Synergies with Reinforcement Learning

Sebastian Risi and Risto Miikkulainen

November 12, 2024

Key Strengths and Weaknesses of RL

» RL excels at solving sequential decision-making tasks and dynamic
environments.

» Useful in domains where the environment model is unknown or complex
(e.g., robotics, game playing).

» Challenges:

» High data and computational requirements.
> Sensitive to hyperparameters and unstable training.
» Struggles with high-dimensional state/action spaces.

state reward action
S; R, A,

_R.(

_S.. | Environment]4—

\

Introduction to RL and NE

» Reinforcement Learning (RL) and Neuroevolution (NE) are two key
methods to optimize neural networks.

» RL uses trial-and-error with rewards/punishments, while NE optimizes
networks through evolutionary algorithms.

» Both approaches have distinct strengths and weaknesses, and they can be
combined for better performance.

Key Strengths and Weaknesses of NE

» NE optimizes both network topology and parameters simultaneously.
» More robust to local minima compared to gradient-based methods in RL.

» Strengths:
> Diverse policies through repeated evolution.
> Suitable when the network structure is unknown.
» Limitations:
> Less effective for real-time adaptation.
> Lower sample efficiency in dense reward environments.

Get fitnesses for
all encodings

Evaluate in the task

" Sy, -
S - P2
S ST

¢ g
H 4
3
3
"
o

-, Ve
b 04

Population
of network
)\ encodings

Create
offspring
of good

cl0d

Discard

bad Tera

Decode
intoa

< _network

observation

Synergistic Combinations

» RL and NE can be combined to leverage their strengths.

» Hybrid methods such as Evolutionary Reinforcement Learning (ERL)
improve exploration and sample efficiency.

» We explore examples of these combinations.

Benefits of ERL

» EA provides effective exploration and handles sparse rewards better than
RL.

» RL improves sample efficiency through gradient-based learning.

» ERL outperforms pure EA and RL approaches in various continuous
control tasks.

Environment - oo/ : /

Fitnesses Experiences ” -
Evaluation . s

RL-Critic (a) HalfCheetah (b) Swimmer

Selection Actor Population

Actor 1 5 Y
pe . s
] i Uil
g H o Y
H A bt Y
Mutation Actorn RL-Actor : - e
- [P e o o
Inject learned behavior “ « s e s 10 13 20 25 30 35 A o 2 s .
New population ko populaton o st P Miton steps
(@ Ant (¢) Hopper (f) Walker2D

Evolutionary Reinforcement Learning (ERL)

» ERL combines evolutionary algorithms (EA) with deep RL to tackle
exploration issues.

» Periodically injects RL agent’s gradient information into the evolutionary
population.

» Balances exploration and exploitation with evolutionary diversity and
gradient-based learning.

Environment) o “ /
= L o2 y

Fitnesses cperien :
Evaluation Cgerenees #
RLCritic (2) HalfCheetah (b) Swimmer (c) Reacher
Selection Actor Population -
Actor 1 5
Actor2 > A
£
Mutation Actorn RL-Actor

o
[T

Inject learned behavior s s e 00 05 10 1s 30 35 40 o 2 s

into population on Steps o e K

() Walker2D

New population

(@ Ant (e) Hopper

ERL Exploration and Training Process
> EA explores in parameter space, RL explores in action space.
» Replay buffer stores state-action-reward transitions for RL training.

» Synchronization phase copies RL actor network weights back to the EA
population.

Environment

Fitnesses . Experiences
Evaluation .

RL-Critic
Selection Actor Population =
g
o
Actor 1 8
Actor 2 Iy
%)
.)
a
Mutation Actor n R

Inject learned behavior

New population into population

ERL in Continuous Control Tasks

» ERL significantly outperforms state-of-the-art DRL methods such as
DDPG and PPO.

» Effective in tasks with sparse rewards and deceptive fitness landscapes.

12000 00
10000 25
-5.0
8000 s

~10.0 /it s it
-125 H"stm ¥

-15.0

4000

Performance
Performance

2000
-17.5

-20.0

025 0.50 0.75 1.00 125 150 175 2.00
Million Steps

(a) HalfCheetah

025 050 0.75 100 125 150 175 2.00
Million Steps Million Steps

(b) Swimmer (c) Reacher
6000

S000 3000

4000 2500

3
£ 2000
&

£ 1500
£

3000

2000

Performance

1000

€ 1000 /

500 e st s

-1000 d o
[1 2 3 4 5 6 00 05 10 15 20 25 30 35 4.0 o 2 a4 6 8
Million Steps Million Steps Million Steps
(d) Ant (e) Hopper (f) Walker2D

Q-learning Overview

» Q-learning is a model-free RL algorithm aiming to learn the optimal
action-value function Q(s, a).

» The agent updates its Q-values based on observed rewards and future
states.

» Neural networks can approximate Q-tables for high-dimensional spaces.

QTable
State-Action

s

Il

Q Learning

Deep Q Learning

0.00 0.25 0.50 0.75 1.00 1.25 150 175 2.00

Evolving Value Networks for RL

Saore

>

>

Many RL algorithms rely on value functions to estimate cumulative
rewards.

NEAT evolves both network weights and architectures for better value
networks.

NEAT+Q-learning can outperform standard value function approximation
methods.

Uniform Moving Average Score Per Episode Uniform Moving Average Score Per Episode

NEAT+Q
NEAT
8
3
Q-Learning
Q-Learning
14000
14500
15000
o 200 400 600 0 1000 o 20 400 600 a0 1000
Episode (x1000) Episode (x1000)

(a) Mountain Car (b) Server Job Scheduling

NEAT+Q learning Performance

Saore

» NEAT evolves network architectures that help Q-learning learn more
efficiently.

» Q-learning with NEAT outperforms manually designed networks in tasks
like the mountain car and server job scheduling.

Uniform Moving Average Score Per Episode Uniform Moving Average Score Per Episode

o

50 - NEAT+Q

o

0

-200 NEAT

o 5

o

o Q-Learning

h Q-Learning

o 100

o usc0

500 0 200 400 600 800 1000 15000 0 200 400 600 800 1000

Episode (x1000)

(a) Mountain Car

Episode (x1000)

(b) Server Job Scheduling

NEAT+Q: Evolved Network Topologies

» NEAT evolves sparse, irregular network topologies that are hard to design
manually.

» These evolved networks excel in various RL tasks.

(a) Mountain Car (b) Server Job Scheduling

MAML-Baldwin Approach

» MAML-Baldwin combines an evolutionary algorithm in the outer loop with
RL in the inner loop.

» Evolves initial weights that can adapt to different tasks during the agent's
lifetime.

» E.g. in the half-cheetah tasks, adapts to changing directions within
seconds of simulation.

Evolutionary Meta-Learning

» Meta-learning aims to evolve networks that can rapidly adapt to new
tasks.

» Same term as before but more specific meaning in RL.
» Model-Agnostic Meta-Learning (MAML) finds good starting points for
learning.

» Evolutionary methods like MAML-Baldwin and ES-MAML improve on
MAML by using evolutionary algorithms.

— meta-learning

0 ---- learning/adaptation
VL;
VL,
V;Cl - ".03
CEY

ES-MAML Overview

» ES-MAML uses evolutionary strategies (ES) in both the outer and inner
loops.

» It is conceptually simple, avoids second-order derivatives of MAML and
MAML-Baldwin, and is effective in noisy environments.

v

Example: Adapting to reduced motor power or payload changes.

v

ES-MAML outperforms standard MAML in noisy and real-world scenarios.

Before Adaptation After Adaptation

https://youtu.be/_QPMCDdFC3E

Conclusions on Synergistic Combinations

» RL and NE can be combined to tackle the limitations of each approach.

» NE explores more broadly, RL refines more carefully.

» Hybrid methods like ERL, NEAT+Q, (ES-)MAML(-Baldwin) show
promising results in various domains.

Evolving Hebbian Learning Rules

» Hebbian learning adjusts weights based on the activation of neurons.

» Evolution optimizes both initial weights and how those weights change
during learning.

» Example rule: Aw;; = nx;x;, where 7 is the learning rate, x; the activity
of the presynaptic neuron, and x; the activity of the postsynaptic neuron.

Presynaptic Postsynaptic
cell cell

Presynaptic
terminal

Evolving Neural Networks to Reinforcement Learn

» Hybrid RL and NE approaches can still take many trials to learn.

» Idea: Evolve neural networks that can learn their own learning rules,
allowing them to adapt during their lifetime

» Evolution handles slow environmental changes; learning allows adaptation
to fast changes.

Scaling Hebbian Networks

» Recent advances in evolution strategies allow scaling Hebbian networks.
»> A more general Hebbian rule Awj; = n[Aojo; + Boj + Coi + D], includes
five parameters for each connection.

» Evolution optimizes these parameters, allowing the network to adapt to
more complex environments.

Presynaptic
cell

Presynaptic
terminal

Adaptation Without Rewards

» The evolved Hebbian network adapts without explicit reward feedback.

» The network starts from random weights and adjusts based on activity.

» Adaptation occurs in fewer timesteps compared to traditional RL methods

— even in real time.

> Evolution sets up the learning so the task is solved.

Demo:

Network’s dynamical weights

TN
FC layer 2

el | S LT LT

FC layer 1 FC layer

Comparing Hebbian and Feedforward Networks

» Standard feedforward networks struggle to adapt to new robot
morphologies.

» Hebbian networks quickly adapt, achieving high performance across
different morphologies.

» The adaptive capability of Hebbian networks comes from the evolved
learning rules.

Quadruped Damage Seen/ Unseen during training Learning Rule Distance travelled Solved

No Damage Seen Hebbian 1051 + 113 True
No Damage Seen static weights 1604 + 171 True
Right front leg Seen Hebbian 1019 £ 116 True
Right front leg Seen static weights 1431 £ 54 True
Left front leg Unseen Hebbian 452 £95 True

Left front leg Unseen static weights 68 & 56 False

Hebbian Networks for Complex Tasks

» Evolved Hebbian networks handle complex, dynamic environments.
» Example: Quadrupedal robot control using Hebbian rules.
» The network adapts to morphological changes, such as limb damage.

Demo:

/

Front-left leg damage (not seen du

P

T,
i

Frone i g camage

T
=100

Weights

FClayer3| FCiay

Reward
\
A
\

Evolving Neural Networks to Continually Learn

» Key challenge in Al: learning new tasks without forgetting previous ones.
» (Catastrophic forgetting is a major issue in most current neural networks.
» Need for mechanisms that allow memory retention across tasks.

Foundation: Memory-Augmented Neural Networks

» Neural Turing Machine (NTM) combines traditional neural networks with
external memory.

> External memory allows the network to store and retrieve data over time.
» Read and write heads interact with memory.

> Fully differentiable; trained with gradient descent.

» Capable of performing tasks like copy, sort, and associative recall.

External Input External Output

*

e

‘ Read Heads ‘ ‘ Write Heads ‘

T |

’ Memory ‘

ENTM Operations
» Write: Updates memory vector at the head's location.
» Content Jump: Head jumps to memory location most similar to write
vector.
» Shift: Moves the memory head left, right, or maintains position.
» Read: Reads content from the memory vector for use in the next cycle.

ANN

External output

* Write vector

= Write interpolation

* Jump parameter

« Shift (left, stay and right)

Read vector

™

head

Differentiable vs Evolved NTM

» Differentiable NTM has limitations: fixed memory size, "soft” attention.

> Evolved Neural Turing Machine (ENTM) uses neuroevolution to improve
generalization and flexibility.

» ENTM allows hard attention and theoretically unlimited memory capacity.

External Input External Output

/7 N\

‘ Read Heads ‘ ’ Write Heads ‘

T |

Performance in Copy Task

» Copy task: memorize and retrieve a sequence of binary vectors.
» Evolved NTM generalizes perfectly to long sequences.

» Evolved network is smaller and simpler compared to the original NTM.

Inputs Outputs

O”“’”t- - _ _ L L L

Time ——» Time ———»

Diff.

Adds

Location

Output

rerest _

Diff.

(a) Successful Copy (b) Memory Additions

Continual Learning with ENTM Season Task Example
» External memory helps solve the problem of catastrophic forgetting.
» Continual learning in the Season task: Learn which food items are

» Memory allows storing new information without overwriting old Lr ! !
nutritious or poisonous across different seasons.

information.
» Test agent's ability to retain knowledge across changing environments.

ExternziiD

i Lifetime
ANN [Birth Dea1b>
External output
+ Write vector Year 1... ...Year 3
Read vector « Write interpolation
= Jump parameter
« Shift (left, stay and right; o .
(et stay andriont Summer 1 Winter 1... | ..Summer3 Winter 3

™ Day1..|..Day5 | Day1l..|..Day5 | Day1..|..Day5 | Day1..|..Day5

Bleclec @20 D0 o @< 0] DO

head

Season Task Example Scaling Up Neuroevolution in RL Tasks

» Advances in hardware accelerators like GPUs have driven scaling in deep
learning.

» Neuroevolution (NE) approaches are catching up by leveraging parallel
computing resources.

» ENTM excels at learning new associations while retaining old ones.

» Learns the seasons quickly, retains over time.

» NE is competitive with RL on larger tasks by scaling across CPUs and
GPUs.

s [l

0.5

Performance

Winter |Summer
0 5 10 15 20 25 30
Days

(b)

ENTM inputs and outputs over time

n

Ret

HalfCheetah

Hopper

Walker

— TRPO

80001 —_ go

6000

4000

2000

4000

3500

3000

2500

2000

1500

1000

— TRPO

7000

— TRPO

6000

5000

4000

3000

2000

1000

Timesteps

108 107
Timesteps

Timesteps

Parallelism in Neuroevolution ES Advantages

> Evolution Strategies (ES), Genetic Algorithms (GA), and even Random
Search (RS) can benefit from parallelism. » ES advantages over RL include handling sparse rewards, long time

hori k ion.
» ES can scale effectively with thousands of CPUs by reducing orizons, and no backpropagation

communication overhead. » Invariant to the frequency of actions.

> E.g. found optimal solutions in 10 minutes on humanoid tasks with > Applies to a broader range of tasks.
massive parallelism.

Demo: T T

_ &——— 18 cores, 657 minutes

= «— 18 cores, 657 minutes %

3 €

g ERRUAS 1

E e

S 1% E 2

e] £

o [] g
3

k| =)

3 10! F 1440 cores, 10 minutes —— .

= . i :

10t F 1440 cores, 10 minutes ———a 10? 10°
“‘)2 107 Number of CPU cores
Number of CPU cores
Simple GA in Atari Games Broad Comparison in Atari Games
» Next step from ES isSimple GA: No crossover, no evolving topologies, just > GA, ES, DQN, and A3C each performed best on different Atari games.

simple truncation selection and additive Gaussian noise. . . .
P » No clear winner across the board, but different strengths in different

» Demonstrated competitive results on Atari games by optimizing a deep games. Highlights the potential for hybridizing RL and NE methods.

CNN with 4M parameters.

DQN ES A3C RS GA GA
. 213081511 ?S A?g 11‘; ?‘; G6AB Frames 200M 1B 1B 1B 1B 6B
Tfa‘“es 2104 " 4d ~1hordh ~1hordh - 6hor2dh Time ~7-10d ~1h ~4d ~1lhor4h ~1lhor4h ~ 6hor24h
1me ~" ~ ~ad ~ahorah e~ dhor s~ bhor Forward Passes 450M 250M 250M 250M 250M 1.5B
Forward Passes 450M 250M 250M 250M 250M 1.5B Backward Passes 400M 0 250M 0 0 0
Backward Passes 400M 0 250M 0 0 0 .

Operat 125BU 250MU 1BU 250MU 250MU 15BU

Operations 125BU 250MU 1BU 250MU 250MU 1.5BU perations
: amidar 978 112 264 143 263 377
am‘d*l" . %g . ;i s ig‘s‘ é:g gﬁ gﬂ assault 4,280 1674 5475 649 714 814
assault 4350 L4400 22140 1107 L850 2255 asterix 4,359 1440 22,140 1,197 1,850 2255
asterix 4 "ves User awrs 130 Leel 700 asteroids 1,365 1,562 4,475 1,307 1,661 2,700
asteroids L, ’ g 307 ; 7 atlantis 279987 1267410 911,091 26,371 76,273 129,167
atlantis 279,087 1,267,410 911,091 26,371 76,273 129,167 e dire 29 0 e 3 © %0
enduro 729 95 -82 36 60 80 frostbite 797 370 191 1,164 4,536 6,220
frostbite 797 370 191 1,164 4,536 6,220 gravitar 3 505 304 o e e
gravitar 473 805 304 431 476 764 kangaroo 7259 11,200 94 1,099 3,790 11,254
Kangaroo 7250 11,200 94 1,099 3,790 11,254 senmest sa61 130 2355 03 708 220
seaquest 5,861 1390 2,355 303 798 850 skiing 13,062 -15443 -10911 7679 16,502 1.5,541
skiing 13,062 -15443 -10911 7679 16,502 t.5,541 ot 63 6 2 P P iz

1‘ 9

venture 163 760 23 488 969 1422 zaxxon 5363 6380 24,622 2,538 6,180 7.864

zaxxon 5,363 6,380 24,622 2,538 6,180 7,864

Random Search is Surprisingly Effective Scaling to GPUs and TPUs

» On several Atari Games, even random search outperformed RL! » While NE has mostly relied on CPU parallelism, there is potential for
GPU/TPU acceleration.

» Can bring another level of speed and capability.

> Possible through libraries like JAX, i.e. EvoJAX and EvoSAX.

» JIT compilation and vectorized operations.

» Local search sometimes finds sophisticated policies.

> Example: Frostbite game strategy discovered by random search.
» Similar results in Backgammon.

» Suggests that sometimes following gradients may hinder optimization.

Conventional Method

Demo:
Apply actions Apply actions
; T ™ i
Neuroevolution | | | Policy I I Task l : | Policy | I Task l
Algorithm v LI v
! Feedback observations & fitness Feedback observations & fitness
,,,,,,,,,,,,,,,,,,,,,,,,,,,, Evaluation Process #1. L EvaluationProcess N
Parameter
dissemination
EvoJAX
| Neuroevolution Parameter Global Parameter Vectorized i
i Algorithm dissemination Policy evaluation Task
___ I
Hardware Accelerators
s VSN
EvoJAX in Action An Alternate History of NE
» Imagine if DeepMind had used a GA instead of RL for their Atari
breakthrough.
» EvoJAX allows scaling NE across GPUs with parallel fitness evaluations. > How would the trajectory of Al research have changed?
» Demonstrated effectiveness in training large neural networks. » Highlights the untapped potential of neuroevolution in large-scale tasks.
» Significant speedup and scalability compared to traditional CPU-based NE
Convolution Convolution Fully connected Fully connected
approaches. v v v v

» Accessible in Colab notebooks!

Baseline EvoJAX
MNIST 36 min 3 min l—D D Q

Cart-Pole Swing Up (Hard Version) 37 min 2 min \ o D
Locomotion (Ant)! 201 min 9 min \

— =
O 3]

2+0

] [[[& [&

arsjee v
1EELEE
OJOJOJOJOJO

Conclusion: Reinforcement Learning and Neuroevolution Conclusion: Reinforcement Learning and Neuroevolution

» Successes:

> ES and GAs scaled to thousands of CPUs, solving complex tasks like 3D
. e . . humanoid locomotion in minutes.
» RL uses gradient-based optimization and learns through trial-and-error in an > NE demonstrated competitive results with RL in Atari games, with GA
environment. . . achieving high scores in games like Frostbite.
> NE is a gradlent-fr_ee, population-based method that explores the policy > Evolutionary Neural Turing Machines (ENTMs) showed promising
space using evolutionary processes. performance in continual learning tasks.

» Differences:

> Synergistic Combinations: » Future Opportunities:
> Hybrid methods such as ERL, NEAT+Q, (ES-)MAML(-Baldwin) combine > Hybridizing NE and RL to achieve robust exploration and efficient
NE's exploration power with RL's gradient-based finetuning. exploitation.
> NE can help overcome RL's issues with sparse rewards and long time » Scaling indirect encodings (e.g., HyperNEAT) to tackle more complex tasks.
horizons. > Leveraging hardware acceleration (e.g., JAX, GPUs/TPUs) for more

scalable NE solutions.
» Exploring open-ended evolution for continuous, autonomous learning.

