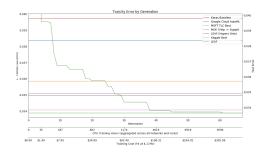
Practical Challenges in Real-World NAS

- ► So far with AutoML,
 - ▶ 1. SOTA in accuracy can be improved.
 - 2. Models can be built without excessive expertise.
- In practice,
 - ▶ 3. Hardware constraints and limited compute on edge devices must be met.
 - ▶ 4. Training must be done with little data for effective training.
- Solution: multiobjective and multitask NAS.

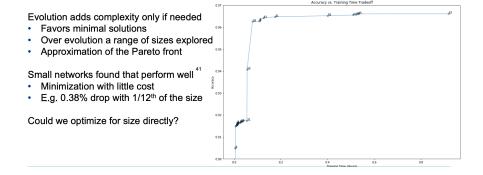


3. Optimizing for Edge Devices

- Many applications require models to run on constrained hardware.
- Multiobjective NAS optimizes for performance and resource efficiency.
- ▶ Models need to be tuned for memory, compute, and energy constraints.

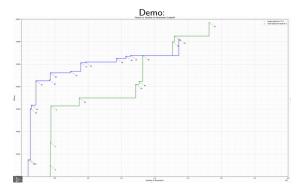
Tradeoffs in Population-based Search

Accuracy vs. size of CoDeepNEAT in toxic comment identification

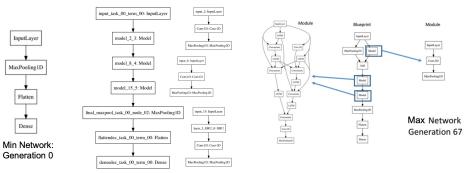


Multiobjective Optimization in NAS

- ▶ Pareto front of size (x) and accuracy (y) objectives)
 - ► Single-objective (accuracy; green) focuses on improving largest networks
 - ► Multi-objective (blue) focuses on improving the entire curve
- ▶ Result: Multi-objective finds much smaller models.
- Evolutionary NAS can find solutions that fit design constraints.



Example Performance/Size Tradeoffs

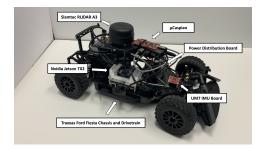


Tradeoff Network: Generation 28

· Sequential, GRUs after 2 pooling layers

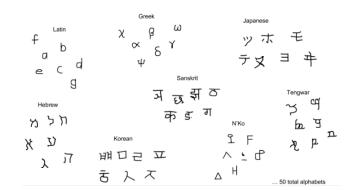
Specialized Designs for Neuromorphic Hardware

- ▶ Neuromorphic hardware with spiking neurons to reduce energy.
- Spike-timing dependent plasticity (STDP) and other learning methods.
- Lots of hardware constraints: size, memory, latency, fault-tolerance...
- ▶ NAS allows developing effective customized designs.



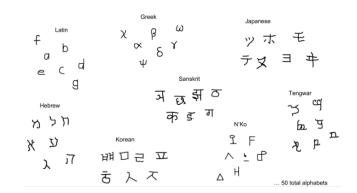
4. Extending Deep Learning to Domains with Little Data

- In many application domains there is insufficient data to train models.
- ▶ NAS can optimize multitask learning to take advantage of other datasets.
 - Combines multiple tasks to learn shared patterns and biases.
 - Builds common knowledge to boost task performance.



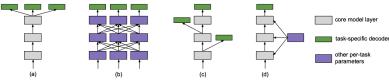
E.g. Omniglot Domain

- ▶ Recognize handwritten characters in a given alphabet.
 - ▶ 50 alphabets; few samples in each alphabet.
 - ► Could we learn from multiple alphabets at once?
- ▶ Evolve architecture to combine learning in multiple alphabets.
 - Learns more generalizable embeddings; performs better in each alphabet.
 - Network architecture can have a large effect
 - A good domain for NAS.



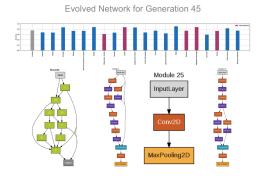
Approaches to Multitask Architectures

- Single-column with separate heads per task.
- A column for each task with a sharing mechanism.
- Arbitrary modular structure.
- Adaptation of each layer with task-specific parameters.



E.g. A Single Modular Network with Multiple Heads

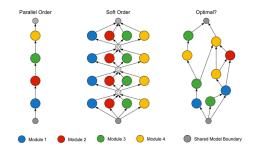
- ▶ Blueprints and modules coevolved with CoDeepNEAT.
- Complex overall blueprint with multiple paths (only one head is shown).
- Consists of a variety of simple and complex modules.
- Performance varies across alphabets, but improves overall over evolution.



https://evolution.ml/demos/cmsr/

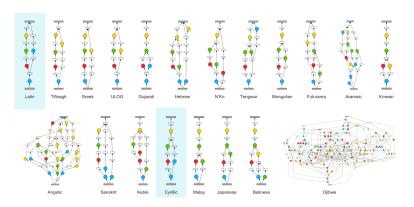
Or a Different Network Architecture for Each Task!

- Consists of a common set of modules evolved in all tasks.
- A different selection of these modules in the same topology for each task.
- Or a different topology for each task as well.
 - Coevolved with the modules.



Discovering Customized Architectures

- ▶ Modules capture functional primitives reusable across tasks.
- Customized topologies emerge consistently over multiple runs.
 - Networks for similar alphabets are similar (e.g. Latin, Cyrillic)
 - Complex networks for complex, unique tasks (Angelic, Ojibwe)



https://evolution.ml/demos/ctr/

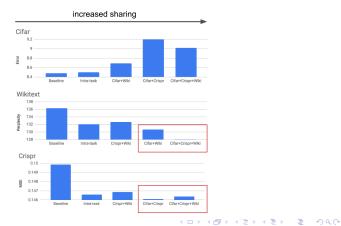
Omniglot Performance

- Accuracy improved by 31% over previous multitask Omniglot SOTA.
- ► Try out the interactive demo!

https://evolution.ml/demos/omnidraw/

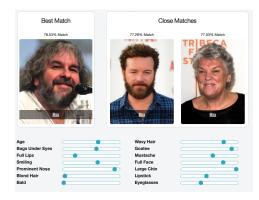
Multitask Learning Across Diverse Domains

- ► Sometimes learning even in very different domains helps.
 - ► CIFAR-10: Image recognition.
 - Wikitext: Language modeling.
 - CRISPR: Guide RNA binding propensity.
- CIFAR helps both Wikitext and CRISPR (but not the other way around).
- Apparently, common underlying structures exist across many domains.



E.g. Recognizing Face Attributes

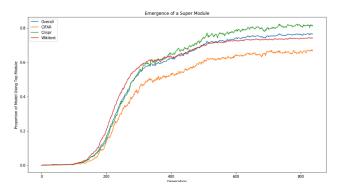
- Multitask approach in a more challenging vision task: Based on a facial image, recognize multiple attributes
 - Age, smiling, bald, blond, goatee, mustache, lipstick, glasses...
- Multitask NAS Improved SOTA 0.75%.
- ▶ Try out the reverse demo: find a celebrity to match attributes.
 - An AI forensic artist!



https://evolution.ml/demos/celebmatch/

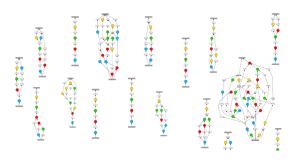
Toward General Intelligence with Multitask NAS

- Many other datasets can be used to help with insufficient data.
- ► However, the result is more fundamental:
 - Supermodules emerge that are used in most networks across domains.
 - ► Encoders and decoders evolve for task-specific customizations.
- Identifying and developing supermodels can be a step toward artificial general intelligence.



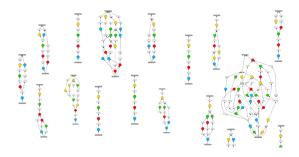
Making NAS Practical

- ▶ NAS can yield useful discoveries but requires heavy computation.
- ▶ Goal: Efficient evaluation of many neural network architectures.
- Five techniques to make NAS computationally more efficient.



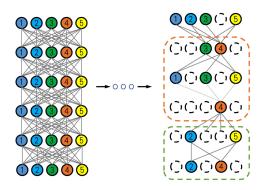
1. Surrogate Models for Efficiency

- ▶ Surrogate models predict performance of candidate architectures.
- ▶ Trained on a sample of pre-evaluated solutions.
- Reduces the need to train every candidate.



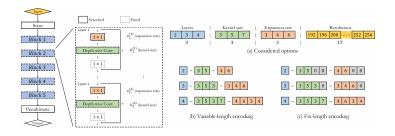
2. Limiting the Search Space

- Smaller search spaces improve efficiency.
- Example: Supernet that subsumes possible architectures.
- ► Candidates sampled from this pre-trained supernet.



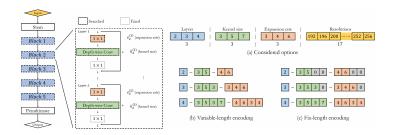
MSuNAS: Supernet

- ▶ MSuNAS restricts search to convolutional blocks in a supernet.
- ▶ Blocks represented by a number of parameters.
- ▶ Supernet includes the maximum number of maximum-size blocks.
- Supernet trained once to represent entire search space.



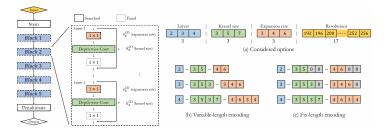
MSuNAS Objectives

- MSuNAS optimizes performance and size using NSGA-II multiobjective search.
- Surrogate model trained with samples guides the search.
- ► Candidates initialized with weights from supernet.



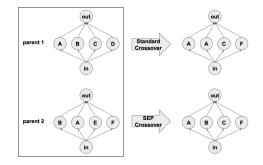
MSuNAS Performance

- ► Achieves competitive accuracy with smaller architectures.
- ▶ Reduces evaluation time using surrogate predictions.
- Innovation is limited, but makes search practical.



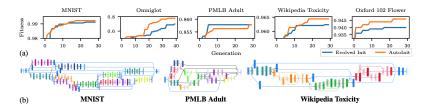
3. Overcoming the Permutation Problem

- ▶ Permutation problem makes crossover less effective.
- ▶ The same structure can be coded through competing conventions.
- ► Solution: Shortest Edit Path (SEP) crossover
 - ► Measure Graph Edit Distance between individuals.
 - Construct a crossover that results in individuals along the shortest edit path.
 - ► E.g. maintains the structure AB common between parents.
- ▶ More effective than standard crossover, mutation, and RL.



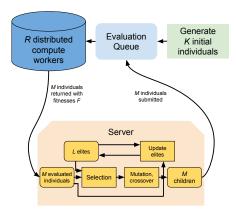
4. AutoInit for Effective Weight Initialization

- ▶ Weight initialization is critical for performance.
- ▶ Different architectures need to be initialized properly to estimate performance
- AutoInit ensures zero mean, unit variance for activations.
- Makes fitness evaluations reliable in NAS.



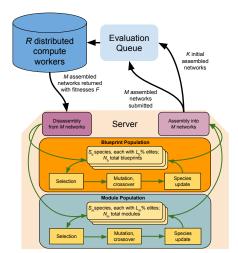
5. Distributed Candidate Evaluation in NAS

- Candidate evaluations can be distributed over many compute workers.
- ▶ However, evolution has to wait for all of them to finish before proceeding.
- ► Candidates of different sizes may take vastly different times.
- Many of the workers are idle waiting for the next generation.



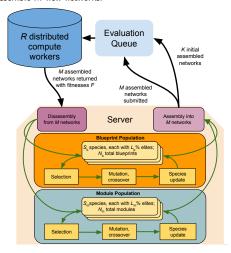
Benefits of Asynchronous Evaluation

- ► Can utilize distributed compute without idle time.
- ► Automatically biases towards faster-evaluating candidates.
- Improves solution quality and efficiency.



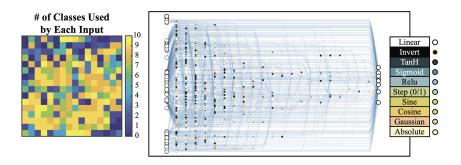
Asynchronous Evaluation

- To avoid idle time, candidates can be evaluated asynchronously.
- ► To make it work with coevolutionary methods like CoDeepNEAT:
 - ► Initialize a queue with *K* networks
 - As soon as $M \ll K$ networks return, evolution proceeds.
 - Disassemble into blueprints and modules, updating their fitness
 - ▶ Update elites, run crossover and mutation.
 - Assemble M new networks.



Demonstrating the Potential Power of NAS

- Weight Agnostic Neural Networks (WANNs).
 - ► There is no training, only NAS.
 - Networks evolved with a single random fixed weight on all connections.
 - Individual weights can then be fine-tuned e.g. with REINFORCE.
- ▶ Can be seen as a model of precocial performance in animals.
- ► Competent performance in classification task like MNIST...



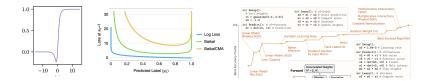
Demonstrating the Potential Power of NAS

...as well as RL tasks like bipedal walking...

Demo with a complex net, finetuned weights:

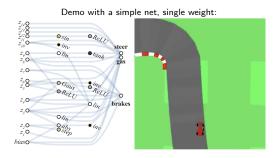
Expanding NAS into Metalearning

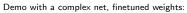
- ▶ Beyond architecture: optimizing loss functions, activation functions.
- ▶ Further: Data augmentation, even learning algorithms themselves.
- ▶ NAS evolving into a broader metalearning framework.



Demonstrating the Potential Power of NAS

...and race-car driving.





Conclusion: The Impact and Future of NAS

► NAS as a Catalyst in ML:

- Automates architecture design, reducing reliance on human intuition.
- Accelerates discovery of optimized models across varied applications.

Key Successes:

- Evolutionary NAS produced state-of-the-art architectures like AmoebaNet, CoDeepNEAT, and advanced LSTM nodes.
- Enabled efficient, multiobjective, and multitask optimizations for real-world constraints (e.g., hardware limitations, data sparsity).

► Future Opportunities:

- Apply to recent architectures like transformers and diffusion networks.
- ▶ Integrate NAS into metalearning optimizing activation functions, loss functions, data augmentation, and learning methods.
- NAS stands as a transformative field, blending machine learning with evolutionary principles, pushing the boundaries of automated design.