Can Different Metalearning Methods be Combined Synergetically? Challenges in Multi-Aspect Evolution

» Optimization of multiple design aspects should enhance performance.

» Taking advantage of potential synergies.

» Searching all design aspects simultaneously is computationally prohibitive.
» Full inner-outer loop structures would be too costly.

» Solution: Use surrogate models and alternate evolutionary focus.

> Potential for taking advantage of complexity beyond human design.
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EPBT System for Synergistic Evolution

» EPBT combines hyperparameter tuning, loss function optimization, and

population-based training.

» Evolves hyperparameters and loss functions during training.

» Overfitting becomes a problem:

> Use novelty pulsation to prevent convergence.

» Learn from labels+best individuals

0. Starting Population

1. Select Best Individuals

to regularize.

3. Evaluate Individuals

i
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2. Generate New Individuals

» Successful in e.g. CIFAR-10 over baseline and PBT.
» Smooth improvement instead of jumps.
» Difficult to get synergies to emerge.
» s it worth it?
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A Natural Experiment: Human Design vs. Evolutionary Metalearning

» Age estimation model design simultaneously by humans vs. metalearning.
» Over the same time period, utilizing the same base technologies.

» A friendly but real competition.
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Medical Aesthetics

F

A family of treatments to improve a patient’s appearance

» E.g. Alter facial skin texture through Botox or filler injections

» Outcome difficult to measure, often subjective

One potentially measurable goal is to reduce perceived age
+ Can we make it quantitative through Al-based age estimation?

Age-Estimation Datasets

Starting point: A neural network trained in age estimation
+ E.g. DenseNet, EfficientNet; Celebrity dataset
Improve performance by
« Utilizing a dataset of actual patient populations
» Optimizing the neural network through evolution
Demonstrate that treatment significantly reduces age estimates vs. placebo
» Measure confidence in the predictions using RIO:
A Gaussian Process model of residual error with input/output kernel

3 Cognizant

IMDB dataset of 172,000 celebrity faces commonly used

¢ Often retouched images, or treatments already done

¢ Difficult to estimate age

* E.g. DenseNet-121 validation error 7.43 years

Collected two patient datasets (with different treatments)

« DO0: 3719 patients, ages 18-79, 10,837 training, 2692 testing images, 224x224
« D1: 5998 patients, ages 18-80, 18,537 training, 3733 testing images, 512x512
» E.g. DenseNet-169 validation error 3.65 years

Thus, using realistic datasets matters

Cognizant
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Evolving Age-Estimation Networks

Parameter Possible Values Type Class
Algorithm [adam, rmsprop] ~ Enum Opt
Initial Learning Rate (LR) [1e-5, 1e-3] Float Opt
Momentum [0.7, 0.99] Float Opt
(Weight Decay) / LR [26] [1e-7, 1e-3] Float Opt
Patience (Epochs) [1, 20] Int Opt
SWA Epochs [21] [1, 20] Int Opt
Rotation Range (Degrees) [1, 60] Int Aug
Width Shift Range [0.01, 0.3] Float  Aug
Height Shift Range [0.01, 0.3] Float  Aug
Shear Range [0.01, 0.3] Float  Aug
Zoom Range [0.01, 0.3] Float  Aug
Horizontal Flip {True, False} Bool  Aug
Vertical Flip {True, False} Bool  Aug
Cutout Probability [7] [0.01, 0.999] Float  Aug
Cutout Max Proportion [7] [0.05, 0.5] Float  Aug
Pretrained Base Model Keras App. [5] Enum  Arch
Base Model Output Blocks {B0, B1, B2, B3} Subset Arch
Loss function A in Eq. 5 [0, 1] Float  Arch

Evolving solutions using LEAF

« Evolve backprop, data augmentation,
architecture hyperparameters

« Population-based training:
20 epochs in each generation

« Loss-function optimization

» Ensembling of evolved solutions

Fitness, training loss a combination of
* Minimize Mean Absolute Error (MAE)
* Cross-entropy (CE)

Cognizant
Age-Estimation Discoveries
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Meaningful data augmentation
« Vertical flips instead of horizontal: images had 90-degree rotation
» 5x width shift range: Less overfitting to forehead and chin
Different losses at different stages: Less overfitting with MAE early
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Evolution improves significantly over SotA image models
« Fit to the design to the task

Optimizes better than humans can

* Many more parameters simultaneously

DO stages:
ResNet-50,
DenseNet-169

D1 stages:
DenseNet-169,
DenseNet-201,
EfficientNet-B6,
epochs, resolution

Human optimization
based on ResNet-50,
EfficentNet-B6

Age Prediction MAE

Evaluating Treatments
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Performance exceeds that of humans: 2.19 vs. 3-4 years

* A possible basis for quantitative evaluation of treatment effects
Need a method to estimate confidence in the predictions
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RIO: Residual Estimation with an Input+Output Kernel

Data Data Scientist | Uncertainty Estimation i Deployment
and Error Correction 1
D prediction
X
i
NN e GP ; uncertainty
y / J 1

(Qiu et al. 2020)

« Adds to existing NNs: No changes to structure or pipeline
* Based on modeling prediction residuals with GP
* Includes both NN input and output as kernel

« Estimates uncertainty and improves predictions

9 Cognizant

Treatment Evaluation Dataset (D2)

A single Botox study with 787 patients 21-76 years

+ 3925 images taken before treatment

* 68,799 after at 1 and 2 weeks, monthly until 6 months
Two different treatments (injection volumes)

* 156 placebo patients; 5190 images

« Single injection only Metric Value

Pre-treatment age bias removed Original MAE 1.6

) MAE withRIO 148

RIO evaluated with pre-treatment data 95% CI Coverage  94.2%

* Improved age estimation from 1.61 to 1.48 years 90% CI Coverage  89.2%

» Accurate coverage of 95%, 90%, 68% confidence intervals 68% CI Coverage 69.2%
1 Cognizant

Why Does RIO Work?

Data Data Scientist Uncertainty Estimation Deployment
| and Error Correction
E (%) ‘ prediction
X |
PR ' o GP uncertainty
y -

Why is RIO better than NN alone or GP alone?

NN is expressive (i.e. has high variance)

* Learns structure that GP would treat as noise
Remaining structure is easier to learn

* GP can capture part of it

* GPis more regular than NN

Estimating Treatment Effect

Screening-  Week1  Week2  Day30 Day 60 Day90  Day120  Day150  Day180
Day 1

~—@—Placebo «—@—Treatmentl «@-Treatment2

Cognizant

Treatment reduces perceived age significantly compared to placebo injections

+ 0.5 years in 6 months, i.e. 1 year overall
» Main effect in 1-2 months, then stable

+ Actual treatments include multiple injections, with a cumulative effect

12

A new role for Al: Make subjective evaluations quantitative.

Cognizant



Conclusion of Synergistic Metalearning

» Evolutionary metalearning can outperform human optimization by
leveraging synergies.

Future Work

» Combined methods allow exploration of design spaces beyond human
capabilities.

» |t is difficult to get to work, but it is worth it.
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Evaluate cumulative effect of multiple injections, other treatments, combinations
Evaluate other outcomes, e.g. natural look (with GANs)
Predict the effect of treatments 250

Age Prediction MAE

Optimize the treatments to maximize desired outcomes
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Conclusion: The Power and Potential of Metalearning in Neuroevolution Introduction to Neuromorphic Systems

» Neuromorphic computing: Hardware for spiking neural networks.
> Purpose of Metalearning: u phi puting w piking neu w

» Metalearning makes neural network designs automatic, improving upon
human design.
P> Can evolve to take advantage of customized designs for specific settings.

» Notable implementations: IBM’s TrueNorth and Intel’s Loihi, with 1M
spiking neurons.

» Key Successes:

Improvement neuroevolution through bilevel optimization.

Discovery of regularization through Baikal loss function.

Customization through evolved activation functions and data augmentation.
Effective synergetic metalearning, and discovery of learning methods.
Demonstrated competitive edge over human-designed models in age
estimation.
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» Future Opportunities:
> Explore synergies between more complex aspects, like architecture and
learning method evolution.
> Refine surrogate modeling to expand search spaces further without
increased computational cost.
> Extend metalearning to newer architectures, such as transformers and
diffusion models.

Neurons

Connection
IBM TrueNorth

Intel Loihi



Motivations for Neuromorphic Computing Potential Applications for Neuromorphic Systems

» Primary goal: Energy-efficiency.

» Also fault-tolerance, real-time computing, and compact designs.

» Suitable for vision, sensing, control, and low-power devices.

» Edge applications: auditory/visual detection, brain-machine interfaces.
A)

» Neuromorphic systems offer feasible low-power solutions for remote
applications.

* *
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Why Use Neuroevolution for Neuromorphic Design? Challenges and Opportunities
» Different setting from standard neuroevolution.
> Spike timing, interference, leaky integration, refractory periods, low
> Bypasses the need for gradients (hard to compute in hardware). precision.
» Main goal is not accuracy, but energy efficiency.
> Takes advantage of small networks (easy to manufacture) > Manygsecondary objectiv}e/s. &y Y
» Arbitrary connectivity, recurrency.

» Optimizations matter!

> Often qualitative jumps result from changes in structure
> Principles not known.

» Many secondary objectives.

» Potential to co-design hardware and algorithms, optimizing both.
Get fitnesses for

allencodings
2
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» Many hyperparameters; conntinuous, discrete, binary, structure.
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Spiking Neurons and Hardware Implementations

» Spiking neurons use discrete events, reducing power usage.
» Offers new approaches to emulate biological neural networks.

> |s learning possible as well?
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Opportunity: Optimize Neuromorphic Learning

Inputs
%,

Neurons -
Connection

Hardware exists that allows modifying learning rules

» Should take advantage of it

Hunch: there are principles like STDP that can be discovered

» Abig idea in the long term: modify hardware to fit

» Maybe insights from neuroscience?

The main goal is performance but also power consumption (as always)

Learning with Spike-Timing-Dependent Plasticity (STDP)

» STDP strengthens connections when presynaptic spikes precede
postsynaptic firing.
» Encourages unsupervised learning based on timing.

i

» Extends Hebbian principle: “neurons that fire together wire together.’
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Details of Neuromorphic Learning
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Opportunity: Optimize Network Design

» Networks with unreliable devices (memristors)
> Can we not only mitigate, but actually leverage their behaviors and

interactions?
» Similar to the magnetic flux effect in FPGAs (Thompson 1998)

» Need good simulators because we need principled noise and interactions.

» Or develop a good surrogate model based on experiments.

» Start with an initial architecture and place devices into it.

A)

Neurons

Connection

EONS Framework for Neuromorphic Evolution

» Evolutionary Optimization of Neuromorphic Systems (EONS): flexible
structure and parameter optimization.

» Adapts to hardware constraints and task requirements.

» Allows for hardware-based implementation or simulation.
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Initial Approach: Reservoir Computing

» Reservoir networks with random recurrent connectivity create sequences.
» Train a network on top to take advantage of them.
» Effective for tasks requiring continuous temporal processing.

» Could also optimize the reservoir with neuroevolution.

Input layer Reservoir layer Output layer

Wwn (fixed)

Optimizing Reservoir Architectures with EONS

» EONS optimizes reservoir hyperparameters, connectivity, and weights.
» Used in applications requiring continuous learning and adaptability.

» Enhanced performance on complex tasks compared to grid search methods.

Evolving a Reservoir using EONS
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Case Study: Radiation Anomaly Detection

» ORNL dataset: A detector moving in an urban environment to find
nuclear threats.

» Detects hidden gamma-ray sources with low power consumption.
» EONS optimizes network topology, encoding, and spiking thresholds.

» Achieved competitive sensitivity with significant energy savings.

Direction of detector movement

o ——
ﬁWWWWﬁ@

Neuroevolved Controller Performance

> Trained on five tracks, tested on 15 others (in simulation)

» Evolved controllers showed robust performance across diverse
environments (best controller on average indicated by the red star).

» Smaller, energy-efficient designs with better results than human-tuned
controllers.

» Demonstrated performance transfer to the physical car as well.

EONS SNN Performance Variation on Train and Test Tracks
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Case Study: Control of Autonomous Vehicles (F1Tenth)

» Neuroevolution used for low-power autonomous control in the F1Tenth
race car.

» Optimized controller ran on pCaspian neuromorphic board.

Demo:

UM7 IMU Board

Traxxas Ford Fiesta Chassis and Drivetrain

Conclusions on Neuromorphic Neuroevolution

» Why Neuromorphic Neuroevolution?

> Optimizes neural architectures for edge applications.
> Improves energy use, size, fault-tolerance, latency.

» Key Successes:
> Improved performance on classification, detection, and control tasks with
minimal energy consumption.
> E.g. radiation anomaly detection with low-power.
> E.g. controller for an autonomous F1Tenth vehicle.

» Future Directions:
» Development of co-evolution techniques for hardware and neural
architectures.
> Integration of novel learning mechanisms, possibly advancing beyond
current models like STDP.
> Exploring new edge applications.



