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Motivation for Neural Architecture Search (NAS)

I Much of the power of neural networks comes from scaleup: 106 � 1012

parameters.

I Many variants of architectures have been proposed.

I A new problem: How do you configure such systems?

Overview of Evolutionary NAS

I Evolution can be used to automate neural network architecture design.

I These architectures are then trained with gradient descent.

I Aim: Discover architectures that surpass hand-designed ones.



A Simple Example: NAS with NEAT

I NEAT evolves topology; backpropagation optimizes weights.
I Multiple activation functions:

I Enhances diversity
I Allows more varied computation patterns.



Initial Population in Backprop NEAT

I Experiment: Classify data into two categories.

I Initial networks implement logistic regression with random weights.

I Backpropagation optimizes the network on this graph for better fit.

I Simple architectures are e↵ective for initial dataset classification.

Fitness Evaluation in Backprop NEAT

I Fitness combines classification performance with network simplicity.

I Motivation: Networks with fewer connections often generalize better.

Feature Discovery in NEAT: XOR

I NEAT automatically finds useful features (e.g., abs, ReLU).

I Di↵erent datasets require unique features for optimized classification.

I Networks evolve to fit training data even in non-linearly separable cases.

Feature Discovery in NEAT: Circles

I With concentric circles, evolution takes advantage of radial functions.

I E.g. Sinusoidal, square, and Gaussian.

I Makes the learning task easier.



Feature Discovery in NEAT: Spirals

I With concentric spirals, a complex topology emerges.

I Utilizing many di↵erent functions.

I Hard to design by hand.

Principles of Evolutionary NAS

I NEAT explores architecture and feature space.

I Makes subsequent backprop fast and reliable.

I Evolutionary NAS thus allows for more powerful machine learning.

Scaling up NAS to CNN Architectures

I Early CNNs (Convolutional Neural Networks) like AlexNet drove deep
learning advances in visual tasks.

I Successors include VGG, Inception Networks, ResNet, DenseNet,
Mobilenet, E�cientNet...

I Larger and more complex, with modules and skip connections.

Scaling up NAS to Sequential Task Networks

I Early RNNs (e.g., LSTM, GRU) improved sequential task handling.

I Transformer introduced self-attention, revolutionizing sequence modeling.

I Transformer variants continue to improve performance incrementally.



Evolving Deep Learning Architectures

I The genera search space for architectures is too large.

I Need to constrain it in some way to find good architectures.

I Focus on (I) node designs, (II) modular designs, (III) restricted search
space.

I. LSTM Node Design

I Original LSTM nodes developed in the 1990s.
I Designed for indefinite memory storage and sequence processing.
I Essentially the same structure for 25 years.

I Sequential networks formed from layers of LSTMS

Optimized LSTM Node with NASCell

I Tree representation of LSTM allows search and optimization.

I NASCell discovered using reinforcement learning.

I Introduced complex memory paths and diverse activation functions.

I Resulted in a more powerful node architecture for e.g. language modeling.

LSTM NASCell

Optimized LSTM Node with Neurevolution
I Genetic programming allows more extensive exploration of tree structures.
I Discovered multiple memory cells, nonlinear paths.

I Complexity matters!
I Broader search than other NAS methods.

I Improved language modeling
I Improved perplexity by 15%.
I State of the art in 1/2018.

LSTM Evolved

https://evolution.ml/demos/lstm/



Evolved LSTM Node for Music Modeling

I Di↵erent architectures emerged for music modeling.

I Demonstrated domain-adaptive architecture potential of NAS.

Language Music

https://evolution.ml/demos/lstmmusic/

II. CoDeepNEAT Modules and Blueprints

CoDeepNEAT Approach



III. AmoebaNet: Targeted Evolution of CNNs

I AmoebaNet refined ImageNet architectures with evolutionary NAS.

I Outperformed all existing architectures on ImageNet at the time (2019).



AmoebaNet - Focused Search Space

I Restricted search to NASNet (reinforcement learning) search space.

I Alternating normal and reduction cells.

I Reduction cells reduce image size; normal cells do not.

AmoebaNet - Evolution

I Cell designs, hyperparameters evolved.

I Hidden state mutation; op mutation.
I Regularization through aging.

I Old elite individuals removed from population.

AmoebaNet - Evolution

I Modular structure enabled scaling to larger network sizes.
I Normal cell stacks N=3 ! 6.
I Convolution filters F=24 ! 448.

I Evolve with CIFAR-10, then expand, then train on ImageNet.

SOTA Performance with AmoebaNet

I AmoebaNet improved upon RL and Random Search on CIFAR-10 and
ImageNet.

I Evolutionary NAS outperformed SOTA both in accuracy and resource cost.

I Aging provided significant performance improvement.

I AmoebaNet demonstrated benefits of targeted search, modularity, scaling,
and regularization.



Future Opportunities in Evolutionary NAS

I So far, much of NAS developed for CNNs, LSTMs, RNNs, etc.
I Potential for discovering principles beyond current architectures.
I Optimizing architectures for specific hardware constraints.
I Discovering architectures tailored to minimal data availability.

I Extending NAS to Transformers, Di↵usion networks, and other new
architectures.
I Potential for improving explainability, trustworthiness, sustainability.


