Metalearning in Neuroevolution

Risto Miikkulainen

November 6, 2024

1. Versatility

» Evolution is versatile and comprehensive:

» Can be applied to Continuous values; discrete values; graph structures;
design choices.

» All of those are aspects of neural network designs.

Max Network
Generation 67

Introduction to Metalearning

» Metalearning means optimizing designs of learning systems.
> "Learning to learn”, configuration, hierarchical adaptation.
» Too complex to optimize by hand.
» Many techniques can be used for metalearning:
> Gradient descent; Bayesian optimization; Reinforcement learning;
Evolutionary optimization.
» Why evolution?

Max Network
Generation 67

2. Creativity

» Evolution is creative:
» Allows finding solutions in deceptive, multi-peak landscapes.

» Multiobjective search; novelty search; neutral mutations.

3. Scaling to Large Search Spaces 4. Scaling to High-Dimensional Problems

» Evolution can optimize many variables at once.

. » Humans can handle 7+ /-2; Bayesian optimization about 10-15.
» Evolution scales to large search spaces.

o » Example: Metal casting scheduling process with many objects and many
» Example: 70-bit multiplexer with 22" solutions. heats.

» The universe is minuscule compared to this search space.

> Make desired number of objects with max heat size.
> Evolution leverages partial solutions as stepping stones.

> Multiple constraint bounded knapsack problem that can be scaled.
> With special crossover and mutation operators, scales to 1B parameters.

1M
’8‘ 6.2d
< 100k 1.6d
A0 g
Al
n £ 10k 2.8h
Do T 1k 16.7
D1 Output = D(A0A1A2) 8 I
D2 > .
oa g 100 1.7m
b4 =]
D5 o
D6 g 10 10s
D7 L Lo L o o
o T S N T I S S

50k 500k S5M 50M 500M
100k 1M 10M 100M 1B

Number of Variables

Result: Complexity and Deceptive Interactions Result: Unlikely and Surprising Solutions

» Evolution discovers counterintuitive solutions in various fields.

» Examples: Improving principled human design by 45% in a webpage
optimization task.

» Many real-world problems involve non-linear and deceptive interactions.
» Example: Shinkansen bullet train nose design.

» Evolutionary search can discover unconventional but effective solutions.

soo et s
| Ascend by Evolv
N700% 72 h¥vSU— -
ABUV Media: The Results
Control Top Experiment Performer

to Become
CHOOSE A PROGRAM
DOCTOR CAREER BASICS

MARERANRSEY a L
Cont

Contral Jpan Rafvwy Corgang. W1 rights reser e

22

Cognizant

Result: New Scientific Discoveries Putting Metalearning to Work |: Bilevel Neuroevolution

» Creativity beyond human-designed boundaries. » Optimizes parameters in nested optimization problems.

» LLMs are unlikely to make such discoveries > Upper level: Finds best parameters for lower-level neuroevolution.
» They cannot tell when they hallucinate.

. » Goal: Automate parameter search for better neuroevolution results.
» They cannot tell what is new.

» Example: Discovering that basil does not need to sleep.

Genetic
2 Algorithm

Upper Level (O,): MEA

Genetic™_.-".. /
) Algorithm '\

Photoperiod

Formalization of Bilevel Optimization Application in Helicopter Hovering

maximize Fy(pu) = E[Fi(p1)[(pu)] (1)
P » Bilevel optimization can improve performance in control tasks.

subject to pr = Oy(p.) © » Task: Keep helicopter hovering despite disturbances.

» Neuroevolution optimizes parameters for stability and control.
» p,: Upper-level parameters, p;: Lower-level parameters.

» O;: Lower-level optimization, O,: Upper-level optimization.

Genetic
2 Algorithm

Genetic "
) Algorithm '\

Advantages Over Hand-Tuning

» Eight neuroevolution parameters: mutation probability, rate, amount,
replacement rate and fraction, population size, crossover probability, and
crossover averaging rate.

» Hand-tuned parameter values in prior work.

» Bilevel optimization finds superior parameter values.

Fitness of Best Individual

100 150 200 250
Helicopter Evaluations (100s)

https://nn.cs.utexas.edu/?liang_gecco_demo

Bilevel Neuroevolution with Surrogate Models

> Bilevel evolution is expensive if fully nested.
» Surrogate models predict fitness without full neuroevolution.

» Quadratic functions, random forests, and neural networks.
» Need to obtain enough training data to guide upper-level evolution

Upper Level (O,): MEA

Environment

S
.
U

O

L)

.,

s

Increased Complexity is Useful

> Makes it possible to optimize more parameters.
» E.g. in the double pole-balancing, 15 instead of 5 or 0.
» Humans are limited to about 7 +/1 2

» Finds better solutions with more parameters.

Fractions of Runs thatare Successful

2 /
02 PNE;s success rate:1.0 avg num evals: 1284
PNE; success rate:0.985 avg num evals: 1859

! - = PNE success rate:1.0 avg num evals:7582

[0 000 35000 40

Extending Bilevel Optimization

» Adapting parameters online during the optimization.

» Multiple levels of optimization.

Genetic
», Algorithm

Upper Level (O,): MEA

Putting Metalearning to Work |l. Loss-Function Optimization

w_ loglesswhentuelabel=l Evolution of Loss Functions
1 | mLmmnmnaxumw?mn.cslgonmm, (2) Coefficient optimization via CMA-ES. e Setaton Moan Vector e
o\, 000 L b
1 0o ,0%¢g o b b =
: —— = | [@ooooo ‘=
e | & J . sansoutn ¥ [==]
o ° g o [mopanE) D (@@ m*mm]
2 B ;/=—37§x, log(y) .‘f=f%gﬁ(r;x,‘u1ug(r,y,)) > 2’=*%§/bw,)
of
o 5 v o o ¥ GLO: Evolve the function through Genetic Programming
predicted probability « Optimize coefficients with CMA-ES (Gonzalez and Miikkulainen 2020)
Loss function defines the learning goal in supervised learning TaylorGLO: Optimize coefficients of a Taylor approximation

. » CMA-ES on 3 order approximation (Gonzalez and Miikkulainen 2021a)
* Need to be amenable to gradient descent For a given learning task and network architecture

¢ Need to define desirable minima + E.g. MNIST, CIFAR10, SVHN with AICNN, WRN, PreResNet
Cross-entropy, or log loss is most common, e.g. in classification: * Fitness based on validation accuracv

ELog = _% 2?2_01 Li log(yl)

Regularization and Robustness with Baikal Loss

A Surprising Result: Balkal LOSS » Baikal loss improves network robustness against perturbations.
» Helps maintain performance with adversarial inputs.
* a0 oo] » Enables better generalization in low-data environments.
t P g%
5 — LogLoss g 400 g 400
& 10 Baikal 200 200
BaikalCMA
. e A R 100
0 02 04 06 08 10 Log Loss Network Output Probabilities BaikalCMA Network Output Probabilities "
Predicted Label (yo) 80
3
1.0000 E
. go,sszs § 60
Loss increases close to the correct label! ¢ - toglos <
Results in regularization 2 BalkalOMA Loss 8
. & 0.887¢
« Prevents overfitting to the correct label o 20
« Still allows for correct class to be identified ©85% 160 3000 5750 8500 11250 14000 16750 19500
Difficult to discover by hand Training Step 0
-1.0 -0.5 0 0.5 1.0

Enhances performance on unseen data. Perturbation Along Random Basis Vector

Generative Adversarial Networks (GANS)

(Goodfellow et al. 2014)
A generator creates images

: A discriminator decides whether generated or real Generallzatlon . LOSS FU nCtlonS fOI’ GAN S

Indirect training of generator through the discriminator

Formulation Loss D (real) Loss D (fake) Loss G (fake)
- - N\ / ' Ex~Poaa Ez-p, E;-p,
. P —— < GAN (minimax) [?] —logD(x) —log(1-D(G(z))) log(1-D(G(2)))
i‘, . &.. ‘/ N GAN (non-saturating) [9] —logD(x) —log(1-D(G(2))) —logD(G(z))
i - WGAN [2] -D(x) D(G(2) -D(G(2))
LSGAN [21] 3(D(x) - 1)? 1(D(G(2)))? 3(D(G(2)) - 1)
« Difficult to train: stability, mode collapse, sl . .
e T S Ty o e coTiapse, Stow GAN s are difficult to train

» Can produce impressive images
« Can be directed through conditioning with additional input * Mode collapse and instabilities

* Many proposals for loss functions

Optimize D(real), D(fake), and G(fake) loss functions separately
» 3 order TaylorGLO (Gonzalez et al. 2021b)

Source A

Putting Metalearning to Work Ill. Activation Function Optimization

Loss Functions for GANs

Lp,., = 5.6484 (D(x) — 8.3399) +9.4935 (D(x) — 8.3399)%+8.2695 (D(x) — 8.3399)*

Lp,,. = 6.7549 (D(G(2)) - 8.6177) + 2.4328 (D(G(2)) — 8.6177)% +8.0006 (D(G(2)) — 8.6177)°

LGy = 0.0000 (D(G(2)) — 5.2232) + 5.2849 (D(G(2)) — 5.2232)% +0.0000 (D(G(2)) - 5.2232)°

CMP Fagade dataset, pix2pix-HD model, 2 metrics:

» Structural similarity index (SSIM) btw G and ground truth

» Perceptual distance: L1 btw VGG-16 ImageNet embeddings
TaylorGAN improves on both metrics against Wasserstein
* 11.66 vs. 9.43; 2029 vs. 2040

» Better color; better boundaries/sky; better detail

Originally sigmoid, tanh, Gaussian
* Representation theorems, effective on shallow networks

» Helped with vanishing gradients; faster to compute
Even small modifications can have large effects:

Synergy of evolution and learning:
» Optimize the goal of learning

Activation Function Metalearning
WRN-28-10, CIFAR-10 WRN-28-10, CIFAR-100 ‘WRN-40-4, CIFAR-100
24 1.0 4

0.0

-2 0 2 -2 0 2 —'l() 0 10
@) () ©
Can we find better general functions?
Can we specialize functions to tasks and architectures?
A possible synergy:
» Evolve function shapes
* Optimize parameters with gradient descent

PANGAEA (Bingham & Miikkulainen 2020)

Evolution of Function Shapes

Baseline Functions

Given a parent activation function, one of four mutations is randomly applied tc

produce a child activation function.

(a) Parent (b) Insert (¢) Remove (d) Change

(e) Regenerate

Search Space

e Two kinds of computation graphs
e Randomly initialized with unary and binary

i

operators [Unaryj [Unaryj [Unaryj
Unary Binary
0 lz| erf(z) tanh(z) arcsinh(z) ReLU(z) Softplus(z) 1 +x2 z]?
1 z=! erfe(z) € —1 arctanh(z) ELU(z) Softsign(z) z1 — @2 max{z1,z2}
T z? sinh(z) o(z) bessel_i0e(z) SELU(z) HardSigmoid(z) 1-22 min{z1, 22}

-z e cosh(z) log(o(z)) besselile(z) Swish(z)

x1/T2

Learning of Parameters

e Parameterization allows fine-tuning during
backpropagation

e Per-channel learnable parameters are
inserted at up to three random edges

ao(f|z| — arctan(yx))

Evolutionary Progress

Architectures
e Wide ResNet (WRN-10-4)
o ResNet (ResNet-v1-56)
e Preactivation ResNet

(ResNet-v2-56)
Dataset: CIFAR-100

Plot shows best accuracy with all
functions evaluated so far.

3 independent runs — selective
pressure to discover activation
functions specialized to each model

Performance

Specialized functions
e Achieve the highest performance with
architecture for which they were
evolved
e May not transfer across architectures

General functions
e Achieve good performance on multiple
architectures
e Outperform most baselines, but not
the best specialized functions

ynergy of and
Functional form and fine-tuning over space
and time

0.75 min{Swish(z), acosh(ELU
i

0.74 =
ReLU(8z)}

y

S
&
@

072 —&

carcsinh(az) _

071 — ===

0.70

Validation Accurac;
[]

0.69
0.68

0.67 &

ELU(ReLU(Bz))}

log(q(x)) - arcsinh(z)

ResNet-v2-56
Acc. w/ ReLU
Annotated func.

0 200 400 600 800 1000

Activation Functions Evaluated

'WRN-10-4 ResNet-v1-56

ResNet-v2-56

Specialized for WRN-10-4
log(a(ax)) - arcsinh(z)
log(o(ax)) - Barcsinh(z)
—Swish(Swish(az))

78.23 (7316 +0.41) ¢4+ 1115 (19.84 £ 20.10)
73.22 (1320 £0.37) *** 44+ 05.78 (18.63 = 21.01)
72.38 (72,49 + 0.55) *++ 59.61 (58.86 = 2.88)

72.05 (64.50 £ 21.52)
55.40 (15,55 £ 30.70)
7470 (7471 £ 0.20) *

Specialized for ResNet-v1-56
az — Blog(o(vz))

az — log(o())
max{Swish(z), 0}

70.35 (10.28 £ 0.37)
70.62 (70.47 £ 0.5)
7196 (7210 £ 0.33) *+

70.82 (71.01 £ 0.64) *+e v
70.30 (0.30 £ 0.58) *
69.46 (69.43 + 0.69)

7441 (74.35 £ 0.05)
7473 (7470 £ 0.2
TA97 (74.97 £ 0.25) =+

Specialized for ResNet-v2-56
Sofplus(ELU(x))
min{log(o(z)), @ log(o(8z))}
SELU(Swish(z))

7151 (71.36 £ 0.34)
72.05 (7200 4 0.80)
01.00 (01.00 £ 0.00)

69.94 (69.96 £ 0.39)
69.63 (69.56 = 0.45)
01.00 (01.00 = 0.00)

75.60 (75.61 £0.42) *++
75.20 (75.19-+ 0.39)
75.06 (75.02 % 0.35) **

General Activation Functions
max{Swish(z), o log(o(ReLU(z)))} 72.50 (r2.54
min{Swish(z), aELU(ReLU(Bz))} 7244 (r230 =
log(o(x)) 72.38 (1233 £ 0.32

69.97 (69.91 = 0.37)
69.90 (69.52 = 0.40)
69.49 (69.58 £ 0.35)

75.21 (75.20 £ 0.4
75.20 (75.27 £ 0.3
75.45 (75.53 + 0.37) *o+

Baseline Activation Functions
ReLU

7144 (7146 % 0.50) 69.78 (69.64 = 0.65)

ELiSH 01.00 (01.00 £ 0.00) 01.00 (01.00 £ 0.00)
ELU 7241 (7230 £ 0.32) 69.59 (69.67 = 0.46)
GELU 72.00 (71.95 £ 0.35) * (70.19 £0.40)
HardSigmoid 55.55 (54.99 £ 1.00) (52.55 = 4.06)
Leaky ReLU 7176 (71.73 £ 0.33) 69.77 (69.78 £ 0.33)
Mish 72.02 (71.95 £ 0.41) * 70.03 (69.58 = 0.58)
SELU 70.55 (0.5 6851 (63.52 = 0.29)
sigmoid 6. B37.07 (36.47 £ 3.52)
Softplus 72.25 (7227 % 0.20) 4+ 69.71 (69.71 = 0.30)
Softsign 56.72 (56,50 £ 2.16) 58.33 (58.38 £ 0.95)
Swish T2.27 (7226 % 0.28) 69.60 (69.05 = 0.38)

56.29 (56.52 + 1.53)

63.89 (63.88 % 0.38)

74.84 (7456 £ 0.33) *
65.03 (64.90 + 0.69)
T4.75 (74.73 £ 0.35) *
75.33 (75.32 £0.20) ***
73.86 (1379 + 0.36)
66.72 (66.45 £ 0.92)

7547 (75.46 +
69.31 (69.33 £ 0.39)
75.17 (75.08 + 0.36) *o+
70.53 (70.44 + 0.10)

Parametric Baseline Functions
PReLU 72.25 (1228 £0.37) *=*
PSwish = z - o(fz) T72.46 (72.40 £ 0.31) *=*

69.67 (69.77 + 0.40)
70.19 (70.16 £ 0.46) *

74.99 (15.10 £ 0.53) **
75.37 (75.39 4 0.28) =+

Statistical significance over ReLU (*, **, ***) and over all baselines (+, ++, +++)

Parametric Activation Functions across Space and Time

Jog(o(@)) - 2reSHE) 0y, - parcsinh(@) Ly swish(@®)) . _ g10g(0(12)) ., _ tog(a(B))

Parameters change during training,
resulting in different activation functions
in the early and late stages.

Parameters are separate across
channels, inducing different activation
functions at different locations in a
network.

Taking advantage of Benchmarks and Surrogates

vy

Use insights from benchmarks to design surrogate models.

v

g

Construct benchmark datasets by exploring large search spaces.

Surrogates help search in larger spaces without full training.

Epoch 200

Epoch 0

Deep Layer

Shallow Layer

AQuaSurF Approach for Activation Function Discovery Surrogate Design

» Exhaustive search with 2913 activation functions on different tasks. » Fisher Information Matrix (FIM) eigenvalues represent network behavior.
> Activation functions tested across All-CNN, ResNet, and MobileViT > Activation function shape offers a different characterization.
architectures. » Combined FIM and function shape create a powerful surrogate space.

> Results: only a small subset performs well, with task-specific and general Similar functions cluster together, simplifying search for effective designs.

functions. Act-Bench-CNN Act-Bench-ResNet Act-Bench-ViT

relu(x),___identity(x)

W - ,
" tanh(dEe \@“5 s
_ton (<3 ’p B -
S : z -
. e

FIM Eigenvalues

Activation Function Out[uts
Validation Accuracy

Eigenvalues & Outputs

0.1

.l "
HHEHEHEHEHEERMM At VAW A Vo) Ado ¥ b0

Scaling Up With Surrogates Discoveries and Transfer

» With surrogates, can search a much larger space of 400,000 candidate

. » Discovers new functions that outperform all benchmark activation
functions.

functions.

Original benchmark functions embedded as a small fraction. » These functions transfer effectively to new datasets and architectures.

AllI-CNN-C ResNet-56 MobileViTv2-0.5
CIFAR-100 CIFAR-100 ImageNet
>vo 3
LVod
Cc
=1
o
U
<o
CO
L
82
=0
i s
g T T T T T T
0 50 100 O 100 O 50 100
Functions Evaluated
« elu(x) =« =« sigmoid(x) = = swish(x) New function
« relu(x) = = = softplus(x) = = = tanh(x) e Best so far

« selu(x) = = =« softsign(x)

Balancing Refinement and Novelty

» AQuaSurF finds both refined and novel activation functions.

» Customizations of known functions (ELU, Swish) and entirely new ones.

» Functions with unique derivatives and saturation patterns.

. ofSoftsign(x)) - ELU (/SELU(
HS(HS(9) - ELU ; {(Softsignix)) - ELL s Sish(/SELUL) max{Swish(x), erf(SELU(x))} Max{=x,10g(a(1/x))} min{x?, SELU(Swish(x))}
4 4 6 7] 6 N Vi
o 6
£ ¢ 24 a
z : . / / \ : /
< 32 2 2
0
= 0= o 0 0 o
LUGsi =))u —erfc(ELU() Softsign(x) + SELUG) + x| _—SELU(x)-HS(x) _min{x. bessel i0e(Softplus(x))}
0 | o 4= = S —]
gl @10
5 -5 il -2 >
Zs 5 2 \ /
g s 4 -2
° 10 / & 6
0 = o B N6 17
_ —x.00) HS() _ELU(Swish(-x)) Swish(x)-erfc(bessel i0e(x)) - ELU(Swish(x Ixl(ox) =1) _Swish(x) = Softsign(Softsign(x))
w 0T = Iy T e e S
22 4 3
£ \ 4 \ E N -2 / A
£ g
2-4 2 2 2 / -4 2 A —
3 22
L |
E \| o 0 = -6 12 LI =:
1o —X} arcsinh(ELU(Swish(x)))) oarclan (Swish(x —tanh(x()’ erf(ELU(x) - o(x) —Swish(arcsinh(x))
. 0] X =
2
3 -2 g
Zos NIE / o5 _ps .
§ -s g /1 \
00 .0 2
0.0 -6 v ©
s 0 5 5 0o 5 -5 0 s -5 0 s -5 0 5 -5 0 s
Top-3 Novel exceeding ReLU
o = -

Putting Metalearning to Work IV: Evolving Data Augmentation Strategies

» Data augmentation optimizes the coverage of training data.

» Usually random modifications of existing samples.

» Ensures comprehensive interpolation between samples.

Sequential Data

Augmentation Policy

I

d

App - Data (EDA)
Predictions Predictions
EDA Loop
4 4 —

S_—

Deep Neural Deep Neural
e i S
& + @

Random Flip
Random Crop

Adjust Contrast

EDA Policy Graph
09
L

(LT octermines oy Patn
resaeier

A

ravon egas rom Dataset

Mutate New Individuals

Surprise: Sigmoid Rediscovery in AQuaSurF

» Rediscovered sigmoid activation in CoAtNet for specific tasks.

» Input values utilize it like a ReLU in early training.

» Input values utilize it like a sigmoid (that saturates) in later training.

» Demonstrates potential of metalearning to challenge deep learning

conventions.

[At Initialization

1.0

After Training
— erfc(Softplus(x))?

N\

0.8

0.6

0.2

0.0

Extending to Evolutionary Data Augmentation

» Evolution can optimize augmentation techniques based on task

requirements.

» Generate difficult examples that result in better learning.

» Can also be used to optimize secondary objectives.
» Mitigate bias, optimize fairness, and increase sample diversity.
— \pp! —_ Data (EDA)
Predictions Predictions
EDA Loop
2 4 o
- — " |
Network Model Network Model l
& + @
EH H I Wt o ncividols
IR 1.4
H € 4 e
i
T +
[oot [T
=B (B3 -
NI, S
ar <@ = = =

Putting Metalearning to Work V: Evolving Learning Methods Discoveries in AutoML-Zero

> AutoML-Zero evolves learning methods from fundamental operations. > AutoML-Zero discovered linear models and gradient descent from scratch.

» Methods for setup, predict, and learn, using basic mathematical >

‘ Improvement features like regularization, learning-rate decay, ReLU.
operations.

])) o > Demonstrates potential for evolving complex learning mechanisms.
» Genetic programming of code for CIFAR-10 object classification.

B Multiplicative Interactions
def Setup():
def Setup(): Multiplicative Interactions O i

Tt ehts def Learn(): # sO=label
- nit wei & X
¥ Tnit veights def Learn() # sO=label . (SGD) = gaussian(0.0, 0.01) 3 = s1 / s2 # Scale predict. Multiplicative Interactions
Scale predict. i s3 # Compute error
vi ga‘,ssm,,(o 0, 0.01) Multiplicative Interactions 2 =-1.3 (Flawed SG
Compute error (Flawed SGD) v0 # Gradient i -
82 = -1.3 # Gradient i . 0.9, def Predict(): # vO=features v2 # Update weights | Oradient Normalization
0.9, def Predict(): # vO=features # Update weights Gradient Normalization ° = dot(v0, v1) # Prediction
= dot(v0, v1) # Prediction v PO Random Weight Init
Random Weight Init . e
Linear Model _onomPeeR ™ / (Flawed SGD) Random Learning Rate p——" -
(Flawed SGD) Random Learning Rate _p————% ’ — BBl i
/ Best Evolved Algorithm / A RelU 4ot sevup(:
, p— ef Setup
- p— ReLU et Setup(): 2 / Better Hard-coded LR s4 = 1.8e-3 # Learning rate
B / Better) H_ard-coded LR s4 = 1.8e-3 # Learning rate u?_, . HParams Gradient Divided def Prsd,ct() # vO=features
K A HParams Gfald'e"th?“"ded def Predict(): # vO=features > Linear Model (SGD) by Input Norm = v0 + vl # Add noise
> Linear Model (SGD) by Input Norm v0 + v1 # Add noise 2 Loss Clipping A e
] Loss Clipping v0 - vi # Subtract noise 3 v4 = dot(m0, v2) # Linear
2 dot(m0, v2) # Linear 2 sl = dot(v3, v4) # Mult.interac.
g dot(v3, v4) # Mult.interac. = m0 = s2 * m2 # Copy weights
- :]
g Linear Model 52 % u2 & Copy welghts & (Lh‘}‘oeg’g“é;"’e' def Learn(): # sO=label
2 (No SGD) def Learn(): # sO=label s3 = s0 - sl # Compute error
s0 - s1 # Compute error m0 = outer(v3, v0) # Approx grad
outer(v3, v0) # Approx grad s2 = norm(m0) # Approx grad norm
norm(m0) # Approx grad norm def Setup(): sb = s3 / s2 # Normalized error
def Setup(): s: i sg # Normalized error def PredictO): vg = ssts ‘Ess D 0
def Predict(): £3 8 4 . L) D C iy T ==
- X outer (v5, v2) # Grad def Learn(): ml = ml + m0 # Update weights
def Learn(): ml + m0 # Update weights m2 = m2 + ml # Accumulate wghts.
m2 + ml # Accumilate wghts. . mo = s4 * mi
Empty Algorithm s4 * mt EmELy2 gotithm) # Generate moise
Generate noise vl = uniform(2.4e-3, 0.67)
vl = uniform(2.4e-3, 0.67) 0.5) 60—
05/ — — .
—, o 10 Experiment Progress (Log # Algorithms Evaluated) 12
o 10 Experiment Progress (Log # Algorithms Evaluated) 12

Potential of Evolved Learning Algorithms

» Evolution must be guided within large search spaces for meaningful
solutions.

» Potential in customizing methods for specific domains.

» Future work: balancing freedom of creation with solution relevance.

def Setup():
Init weights
vi gausslan(ﬁ 0, 0.01)
s2=-1.3

0.9, def Predict(): # vO=features

Multiplicative Interactions
def Learn() # sO=label (SGD)

Scale predict. Multiplicative Interactions
Compute error (Flawed SGD)
Gradient

Gradient Normalization

Update weights
= dot(v0, v1) # Prediction
Random Weight Init
Linear Model _oondom eI ™ S
Flawed SGD Random Learning Rate p—— "~
(Elawe) andom Learning Rate Best Evolved Algorithm
, A
- p————— RelU 4ot Setup():
B / Better Hard-coded LR s4 = 1.8e-3 # Learning rate
8 — HParams gyfalg':&\ttm:ed dot Predict(): # vO=features
> Linear Model (SGD) v0 + vi # Add noise
9 X
@ Loss Clipping v0 - vi # Subtract noise
2 dot(m0, v2) # Linear
g dot(v3, v4) # Mult.interac.
= = s2 * m2 # Copy weights
3 (Lb“"oegrs'g;’de' s Learn(): # s0=label
s0 - s1 # Compute error
outer (v3, v0) # Approx grad
norm(m0) # Approx grad norm
def Setup(): s3 / s2 # Normalized error
def Predict(): £ @)
. outer (v, v2) # Grad
def Learn(): ml + m0 # Update weights
m2 + ml # Accumilate wghts.
y s4 * ml
Empty Algorithm # Generate noise
vl = uniform(2.4e-3, 0.67)
0.5 —

6_/

10 Experiment Progress (Log # Algorithms Evaluated) 12

