Practical Challenges in Real-World NAS

» So far with AutoML,

» 1. SOTA in accuracy can be improved.
P> 2. Models can be built without excessive expertise.

» In practice,

> 3. Hardware constraints and limited compute on edge devices must be met.
> 4. Training must be done with little data for effective training.

» Solution: multiobjective and multitask NAS.
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Tradeoffs in Population-based Search

Accuracy vs. size of CoDeepNEAT in toxic comment identification

Evolution adds complexity only if needed aa *
« Favors minimal solutions
< Over evolution a range of sizes explored

« Approximation of the Pareto front
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3. Optimizing for Edge Devices

» Many applications require models to run on constrained hardware.
» Multiobjective NAS optimizes for performance and resource efficiency.

» Models need to be tuned for memory, compute, and energy constraints.
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Multiobjective Optimization in NAS

> Pareto front of size (x) and accuracy (y) objectives)

> Single-objective (accuracy; green) focuses on improving largest networks
> Multi-objective (blue) focuses on improving the entire curve

» Result: Multi-objective finds much smaller models.

» Evolutionary NAS can find solutions that fit design constraints.

Demo:



Example Performance/Size Tradeoffs

Module Blueprint Module

MaxPooling ID

Max Network
T Generation 67

Min Network:
Generation 0

Tradeoff Network: Generation 28
+ Sequential, GRUs after 2 pooling layers

4. Extending Deep Learning to Domains with Little Data

» In many application domains there is insufficient data to train models.
» NAS can optimize multitask learning to take advantage of other datasets.

» Combines multiple tasks to learn shared patterns and biases.
» Builds common knowledge to boost task performance.

Specialized Designs for Neuromorphic Hardware

» Neuromorphic hardware with spiking neurons to reduce energy.
» Spike-timing dependent plasticity (STDP) and other learning methods.
» Lots of hardware constraints: size, memory, latency, fault-tolerance...

» NAS allows developing effective customized designs.
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E.g. Omniglot Domain

» Recognize handwritten characters in a given alphabet.
» 50 alphabets; few samples in each alphabet.
» Could we learn from multiple alphabets at once?
» Evolve architecture to combine learning in multiple alphabets.

> Learns more generalizable embeddings; performs better in each alphabet.
> Network architecture can have a large effect
> A good domain for NAS.
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Approaches to Multitask Architectures

» Single-column with separate heads per task.
» A column for each task with a sharing mechanism.
» Arbitrary modular structure.

» Adaptation of each layer with task-specific parameters.
‘:’ core model layer
[ task-specific decoder
other per-task
- parameters
(@) (b) (c) (d)

Or a Different Network Architecture for Each Task!

» Consists of a common set of modules evolved in all tasks.

» A different selection of these modules in the same topology for each task.
» Or a different topology for each task as well.
» Coevolved with the modules.

Parallel Order Soft Order Optimal?

@ vosie1 @ modie2 @ Modues () Module 4 @ shared Model Boundary

E.g. A Single Modular Network with Multiple Heads

» Blueprints and modules coevolved with CoDeepNEAT.
» Complex overall blueprint with multiple paths (only one head is shown).
» Consists of a variety of simple and complex modules.

» Performance varies across alphabets, but improves overall over evolution.
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https://evolution.ml/demos/cmsr/

Discovering Customized Architectures

» Modules capture functional primitives reusable across tasks.
» Customized topologies emerge consistently over multiple runs.

> Networks for similar alphabets are similar (e.g. Latin, Cyrillic)
»> Complex networks for complex, unique tasks (Angelic, Ojibwe)
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Omniglot Performance

» Accuracy improved by 31% over previous multitask Omniglot SOTA.
» Try out the interactive demo!
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Multitask Learning Across Diverse Domains

» Sometimes learning even in very different domains helps.
> CIFAR-10: Image recognition.
> Wikitext: Language modeling.
> CRISPR: Guide RNA binding propensity.

» CIFAR helps both Wikitext and CRISPR (but not the other way around).

» Apparently, common underlying structures exist across many domains.
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E.g. Recognizing Face Attributes

» Multitask approach in a more challenging vision task: Based on a facial
image, recognize multiple attributes

> Age, smiling, bald, blond, goatee, mustache, lipstick, glasses...
» Multitask NAS Improved SOTA 0.75%.

» Try out the reverse demo: find a celebrity to match attributes.
> An Al forensic artist!

Best Match Close Matches

78.53% Match

Age S— — Wavy Hair —— & —
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https://evolution.ml/demos/celebmatch/

Toward General Intelligence with Multitask NAS

» Many other datasets can be used to help with insufficient data.

» However, the result is more fundamental:
» Supermodules emerge that are used in most networks across domains.
» Encoders and decoders evolve for task-specific customizations.

» Identifying and developing supermodels can be a step toward artificial
general intelligence.

Emergence of a Super Module

Proportion of Model Using Top Module:




Making NAS Practical

» NAS can yield useful discoveries but requires heavy computation.
» Goal: Efficient evaluation of many neural network architectures.

» Five techniques to make NAS computationally more efficient.
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2. Limiting the Search Space

» Smaller search spaces improve efficiency.
» Example: Supernet that subsumes possible architectures.

» Candidates sampled from this pre-trained supernet.

1. Surrogate Models for Efficiency

» Surrogate models predict performance of candidate architectures.
» Trained on a sample of pre-evaluated solutions.

» Reduces the need to train every candidate.
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MSuNAS: Supernet
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» MSuNAS restricts search to convolutional blocks in a supernet.

» Blocks represented by a number of parameters.

» Supernet includes the maximum number of maximum-size blocks.

» Supernet trained once to represent entire search space.
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MSuNAS Objectives

» MSuNAS optimizes performance and size using NSGA-II multiobjective

search.

» Surrogate model trained with samples guides the search.

» Candidates initialized with weights from supernet.
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3. Overcoming the Permutation Problem

» Permutation problem makes crossover less effective.

» The same structure can be coded through competing conventions.

» Solution: Shortest Edit Path (SEP) crossover
» Measure Graph Edit Distance between individuals.

> Construct a crossover that results in individuals along the shortest edit path.

> E.g. maintains the structure AB common between parents.

» More effective than standard crossover, mutation, and RL.
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MSuNAS Performance

» Achieves competitive accuracy with smaller architectures.

» Reduces evaluation time using surrogate predictions.

» Innovation is limited, but makes search practical.
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4. Autolnit for Effective Weight Initialization

(¢) Fix-length encoding

> Weight initialization is critical for performance.

» Different architectures need to be initialized properly to estimate

performance

» Autolnit ensures zero mean, unit variance for activations.

» Makes fitness evaluations reliable in NAS.
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5. Distributed Candidate Evaluation in NAS Asynchronous Evaluation

» Candidate evaluations can be distributed over many compute workers. » To avoid idle time, candidates can be evaluated asynchronously.

» To make it work with coevolutionary methods like CoDeepNEAT:
> Initialize a queue with K networks

» Candidates of different sizes may take vastly different times. > As soon as M << K networks return, evolution proceeds.

P Disassemble into blueprints and modules, updating their fitness

P Update elites, run crossover and mutation.

P> Assemble M new networks.

» However, evolution has to wait for all of them to finish before proceeding.

» Many of the workers are idle waiting for the next generation.
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Benefits of Asynchronous Evaluation Demonstrating the Potential Power of NAS

» Can utilize distributed compute without idle time. > Weight Agnostic Neural Networks (WANNs)

» Automatically biases towards faster-evaluating candidates. > There is no training, only NAS.

» Improves solution quality and efficiency. > Networks evolved with a single random fixed weight on all connections.
P quality 4 > Individual weights can then be fine-tuned e.g. with REINFORCE.

» Can be seen as a model of precocial performance in animals.
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Demonstrating the Potential Power of NAS
» ...as well as RL tasks like bipedal walking...

Demo with a simple net, single weight:
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Demo with a complex net, finetuned weights:
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Expanding NAS into Metalearning
» Beyond architecture: optimizing loss functions, activation functions.
» Further: Data augmentation, even learning algorithms themselves.
» NAS evolving into a broader metalearning framework.
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Demonstrating the Potential Power of NAS

» ...and race-car driving.

Demo with a simple net, single weight:
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Demo with a complex net, finetuned weights:
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Conclusion: The Impact and Future of NAS

» NAS as a Catalyst in ML:

> Automates architecture design, reducing reliance on human intuition.
> Accelerates discovery of optimized models across varied applications.

» Key Successes:

> Evolutionary NAS produced state-of-the-art architectures like AmoebaNet,
CoDeepNEAT, and advanced LSTM nodes.
> Enabled efficient, multiobjective, and multitask optimizations for real-world
constraints (e.g., hardware limitations, data sparsity).

» Future Opportunities:

> Apply to recent architectures like transformers and diffusion networks.
> Integrate NAS into metalearning — optimizing activation functions, loss
functions, data augmentation, and learning methods.

» NAS stands as a transformative field, blending machine learning with
evolutionary principles, pushing the boundaries of automated design.



