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Foreword

Melanie Mitchell





Website

https://neuroevolutionbook.com/

We created the above website to accompanying this book, which provides many additional
supplementarymaterial that we hope will be useful to readers and instructors. These include
demos, tutorials, exercises, and lecture slides. This website will also be the place we list
corrections of mistakes found in the book.

https://neuroevolutionbook.com/




Preface

Artificial intelligence has surged into mainstream popularity, with generative AI technolo-
gies such as large language models (LLMs) capturing the public’s imagination. Conver-
sations about AI’s potential and power are everywhere, as these models compose text,
generate images, and mimic human language at an unprecedented scale. Amid this boom,
however, lies another field with equally transformative potential: neuroevolution. The field
of neuroevolution has develop unique approaches and capabilities that have yet to capture
the same level of mainstream attention.

Neuroevolution, combining principles of neural networks with evolutionary processes,
has been around for decades. It offers solutions that go beyond imitation and pattern recog-
nition, extending into areas of adaptability, creativity, and resilience. While traditional AI
often relies on predefined objectives and vast datasets, neuroevolution excels in environ-
ments where goals are ambiguous, rewards are sparse, and conditions are ever-changing.
This approach introduces a method of designing and evolving AI systems that can handle
complex, high-dimensional problems with minimal human intervention, and it’s precisely
this adaptability that is set to bring neuroevolution to the forefront of AI in the coming
years.

As AI advances into realms requiring flexibility and open-ended problem-solving, neu-
roevolution has sown great promise in evolving robust, adaptive, and creative solutions. It
is particularly promising for applications where the optimal solution is unknown or hard to
define, such as robotics, dynamic systems, and even art and design. With neuroevolution,
we can create agents that not only evolve but also continiously learn during their lifetime,
much like biological organisms do in nature.

This book serves as a gateway into the world of neuroevolution, providing readers with
both a foundational understanding and practical tools for harnessing its potential. It covers
the core concepts, algorithms, and applications of neuroevolutionary systems, with each
chapter containing examples and questions that encourage readers to critically engage with
the material. By offering insights into synergies with generative AI, reinforcement learning,
and other domains, we hope to demonstrate the relevance of neuroevolution to the future
of AI.
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