugged
terrains which ES agents fail to handle. In simpler environments also created by POET, ES
consistently underperforms, unable to match the high standards set by POET’s adaptive and
dynamic approach.

From these results, it is evident that POET exemplifies the principle of co-evolution
between agents and their environments. As an automatic curriculum builder, POET con-
tinuously creates new challenges that are optimally balanced, neither too easy nor too
hard, effectively teaching agents how to tackle increasingly complex problems. This co-
evolutionary process fosters an environment where skills developed in one context are not
only honed but also become transferable, aiding agents in solving new and more complex
challenges.

9.3.2.2 Learning to Chase-and-Escape
Learning to chase and escape Tang, Tan, and Harada 2020 provides an illustrative example
of co-evolution in a dynamic environment. In this study, both the chaser and the escapee are
robots that co-evolve: as the chasing robot develops increasingly sophisticated tactics, the
robot being chased concurrently refines its skills to evade capture. This dynamic interaction
exemplifies how both agents adaptively improve their strategies in response to each other’s
evolving capabilities.

There are two robots in the paper’s settings, where the chaser is a quadrupedal robot that
needs to learn low-level joint commands (i.e., desired joint angles), and the escapee is a dot
robot that learns swift commands (i.e., desired velocities and directions). The escapee is
said to be caught if the distance between the two robots is less than a predefined threshold
dmin. The two robots are trained in an iterative fashion:

• Learning to Chase In each iteration, the chaser robot plays against an opponent that is
randomly sampled from an adversary poolΠa. The pool initially only contains an escapee
robot that stays still, this gives the chaser robot to learn basic locomotion skills in early
stages.

• Learning to EscapeAfter the chaser robot’s control policy is evolved, an opponent robot
plays against the upgraded version of the chaser. The escapee robot has no memory of the
skills it previous learned, and will devote all its energy and capacity in learning new skills
that discovers and exploits the weakness of the chaser robot’s locomotion capability.
After learning, this escapee robot’s policy is added to Πa.
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(a) Generated agents attempting gaps

(b) Generated agents on rough surfaces (c) Generated agents attempting stumps

Figure 9.9: POET generates complex environments and effective agent solutions unachiev-
able through standard ES. As depicted, agents optimized directly by ES (top row of panel
(a) and left panels of (b) and (c)) tend to develop suboptimal behaviors, often quitting
prematurely. In contrast, POET not only engineers these demanding scenarios but also suc-
cessfully trains agents that adeptly navigate through them, as demonstrated in the bottom
row of panel (a) and the right panels of (b) and (c)). Figure from (R. Wang et al. 2019a).

• Encouraging Behavioral Diversity While having the adversary pool Πa encourages
the chaser robot to play against various escapees and helps fight catastrophic forgetting,
the diversity in the escapee robots’ escaping maneuvers is also critical. To achieve this,
the authors sampled different dmin when training the escapee robots. Intuitively, a small
distance threshold allows the escapee to stay close to the chaser, and develop sudden
quick movements to dodge, while larger values would encourage the escapee to use large
circular trajectories to stay away from the chaser.

This iterative co-evolution between the chaser and escapee robots is critical in develop-
ing their agility and robustness. Each cycle of adaptation not only hones their individual
strategies but also contributes to a richer, more responsive interaction between them. By
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Figure 9.10: Agents demonstrate advanced navigation abilities in complex scenarios engi-
neered by POET. Notable challenges include (Left) navigating exceptionally large steps and
(Middle) mastering a rough terrain course featuring a mix of narrow and wide gaps, along-
side stumps of varying heights. In addition, ES alone fails to match POET’s performance
in various settings. (Right) A dotted line at a score of 230 indicates the success threshold.
The plots clearly show that ES consistently falls short of meeting the challenges effectively
addressed by POET. Figure from (R. Wang et al. 2019a).

continuously evolving both agents and the dynamics of their environment, the study show-
cases how the complexity and effectiveness of autonomous systems can be significantly
enhanced.

Results

After training, the quadrupedal chaser robot develops a symmetric gait that alternates
between its forelimbs and hind limbs, mimicking the bounding gait commonly seen in
quadruped animals at high speeds. To execute sharp turns, it extends the stance phase of one
forelimb, using it as a pivot to rapidly rotate its body and change direction. Additionally,
the escapee robot demonstrates sophisticated maneuvers, such as sprinting at full speed,
circling to confuse the chaser, and employing sudden lateral dodges to cause the chaser to
overshoot. For visual examples of these dynamic interactions, refer to Figure 9.11, which
illustrates the trajectories of both the chaser and escapee robots.

Figure 9.11: Sample episodes of chase and escape. The quadruped robot is the chaser and
the red dot-bot is the escapee; the blue and red lines are their trajectories. In the experi-
ments, some adversarial agents learned advanced escaping maneuvers such as induce the
quadruped robot to come close, dodge and halt so that the quadruped robot runs past them.
(Figures from Tang, Tan, and Harada 2020)
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To illustrate the advantages of co-evolutionarymethods over static training environments,
three inductive bias-driven baseline methods are presented and depicted in the top row of
Figure 9.12: (1) Cone Configuration where a target position is randomly selected within
a fan-shaped area directly ahead of the chaser robot, simulating a forward-focused pur-
suit, denoted as πcone. (2) Circular Configuration where the target is randomly placed
anywhere within a complete circular area surrounding the chaser, promoting omnidirec-
tional movement, denoted as πcircle. (3) Zigzag Configurationwhere targets are alternately
placed to the left and right directly in front of the chaser, encouraging it to adopt a zigzag-
ging movement pattern, denoted as πzigzag. Additionally, to underscore the importance of
diversity in training, a scenario in which the chaser robot plays against a single evolved
opponent is included for comparison, denoted as πsingle.

These configurations are employed to benchmark the performance of traditional methods
against those that dynamically co-evolve the training environment alongside the agent. The
bottom row of Figure 9.12 illustrates the trajectories of all chaser policies as they attempt
to intercept a target moving along a sine-shaped route. In the first two cases, the co-evolved
policy successfully intercepts the target even before it reaches the first turn. In contrast, the
policies trained with the baseline configurations either fall behind or require more time to
catch up. When the target maneuvers through turns (as shown in the last two plots), the co-
evolved policy adeptly follows the trajectory and captures the target, whereas the baseline
policies struggle, often losing balance or needing to slow down significantly to manage the
turn. This stark contrast highlights that the co-evolution of the agent and the environment is
crucial for achieving superior performance, as it allows the agent to adapt more effectively
to complex and dynamic challenges.

9.4 Chapter Review Questions

1. Key Ingredients: What are the five elements of biological open-endedness that could
potentially inspire open-ended neuroevolution, and how do they support continuous
innovation?

2. Neutral Mutations: Why are neutrality and weak selection crucial for maintaining
diversity in large populations, and how does such processes differ from traditional
approaches in evolutionary computation?

3. Role of Extinctions:How can extinction events accelerate evolution and increase evolv-
ability in computational experiments? Provide an example e.g. from the bipedal walker
domain.

4. Long-Term Effects: Describe how repeated extinction events can lead to populations
that are more evolvable and capable of filling niches more effectively.

5. GRNs and Evolvability:How do Genetic Regulatory Networks (GRNs) provide a sub-
strate for evolvability, and what advantages do they offer compared to direct encodings
in tasks like Nothello?

6. Indirect Encodings: Explain the role of indirect encodings in enhancing evolvability.
How do GRNs contribute to the discovery of robust and diverse neural network motifs?

7. Miracle Jumps:What are ”miracle jumps,” and why are expressive encodings (e.g., GP
or neural networks) more effective than direct encodings in achieving such jumps?
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Figure 9.12:Comparisonwith baselinemethods. (Top) Three configuration of initial posi-
tions for a static adversary. (Bottom) Trajectories of the methods when the chaser robot tries
to catch an escapee robot that moves along a sine-wave shaped route. A cross at the end of
a trajectory indicates that the chaser has fallen or the target has escaped. A dot at the end
means successfully catching the target at that position. Short trajectories ending with dots
indicate the chaser catches the target early. The chaser trained with dynamic adversaries
(blue trajectory) is able to catch the target much earlier than other baseline policies, includ-
ing the policy that plays against a single opponent (πsingle). Figure from (Tang, Tan, and
Harada 2020).

8. Comparative Power: Compare the benefits of expressive encodings with traditional
evolutionary algorithms for solving problems with dynamically changing objectives.

9. Body-BrainCoevolution:How does coevolving an agent’s body and brain lead to better
solutions, and what principles can it reveal about designing efficient and specialized
morphologies?

10. Environment-Agent Coevolution: Describe the core mechanisms of the POET algo-
rithm for coevolving agents and environments. How does it differ from static training
environments, and why is this approach effective for solving complex challenges?
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