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Introduction to Metalearning

I Metalearning means optimizing designs of learning systems.
I ”Learning to learn”, configuration, hierarchical adaptation.

I Too complex to optimize by hand.

I Many techniques can be used for metalearning:
I Gradient descent; Bayesian optimization; Reinforcement learning;

Evolutionary optimization.

I Why evolution?

1. Versatility

I Evolution is versatile and comprehensive:

I Can be applied to Continuous values; discrete values; graph structures;
design choices.

I All of those are aspects of neural network designs.

2. Creativity

I Evolution is creative:

I Allows finding solutions in deceptive, multi-peak landscapes.

I Multiobjective search; novelty search; neutral mutations.



3. Scaling to Large Search Spaces

I Evolution scales to large search spaces.

I Example: 70-bit multiplexer with 22
70

solutions.
I The universe is minuscule compared to this search space.

I Evolution leverages partial solutions as stepping stones.

4. Scaling to High-Dimensional Problems

I Evolution can optimize many variables at once.

I Humans can handle 7+/-2; Bayesian optimization about 10-15.
I Example: Metal casting scheduling process with many objects and many

heats.
I Make desired number of objects with max heat size.

I Multiple constraint bounded knapsack problem that can be scaled.

I With special crossover and mutation operators, scales to 1B parameters.

Result: Complexity and Deceptive Interactions

I Many real-world problems involve non-linear and deceptive interactions.

I Example: Shinkansen bullet train nose design.

I Evolutionary search can discover unconventional but e↵ective solutions.

Result: Unlikely and Surprising Solutions

I Evolution discovers counterintuitive solutions in various fields.

I Examples: Improving principled human design by 45% in a webpage
optimization task.

Demo:



Result: New Scientific Discoveries

I Creativity beyond human-designed boundaries.
I LLMs are unlikely to make such discoveries

I They cannot tell when they hallucinate.

I They cannot tell what is new.

I Example: Discovering that basil does not need to sleep.

Putting Metalearning to Work I: Bilevel Neuroevolution

I Optimizes parameters in nested optimization problems.

I Upper level: Finds best parameters for lower-level neuroevolution.

I Goal: Automate parameter search for better neuroevolution results.

Formalization of Bilevel Optimization

maximize
pu

Fu(pu) = E [Fl(pl)|(pu)] (1)

subject to pl = Ol(pu) (2)

I pu: Upper-level parameters, pl : Lower-level parameters.

I Ol : Lower-level optimization, Ou: Upper-level optimization.

Application in Helicopter Hovering

I Bilevel optimization can improve performance in control tasks.

I Task: Keep helicopter hovering despite disturbances.

I Neuroevolution optimizes parameters for stability and control.



Advantages Over Hand-Tuning

I Eight neuroevolution parameters: mutation probability, rate, amount,
replacement rate and fraction, population size, crossover probability, and
crossover averaging rate.

I Hand-tuned parameter values in prior work.

I Bilevel optimization finds superior parameter values.

https://nn.cs.utexas.edu/?liang_gecco_demo

Increased Complexity is Useful

I Makes it possible to optimize more parameters.

I E.g. in the double pole-balancing, 15 instead of 5 or 0.

I Humans are limited to about 7 +/1 2

I Finds better solutions with more parameters.

Bilevel Neuroevolution with Surrogate Models

I Bilevel evolution is expensive if fully nested.
I Surrogate models predict fitness without full neuroevolution.

I Quadratic functions, random forests, and neural networks.

I Need to obtain enough training data to guide upper-level evolution

Extending Bilevel Optimization

I Adapting parameters online during the optimization.

I Multiple levels of optimization.



Putting Metalearning to Work II. Loss-Function Optimization

Enhances performance on unseen data.

Regularization and Robustness with Baikal Loss

I Baikal loss improves network robustness against perturbations.

I Helps maintain performance with adversarial inputs.

I Enables better generalization in low-data environments.



Putting Metalearning to Work III. Activation Function Optimization





Taking advantage of Benchmarks and Surrogates

I Construct benchmark datasets by exploring large search spaces.

I Use insights from benchmarks to design surrogate models.

I Surrogates help search in larger spaces without full training.



AQuaSurF Approach for Activation Function Discovery
I Exhaustive search with 2913 activation functions on di↵erent tasks.
I Activation functions tested across All-CNN, ResNet, and MobileViT

architectures.
I Results: only a small subset performs well, with task-specific and general

functions.

Surrogate Design
I Fisher Information Matrix (FIM) eigenvalues represent network behavior.
I Activation function shape o↵ers a di↵erent characterization.
I Combined FIM and function shape create a powerful surrogate space.
I Similar functions cluster together, simplifying search for e↵ective designs.

Scaling Up With Surrogates

I With surrogates, can search a much larger space of 400,000 candidate
functions.

I Original benchmark functions embedded as a small fraction.

Discoveries and Transfer

I Discovers new functions that outperform all benchmark activation
functions.

I These functions transfer e↵ectively to new datasets and architectures.



Balancing Refinement and Novelty

I AQuaSurF finds both refined and novel activation functions.

I Customizations of known functions (ELU, Swish) and entirely new ones.

I Functions with unique derivatives and saturation patterns.

Top-3 Novel exceeding ReLU

Surprise: Sigmoid Rediscovery in AQuaSurF

I Rediscovered sigmoid activation in CoAtNet for specific tasks.

I Input values utilize it like a ReLU in early training.

I Input values utilize it like a sigmoid (that saturates) in later training.

I Demonstrates potential of metalearning to challenge deep learning
conventions.

Putting Metalearning to Work IV: Evolving Data Augmentation Strategies

I Data augmentation optimizes the coverage of training data.

I Usually random modifications of existing samples.

I Ensures comprehensive interpolation between samples.

Extending to Evolutionary Data Augmentation

I Evolution can optimize augmentation techniques based on task
requirements.

I Generate di�cult examples that result in better learning.

I Can also be used to optimize secondary objectives.

I Mitigate bias, optimize fairness, and increase sample diversity.



Putting Metalearning to Work V: Evolving Learning Methods

I AutoML-Zero evolves learning methods from fundamental operations.

I Methods for setup, predict, and learn, using basic mathematical
operations.

I Genetic programming of code for CIFAR-10 object classification.

Discoveries in AutoML-Zero

I AutoML-Zero discovered linear models and gradient descent from scratch.

I Improvement features like regularization, learning-rate decay, ReLU.

I Demonstrates potential for evolving complex learning mechanisms.

Potential of Evolved Learning Algorithms

I Evolution must be guided within large search spaces for meaningful
solutions.

I Potential in customizing methods for specific domains.

I Future work: balancing freedom of creation with solution relevance.


