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Overview of Evolutionary NAS

» Evolution can be used to automate neural network architecture design.
» These architectures are then trained with gradient descent.

» Aim: Discover architectures that surpass hand-designed ones.
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Motivation for Neural Architecture Search (NAS)

» Much of the power of neural networks comes from scaleup: 10° — 102
parameters.
» Many variants of architectures have been proposed.

» A new problem: How do you configure such systems?
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Configuring Complex Systems

A new general approach to engineering
» Humans design just the framework
» Machines optimize the details

Programming by optimization®
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(A) Fundamental: Neural Architecture Search
. « Optimizing structure and hyperparameters
> A challenging benchmark « Takes advantage of exploration in EC
» RL, NE solutions exist
> Eight parameters optimiz.ed by hand?* (B) Extended: Data and training
> Hard for a human designer to do more « Loss functions, activation functions, data augmentation, initialization, learning algorithm
» With EA, increased to 15 » Takes advantage of flexibility of EC

» —Significantly better performance 33

A Simple Example: NAS with NEAT

Evolutionary NAS

» NEAT evolves topology; backpropagation optimizes weights.
» Multiple activation functions:
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Evolution is a natural fit:
® Population-based search covers the space
® Crossover between structures discovers principles
Moreover,
® Can build on Neuroevolution work since the 1990s:
partial solutions, complexification, indirect encoding, novelty search
® Applies to continuous values; discrete choices; graph structures; combinations
® Can evolve hyperparameters; nodes; modules; topologies; multiple tasks
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Initial Population in Backprop NEAT

» Experiment: Classify data into two categories.

» Initial networks implement logistic regression with random weights.
» Backpropagation optimizes the network on this graph for better fit.
» Simple architectures are effective for initial dataset classification.
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Feature Discovery in NEAT: XOR

» NEAT automatically finds useful features (e.g., abs, ReLU).

» Different datasets require unique features for optimized classification.

» Networks evolve to fit training data even in non-linearly separable cases.
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Fitness Evaluation in Backprop NEAT

» Fitness combines classification performance with network simplicity.

» Motivation: Networks with fewer connections often generalize better.
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Feature Discovery in NEAT: Circles

» With concentric circles, evolution takes advantage of radial functions.
» E.g. Sinusoidal, square, and Gaussian.

> Makes the learning task easier.
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Feature Discovery in NEAT: Spirals Principles of Evolutionary NAS

» With concentric spirals, a complex topology emerges. » NEAT explores architecture and feature space.

» Utilizing many different functions.

» Makes subsequent backprop fast and reliable.
» Hard to design by hand.

» Evolutionary NAS thus allows for more powerful machine learning.
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Scaling up NAS to CNN Architectures Scaling up NAS to Sequential Task Networks

» Early CNNs (Convolutional Neural Networks) like AlexNet drove deep

. o > Early RNNs (e.g., LSTM, GRU) improved sequential task handling.
learning advances in visual tasks.
> . 3 . L .
> Successors include VGG, Inception Networks, ResNet, DenseNet, Transformer introduced self-attention, revolutionizing sequence modeling.
Mobilenet, EfficientNet... >

Transformer variants continue to improve performance incrementally.
» Larger and more complex, with modules and skip connections.

Output
Probabilities

block output

LSTM block b

"Add & Norm

Muiti-Head
Attention

peepholes

input

Nx

"Add & Norm

Nx
Masked
recurrent
e Mult-Head Multi-Head
Attention Attention
4 - L -

input

Positional

Positional
Sout Encoding Encoding
Input Output
. Embedding Embedding
~
IS Inputs Outputs

input Yecurrent (shifted right)



Evolving Deep Learning Architectures [. LSTM Node Design

» The genera search space for architectures is too large. > Original LSTM nodes developed in the 1990s.

o . . » Designed for indefinite memory storage and sequence processing.
» Need to constrain it in some way to find good architectures. > Essentially the same structure for 25 years.
» Focus on (1) node designs, (I1) modular designs, (1) restricted search > Sequential networks formed from layers of LSTMS
space.
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Optimized LSTM Node with NASCell Optimized LSTM Node with Neurevolution

» Genetic programming allows more extensive exploration of tree structures.

» Discovered multiple memory cells, nonlinear paths.
» Tree representation of LSTM allows search and optimization. » Complexity matters!
. . . . > Broader search than other NAS methods.
» NASCell discovered using reinforcement learning. > Improved language modeling
» Introduced complex memory paths and diverse activation functions. > Improved perplexity by 15%.
. . . > State of the art in 1/2018. h) '
» Resulted in a more powerful node architecture for e.g. language modeling. /”“\
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Evolved LSTM Node for Music Modeling [1. CoDeepNEAT Modules and Blueprints

» Different architectures emerged for music modeling.

» Demonstrated domain-adaptive architecture potential of NAS.
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CoDeepNEAT Approach

Blueprint Module Assembled Network I m p rove H uman DeS ig n
(\ « E.g. image captioning:
ﬁb * Start with a state-of-the art design: Show&Tell
swb | sub ’ * Search in the space of similar elements
Pop1 | Pop2 C{',{ * 5% improvement
B ‘\ * A prototype service on the web

. s « Best-performing Al defies human notions of symmetry a
Evolution at three levels patterns of organization

® Module subpopulations optimize building blocks
® Blueprint population optimizes their combinations
¢ Hyperparameter evolution optimizes their instantiation

= Al designing Al: could we automate it?

Fitness of the complete network drives evolution
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® Candidates need to be evaluated through training %

STRUCTURE WATER

® Expensive; use partial training, surrogates...



Evolutionary AutoML

Current AutoML: Hyperparameter optimization
Evolutionary AutoML: Architectures and modules a:

1. Improve over naive baseline
20% or more with little effort

® Layer Types: Conv1D, LSTM, GRU

N

. Improve state of the art
With more expertise & compute
3. Minimize network resources
Train and run networks faster
4. Extend small datasets
Multitasking with related datasets
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and 2 on a Visual Domain

* Classify X-ray image of chest into one of 14 diseases (measured by AUROC)
® Challenging domain
* Even for humans, only experts can reliably interpret the images
® Computationally demanding: only partial training during evolution
* Big improvement over baseline
* Improves upon Google AutoML
* Matches best human design

Points scored
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* LEAF Results:

1 and 2: Improve Performance
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*  With minimal compute: Improves
over naive Keras baseline . 003
*  With more compute: Improves over
other AutoML methods
*  With more compute: Improves over °
SOTA hand-designed model. ° © = ¥ eneration o * °
* LEAF Hyperparameter Search on o % g
final architecture gives a final boost
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[1l. AmoebaNet: Targeted Evolution of CNNs

» AmoebaNet refined ImageNet architectures with evolutionary NAS.
» Outperformed all existing architectures on ImageNet at the time (2019).
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AmoebalNet - Focused Search Space

>

>
>

> Restricted search to NASNet (reinforcement learning) search space.
> Alternating normal and reduction cells.
» Reduction cells reduce image size; normal cells do not.

Reduction Cell
«2

AmoebaNet - Evolution

>
» Modular structure enabled scaling to larger network sizes.
»> Normal cell stacks N=3 — 6.
» Convolution filters F=24 — 448.

» Evolve with CIFAR-10, then expand, then train on ImageNet.
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AmoebaNet - Evolution

Cell designs, hyperparameters evolved.

Hidden state mutation; op mutation.
Regularization through aging.
> Old elite individuals removed from population.

Hidden State
Mutation
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SOTA Performance with AmoebaNet

AmoebaNet improved upon RL and Random Search on CIFAR-10 and
ImageNet.

Evolutionary NAS outperformed SOTA both in accuracy and resource cost.
Aging provided significant performance improvement.

AmoebaNet demonstrated benefits of targeted search, modularity, scaling,
and regularization.
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Future Opportunities in Evolutionary NAS

» So far, much of NAS developed for CNNs, LSTMs, RNNs, etc.
> Potential for discovering principles beyond current architectures.
> Optimizing architectures for specific hardware constraints.

architectures.

> Discovering architectures tailored to minimal data availability.
» Extending NAS to Transformers, Diffusion networks, and other new

> Potential for improving explainability, trustworthiness, sustainability.
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