Evolutionary Neural Architecture Search

Risto Miikkulainen

October 28, 2024

Motivation for Neural Architecture Search (NAS)

- \blacktriangleright Much of the power of neural networks comes from scaleup: 10^6-10^{12} parameters.
- ▶ Many variants of architectures have been proposed.
- ▶ A new problem: How do you configure such systems?

Overview of Evolutionary NAS

- ▶ Evolution can be used to automate neural network architecture design.
- ▶ These architectures are then trained with gradient descent.
- ▶ Aim: Discover architectures that surpass hand-designed ones.

Configuring Complex Systems

A new general approach to engineering

- ► Humans design just the framework
- ► Machines optimize the details

Programming by optimization³⁰

E.g. Optimizing NE in Helicopter Hovering

- ► A challenging benchmark
 - ► RL, NE solutions exist
- ► Eight parameters optimized by hand²⁴
 - ► Hard for a human designer to do more
- ► With EA, increased to 15
 - ► →Significantly better performance 33

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

Configuring Deep Learning with Evolution

- (A) Fundamental: Neural Architecture Search
- Optimizing structure and hyperparameters
- Takes advantage of exploration in EC
- (B) Extended: Data and training
- Loss functions, activation functions, data augmentation, initialization, learning algorithm
- · Takes advantage of flexibility of EC

Evolutionary NAS

Evolution is a natural fit:

- Population-based search covers the space
- Crossover between structures discovers principles

Moreover.

- Can build on Neuroevolution work since the 1990s: partial solutions, complexification, indirect encoding, novelty search
- Applies to continuous values; discrete choices; graph structures; combinations
 Can evolve hyperparameters; nodes; modules; topologies; multiple tasks

A Simple Example: NAS with NEAT

- NEAT evolves topology; backpropagation optimizes weights.
- ► Multiple activation functions:
 - Enhances diversity
 - Allows more varied computation patterns.

input	output	bias
sigmoid	tanh	
gaussian	sine	
mult	add	square

Initial Population in Backprop NEAT

- Experiment: Classify data into two categories.
- ▶ Initial networks implement logistic regression with random weights.
- ▶ Backpropagation optimizes the network on this graph for better fit.
- ▶ Simple architectures are effective for initial dataset classification.

Fitness Evaluation in Backprop NEAT

- Fitness combines classification performance with network simplicity.
- ▶ Motivation: Networks with fewer connections often generalize better.

Feature Discovery in NEAT: XOR

- ▶ NEAT automatically finds useful features (e.g., abs, ReLU).
- ▶ Different datasets require unique features for optimized classification.
- ▶ Networks evolve to fit training data even in non-linearly separable cases.

Feature Discovery in NEAT: Circles

- ▶ With concentric circles, evolution takes advantage of radial functions.
- ► E.g. Sinusoidal, square, and Gaussian.
- ► Makes the learning task easier.

Feature Discovery in NEAT: Spirals

- ▶ With concentric spirals, a complex topology emerges.
- Utilizing many different functions.
- Hard to design by hand.

Principles of Evolutionary NAS

- ▶ NEAT explores architecture and feature space.
- Makes subsequent backprop fast and reliable.
- ▶ Evolutionary NAS thus allows for more powerful machine learning.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Scaling up NAS to CNN Architectures

- Early CNNs (Convolutional Neural Networks) like AlexNet drove deep learning advances in visual tasks.
- Successors include VGG, Inception Networks, ResNet, DenseNet, Mobilenet, EfficientNet...
- Larger and more complex, with modules and skip connections.

Scaling up NAS to Sequential Task Networks

- ▶ Early RNNs (e.g., LSTM, GRU) improved sequential task handling.
- ► Transformer introduced self-attention, revolutionizing sequence modeling.
- ► Transformer variants continue to improve performance incrementally.

Evolving Deep Learning Architectures

- ▶ The genera search space for architectures is too large.
- ▶ Need to constrain it in some way to find good architectures.
- ► Focus on (I) node designs, (II) modular designs, (III) restricted search space.

I. LSTM Node Design

- Original LSTM nodes developed in the 1990s.
 - Designed for indefinite memory storage and sequence processing.
 - Essentially the same structure for 25 years.
- Sequential networks formed from layers of LSTMS

Optimized LSTM Node with NASCell

- Tree representation of LSTM allows search and optimization.
- ► NASCell discovered using reinforcement learning.
- Introduced complex memory paths and diverse activation functions.
- Resulted in a more powerful node architecture for e.g. language modeling.

Optimized LSTM Node with Neurevolution

- Genetic programming allows more extensive exploration of tree structures.
 Discovered multiple memory cells, nonlinear paths.
- - Complexity matters!
 - Broader search than other NAS methods.
- ► Improved language modeling
 - Improved perplexity by 15%.
 - ► State of the art in 1/2018.

Evolved LSTM Node for Music Modeling

- ▶ Different architectures emerged for music modeling.
- Demonstrated domain-adaptive architecture potential of NAS.

https://evolution.ml/demos/lstmmusic/

II. CoDeepNEAT Modules and Blueprints

Many of the best architectures are modular

- Googlenet, Inception, Residual, Dense, Transformer...
- Implements stepwise refinement?

How to discover modularity?

Solution: Evolve modules and blueprints together

CoDeepNEAT Approach

Evolution at three levels 59

- Module subpopulations optimize building blocks
- Blueprint population optimizes their combinations
- Hyperparameter evolution optimizes their instantiation

Fitness of the complete network drives evolution

- Candidates need to be evaluated through training
- Expensive; use partial training, surrogates...

Improve Human Design

- · E.g. image captioning:
 - Start with a state-of-the art design: Show&Tell
 - · Search in the space of similar elements
 - 5% improvement
 - · A prototype service on the web
- Best-performing AI defies human notions of symmetry a patterns of organization
- · Al designing Al: could we automate it?

Evolutionary AutoML

Current AutoML: Hyperparameter optimization Evolutionary AutoML: Architectures and modules a:

- 1. Improve over naïve baseline 20% or more with little effort
- 2. Improve state of the art
 With more expertise & compute
- 3. Minimize network resources

 Train and run networks faster
- 4. Extend small datasets

 Multitasking with related datasets

1 and 2: Improve Performance

- Domain: Wikipedia Toxic Comment Identification
 - · Why: Toxicity is bad for business
- Data: 160K labeled comments
- Challenge: highly diverse vocabulary, style, and length
- Layer Types: Conv1D, LSTM, GRU
- LEAF Results:
 - With minimal compute: Improves over naïve Keras baseline
 - With more compute: Improves over other AutoML methods
 - With more compute: Improves over SOTA hand-designed model.
 - LEAF Hyperparameter Search on final architecture gives a final boost

1 and 2 on a Visual Domain

- Classify X-ray image of chest into one of 14 diseases (measured by AUROC)
- Challenging domain
 - Even for humans, only experts can reliably interpret the images
 - Computationally <u>demanding</u>: only partial training during evolution
- Big improvement over baseline
- Improves upon Google AutoML
- · Matches best human design

III. AmoebaNet: Targeted Evolution of CNNs

- AmoebaNet refined ImageNet architectures with evolutionary NAS.
- ▶ Outperformed all existing architectures on ImageNet at the time (2019).

AmoebaNet - Focused Search Space

- ▶ Restricted search to NASNet (reinforcement learning) search space.
- ► Alternating normal and reduction cells.
- Reduction cells reduce image size; normal cells do not.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めへで

AmoebaNet - Evolution

- ► Cell designs, hyperparameters evolved.
- ▶ Hidden state mutation; op mutation.
- Regularization through aging.
 - Old elite individuals removed from population.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

AmoebaNet - Evolution

- ▶ Modular structure enabled scaling to larger network sizes.
 - ▶ Normal cell stacks $N=3 \rightarrow 6$.
 - ► Convolution filters F=24 → 448.
- ▶ Evolve with CIFAR-10, then expand, then train on ImageNet.

SOTA Performance with AmoebaNet

- AmoebaNet improved upon RL and Random Search on CIFAR-10 and ImageNet.
- Evolutionary NAS outperformed SOTA both in accuracy and resource cost.
- Aging provided significant performance improvement.
- AmoebaNet demonstrated benefits of targeted search, modularity, scaling, and regularization.

Future Opportunities in Evolutionary NAS

- ▶ So far, much of NAS developed for CNNs, LSTMs, RNNs, etc.
 - Potential for discovering principles beyond current architectures.
 Optimizing architectures for specific hardware constraints.
 Discovering architectures tailored to minimal data availability.
- Extending NAS to Transformers, Diffusion networks, and other new architectures.
 - ▶ Potential for improving explainability, trustworthiness, sustainability.

