
Practical Challenges in Real-World NAS

I So far with AutoML,
I 1. SOTA in accuracy can be improved.
I 2. Models can be built without excessive expertise.

I In practice,
I 3. Hardware constraints and limited compute on edge devices must be met.
I 4. Training must be done with little data for e↵ective training.

I Solution: multiobjective and multitask NAS.

3. Optimizing for Edge Devices

I Many applications require models to run on constrained hardware.

I Multiobjective NAS optimizes for performance and resource e�ciency.

I Models need to be tuned for memory, compute, and energy constraints.

Tradeo↵s in Population-based Search

Accuracy vs. size of CoDeepNEAT in toxic comment identification

Multiobjective Optimization in NAS

I Pareto front of size (x) and accuracy (y) objectives)
I Single-objective (accuracy; green) focuses on improving largest networks
I Multi-objective (blue) focuses on improving the entire curve

I Result: Multi-objective finds much smaller models.

I Evolutionary NAS can find solutions that fit design constraints.

Demo:



Specialized Designs for Neuromorphic Hardware

I Neuromorphic hardware with spiking neurons to reduce energy.

I Spike-timing dependent plasticity (STDP) and other learning methods.

I Lots of hardware constraints: size, memory, latency, fault-tolerance...

I NAS allows developing e↵ective customized designs.

4. Extending Deep Learning to Domains with Little Data

I In many application domains there is insu�cient data to train models.
I NAS can optimize multitask learning to take advantage of other datasets.

I Combines multiple tasks to learn shared patterns and biases.
I Builds common knowledge to boost task performance.

E.g. Omniglot Domain

I Recognize handwritten characters in a given alphabet.
I 50 alphabets; few samples in each alphabet.
I Could we learn from multiple alphabets at once?

I Evolve architecture to combine learning in multiple alphabets.
I Learns more generalizable embeddings; performs better in each alphabet.
I Network architecture can have a large e↵ect
I A good domain for NAS.



Approaches to Multitask Architectures

I Single-column with separate heads per task.

I A column for each task with a sharing mechanism.

I Arbitrary modular structure.

I Adaptation of each layer with task-specific parameters.

E.g. A Single Modular Network with Multiple Heads

I Blueprints and modules coevolved with CoDeepNEAT.

I Complex overall blueprint with multiple paths (only one head is shown).

I Consists of a variety of simple and complex modules.

I Performance varies across alphabets, but improves overall over evolution.

https://evolution.ml/demos/cmsr/

Or a Di↵erent Network Architecture for Each Task!

I Consists of a common set of modules evolved in all tasks.

I A di↵erent selection of these modules in the same topology for each task.
I Or a di↵erent topology for each task as well.

I Coevolved with the modules.

Discovering Customized Architectures

I Modules capture functional primitives reusable across tasks.
I Customized topologies emerge consistently over multiple runs.

I Networks for similar alphabets are similar (e.g. Latin, Cyrillic)
I Complex networks for complex, unique tasks (Angelic, Ojibwe)

https://evolution.ml/demos/ctr/



Omniglot Performance

I Accuracy improved by 31% over previous multitask Omniglot SOTA.

I Try out the interactive demo!

https://evolution.ml/demos/omnidraw/

E.g. Recognizing Face Attributes
I Multitask approach in a more challenging vision task: Based on a facial

image, recognize multiple attributes
I Age, smiling, bald, blond, goatee, mustache, lipstick, glasses...

I Multitask NAS Improved SOTA 0.75%.
I Try out the reverse demo: find a celebrity to match attributes.

I An AI forensic artist!

https://evolution.ml/demos/celebmatch/

Multitask Learning Across Diverse Domains
I Sometimes learning even in very di↵erent domains helps.

I CIFAR-10: Image recognition.
I Wikitext: Language modeling.
I CRISPR: Guide RNA binding propensity.

I CIFAR helps both Wikitext and CRISPR (but not the other way around).

I Apparently, common underlying structures exist across many domains.

Toward General Intelligence with Multitask NAS

I Many other datasets can be used to help with insu�cient data.
I However, the result is more fundamental:

I Supermodules emerge that are used in most networks across domains.
I Encoders and decoders evolve for task-specific customizations.

I Identifying and developing supermodels can be a step toward artificial
general intelligence.



Making NAS Practical

I NAS can yield useful discoveries but requires heavy computation.

I Goal: E�cient evaluation of many neural network architectures.

I Five techniques to make NAS computationally more e�cient.

1. Surrogate Models for E�ciency

I Surrogate models predict performance of candidate architectures.

I Trained on a sample of pre-evaluated solutions.

I Reduces the need to train every candidate.

2. Limiting the Search Space

I Smaller search spaces improve e�ciency.

I Example: Supernet that subsumes possible architectures.

I Candidates sampled from this pre-trained supernet.

MSuNAS: Supernet

I MSuNAS restricts search to convolutional blocks in a supernet.

I Blocks represented by a number of parameters.

I Supernet includes the maximum number of maximum-size blocks.

I Supernet trained once to represent entire search space.



MSuNAS Objectives

I MSuNAS optimizes performance and size using NSGA-II multiobjective
search.

I Surrogate model trained with samples guides the search.

I Candidates initialized with weights from supernet.

MSuNAS Performance

I Achieves competitive accuracy with smaller architectures.

I Reduces evaluation time using surrogate predictions.

I Innovation is limited, but makes search practical.

3. Overcoming the Permutation Problem

I Permutation problem makes crossover less e↵ective.

I The same structure can be coded through competing conventions.
I Solution: Shortest Edit Path (SEP) crossover

I Measure Graph Edit Distance between individuals.
I Construct a crossover that results in individuals along the shortest edit path.
I E.g. maintains the structure AB common between parents.

I More e↵ective than standard crossover, mutation, and RL.

4. AutoInit for E↵ective Weight Initialization

I Weight initialization is critical for performance.

I Di↵erent architectures need to be initialized properly to estimate
performance

I AutoInit ensures zero mean, unit variance for activations.

I Makes fitness evaluations reliable in NAS.



5. Distributed Candidate Evaluation in NAS
I Candidate evaluations can be distributed over many compute workers.
I However, evolution has to wait for all of them to finish before proceeding.
I Candidates of di↵erent sizes may take vastly di↵erent times.
I Many of the workers are idle waiting for the next generation.

Evaluation 
Queue

Generate
K initial 

individuals

M individuals 
submitted

M individuals 
returned with 
fitnesses F

R distributed 
compute 
workers

Server

M evaluated 
individuals

L elites

Selection Mutation, 
crossover

M 
children

Update 
elites

Asynchronous Evaluation
I To avoid idle time, candidates can be evaluated asynchronously.
I To make it work with coevolutionary methods like CoDeepNEAT:

I Initialize a queue with K networks
I As soon as M << K networks return, evolution proceeds.

I Disassemble into blueprints and modules, updating their fitness
I Update elites, run crossover and mutation.
I Assemble M new networks.

Evaluation 
Queue

Disassembly 
from M networks

Assembly into 
M networks

M assembled 
networks 
submitted

M assembled 
networks returned 

with fitnesses F

R distributed 
compute 
workers

Species 1

Server

Species 1Sb species, each with Lb% elites;
           Nb total blueprints

Species 1Species 1Smspecies, each with Lm% elites;
           Nm total modules

Selection Mutation,
crossover

Species 
update

Selection Mutation,
crossover

Species 
update

K initial 
assembled 
networks

Blueprint Population

Module Population

Benefits of Asynchronous Evaluation

I Can utilize distributed compute without idle time.

I Automatically biases towards faster-evaluating candidates.

I Improves solution quality and e�ciency.

Evaluation 
Queue

Disassembly 
from M networks

Assembly into 
M networks

M assembled 
networks 
submitted

M assembled 
networks returned 

with fitnesses F

R distributed 
compute 
workers

Species 1

Server

Species 1Sb species, each with Lb% elites;
           Nb total blueprints

Species 1Species 1Smspecies, each with Lm% elites;
           Nm total modules

Selection Mutation,
crossover

Species 
update

Selection Mutation,
crossover

Species 
update

K initial 
assembled 
networks

Blueprint Population

Module Population

Demonstrating the Potential Power of NAS

I Weight Agnostic Neural Networks (WANNs).
I There is no training, only NAS.
I Networks evolved with a single random fixed weight on all connections.
I Individual weights can then be fine-tuned e.g. with REINFORCE.

I Can be seen as a model of precocial performance in animals.

I Competent performance in classification task like MNIST...



Demonstrating the Potential Power of NAS
I ...as well as RL tasks like bipedal walking...

Demo with a simple net, single weight:

Demo with a complex net, finetuned weights:

Demonstrating the Potential Power of NAS

I ...and race-car driving.

Demo with a simple net, single weight:

Demo with a complex net, finetuned weights:

Expanding NAS into Metalearning

I Beyond architecture: optimizing loss functions, activation functions.

I Further: Data augmentation, even learning algorithms themselves.

I NAS evolving into a broader metalearning framework.

Conclusion: The Impact and Future of NAS

I NAS as a Catalyst in ML:

I Automates architecture design, reducing reliance on human intuition.
I Accelerates discovery of optimized models across varied applications.

I Key Successes:

I Evolutionary NAS produced state-of-the-art architectures like AmoebaNet,
CoDeepNEAT, and advanced LSTM nodes.

I Enabled e�cient, multiobjective, and multitask optimizations for real-world
constraints (e.g., hardware limitations, data sparsity).

I Future Opportunities:

I Apply to recent architectures like transformers and di↵usion networks.
I Integrate NAS into metalearning — optimizing activation functions, loss

functions, data augmentation, and learning methods.

I NAS stands as a transformative field, blending machine learning with
evolutionary principles, pushing the boundaries of automated design.


