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Key Strengths and Weaknesses of RL

» RL excels at solving sequential decision-making tasks and dynamic
environments.

» Useful in domains where the environment model is unknown or complex
(e.g., robotics, game playing).

» Challenges:

» High data and computational requirements.
> Sensitive to hyperparameters and unstable training.
» Struggles with high-dimensional state/action spaces.
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Introduction to RL and NE

» Reinforcement Learning (RL) and Neuroevolution (NE) are two key
methods to optimize neural networks.

» RL uses trial-and-error with rewards/punishments, while NE optimizes
networks through evolutionary algorithms.

» Both approaches have distinct strengths and weaknesses, and they can be
combined for better performance.

Key Strengths and Weaknesses of NE

» NE optimizes both network topology and parameters simultaneously.
» More robust to local minima compared to gradient-based methods in RL.

» Strengths:
> Diverse policies through repeated evolution.
> Suitable when the network structure is unknown.
» Limitations:
> Less effective for real-time adaptation.
> Lower sample efficiency in dense reward environments.
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Synergistic Combinations

» RL and NE can be combined to leverage their strengths.

» Hybrid methods such as Evolutionary Reinforcement Learning (ERL)
improve exploration and sample efficiency.

» We explore examples of these combinations.

Benefits of ERL

» EA provides effective exploration and handles sparse rewards better than
RL.

» RL improves sample efficiency through gradient-based learning.

» ERL outperforms pure EA and RL approaches in various continuous
control tasks.
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Evolutionary Reinforcement Learning (ERL)

» ERL combines evolutionary algorithms (EA) with deep RL to tackle
exploration issues.

» Periodically injects RL agent’s gradient information into the evolutionary
population.

» Balances exploration and exploitation with evolutionary diversity and
gradient-based learning.
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ERL Exploration and Training Process
> EA explores in parameter space, RL explores in action space.
» Replay buffer stores state-action-reward transitions for RL training.

» Synchronization phase copies RL actor network weights back to the EA
population.
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ERL in Continuous Control Tasks

» ERL significantly outperforms state-of-the-art DRL methods such as
DDPG and PPO.

» Effective in tasks with sparse rewards and deceptive fitness landscapes.
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Q-learning Overview

» Q-learning is a model-free RL algorithm aiming to learn the optimal
action-value function Q(s, a).

» The agent updates its Q-values based on observed rewards and future
states.

» Neural networks can approximate Q-tables for high-dimensional spaces.
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Evolving Value Networks for RL
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Many RL algorithms rely on value functions to estimate cumulative
rewards.

NEAT evolves both network weights and architectures for better value
networks.

NEAT+Q-learning can outperform standard value function approximation
methods.
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NEAT+Q learning Performance
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» NEAT evolves network architectures that help Q-learning learn more
efficiently.

» Q-learning with NEAT outperforms manually designed networks in tasks
like the mountain car and server job scheduling.
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NEAT+Q: Evolved Network Topologies

» NEAT evolves sparse, irregular network topologies that are hard to design
manually.

» These evolved networks excel in various RL tasks.
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MAML-Baldwin Approach

» MAML-Baldwin combines an evolutionary algorithm in the outer loop with
RL in the inner loop.

» Evolves initial weights that can adapt to different tasks during the agent's
lifetime.

» E.g. in the half-cheetah tasks, adapts to changing directions within
seconds of simulation.

Evolutionary Meta-Learning

» Meta-learning aims to evolve networks that can rapidly adapt to new
tasks.

» Same term as before but more specific meaning in RL.
» Model-Agnostic Meta-Learning (MAML) finds good starting points for
learning.

» Evolutionary methods like MAML-Baldwin and ES-MAML improve on
MAML by using evolutionary algorithms.
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ES-MAML Overview

» ES-MAML uses evolutionary strategies (ES) in both the outer and inner
loops.

» It is conceptually simple, avoids second-order derivatives of MAML and
MAML-Baldwin, and is effective in noisy environments.

v

Example: Adapting to reduced motor power or payload changes.

v

ES-MAML outperforms standard MAML in noisy and real-world scenarios.

Before Adaptation After Adaptation

https://youtu.be/_QPMCDdFC3E



Conclusions on Synergistic Combinations

» RL and NE can be combined to tackle the limitations of each approach.

» NE explores more broadly, RL refines more carefully.

» Hybrid methods like ERL, NEAT+Q, (ES-)MAML(-Baldwin) show
promising results in various domains.

Evolving Hebbian Learning Rules

» Hebbian learning adjusts weights based on the activation of neurons.

» Evolution optimizes both initial weights and how those weights change
during learning.

» Example rule: Aw;; = nx;x;, where 7 is the learning rate, x; the activity
of the presynaptic neuron, and x; the activity of the postsynaptic neuron.
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Evolving Neural Networks to Reinforcement Learn

» Hybrid RL and NE approaches can still take many trials to learn.

» Idea: Evolve neural networks that can learn their own learning rules,
allowing them to adapt during their lifetime

» Evolution handles slow environmental changes; learning allows adaptation
to fast changes.

Scaling Hebbian Networks

» Recent advances in evolution strategies allow scaling Hebbian networks.
»> A more general Hebbian rule Awj; = n[Aojo; + Boj + Coi + D], includes
five parameters for each connection.

» Evolution optimizes these parameters, allowing the network to adapt to
more complex environments.
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Adaptation Without Rewards

» The evolved Hebbian network adapts without explicit reward feedback.

» The network starts from random weights and adjusts based on activity.

» Adaptation occurs in fewer timesteps compared to traditional RL methods

— even in real time.

> Evolution sets up the learning so the task is solved.
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Comparing Hebbian and Feedforward Networks

» Standard feedforward networks struggle to adapt to new robot
morphologies.

» Hebbian networks quickly adapt, achieving high performance across
different morphologies.

» The adaptive capability of Hebbian networks comes from the evolved
learning rules.

Quadruped Damage Seen/ Unseen during training Learning Rule Distance travelled Solved

No Damage Seen Hebbian 1051 + 113 True
No Damage Seen static weights 1604 + 171 True
Right front leg Seen Hebbian 1019 £ 116 True
Right front leg Seen static weights 1431 £ 54 True
Left front leg Unseen Hebbian 452 £95 True

Left front leg Unseen static weights 68 & 56 False

Hebbian Networks for Complex Tasks

» Evolved Hebbian networks handle complex, dynamic environments.
» Example: Quadrupedal robot control using Hebbian rules.
» The network adapts to morphological changes, such as limb damage.
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Evolving Neural Networks to Continually Learn

» Key challenge in Al: learning new tasks without forgetting previous ones.
» (Catastrophic forgetting is a major issue in most current neural networks.
» Need for mechanisms that allow memory retention across tasks.




Foundation: Memory-Augmented Neural Networks

» Neural Turing Machine (NTM) combines traditional neural networks with
external memory.

> External memory allows the network to store and retrieve data over time.
» Read and write heads interact with memory.

> Fully differentiable; trained with gradient descent.

» Capable of performing tasks like copy, sort, and associative recall.

External Input External Output

*

e

‘ Read Heads ‘ ‘ Write Heads ‘

T |

’ Memory ‘

ENTM Operations
» Write: Updates memory vector at the head's location.
» Content Jump: Head jumps to memory location most similar to write
vector.
» Shift: Moves the memory head left, right, or maintains position.
» Read: Reads content from the memory vector for use in the next cycle.
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Differentiable vs Evolved NTM

» Differentiable NTM has limitations: fixed memory size, "soft” attention.

> Evolved Neural Turing Machine (ENTM) uses neuroevolution to improve
generalization and flexibility.

» ENTM allows hard attention and theoretically unlimited memory capacity.
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Performance in Copy Task

» Copy task: memorize and retrieve a sequence of binary vectors.
» Evolved NTM generalizes perfectly to long sequences.

» Evolved network is smaller and simpler compared to the original NTM.
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Continual Learning with ENTM Season Task Example
» External memory helps solve the problem of catastrophic forgetting.
» Continual learning in the Season task: Learn which food items are

» Memory allows storing new information without overwriting old Lr ! !
nutritious or poisonous across different seasons.

information.
» Test agent's ability to retain knowledge across changing environments.
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Season Task Example Scaling Up Neuroevolution in RL Tasks

» Advances in hardware accelerators like GPUs have driven scaling in deep
learning.

» Neuroevolution (NE) approaches are catching up by leveraging parallel
computing resources.

» ENTM excels at learning new associations while retaining old ones.

» Learns the seasons quickly, retains over time.

» NE is competitive with RL on larger tasks by scaling across CPUs and
GPUs.
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Parallelism in Neuroevolution ES Advantages

> Evolution Strategies (ES), Genetic Algorithms (GA), and even Random
Search (RS) can benefit from parallelism. » ES advantages over RL include handling sparse rewards, long time

hori k ion.
» ES can scale effectively with thousands of CPUs by reducing orizons, and no backpropagation

communication overhead. » Invariant to the frequency of actions.

> E.g. found optimal solutions in 10 minutes on humanoid tasks with > Applies to a broader range of tasks.
massive parallelism.
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Simple GA in Atari Games Broad Comparison in Atari Games
» Next step from ES isSimple GA: No crossover, no evolving topologies, just > GA, ES, DQN, and A3C each performed best on different Atari games.

simple truncation selection and additive Gaussian noise. . . .
P » No clear winner across the board, but different strengths in different

» Demonstrated competitive results on Atari games by optimizing a deep games. Highlights the potential for hybridizing RL and NE methods.

CNN with 4M parameters.
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Random Search is Surprisingly Effective Scaling to GPUs and TPUs

» On several Atari Games, even random search outperformed RL! » While NE has mostly relied on CPU parallelism, there is potential for
GPU/TPU acceleration.

» Can bring another level of speed and capability.

> Possible through libraries like JAX, i.e. EvoJAX and EvoSAX.

» JIT compilation and vectorized operations.

» Local search sometimes finds sophisticated policies.

> Example: Frostbite game strategy discovered by random search.
» Similar results in Backgammon.

» Suggests that sometimes following gradients may hinder optimization.

Conventional Method
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EvoJAX in Action An Alternate History of NE
» Imagine if DeepMind had used a GA instead of RL for their Atari
breakthrough.
» EvoJAX allows scaling NE across GPUs with parallel fitness evaluations. > How would the trajectory of Al research have changed?
» Demonstrated effectiveness in training large neural networks. » Highlights the untapped potential of neuroevolution in large-scale tasks.
» Significant speedup and scalability compared to traditional CPU-based NE
Convolution Convolution Fully connected Fully connected
approaches. v v v v

» Accessible in Colab notebooks!
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Conclusion: Reinforcement Learning and Neuroevolution Conclusion: Reinforcement Learning and Neuroevolution

» Successes:

> ES and GAs scaled to thousands of CPUs, solving complex tasks like 3D
. e . . humanoid locomotion in minutes.
» RL uses gradient-based optimization and learns through trial-and-error in an > NE demonstrated competitive results with RL in Atari games, with GA
environment. . . achieving high scores in games like Frostbite.
> NE is a gradlent-fr_ee, population-based method that explores the policy > Evolutionary Neural Turing Machines (ENTMs) showed promising
space using evolutionary processes. performance in continual learning tasks.

» Differences:

> Synergistic Combinations: » Future Opportunities:
> Hybrid methods such as ERL, NEAT+Q, (ES-)MAML(-Baldwin) combine > Hybridizing NE and RL to achieve robust exploration and efficient
NE's exploration power with RL's gradient-based finetuning. exploitation.
> NE can help overcome RL's issues with sparse rewards and long time » Scaling indirect encodings (e.g., HyperNEAT) to tackle more complex tasks.
horizons. > Leveraging hardware acceleration (e.g., JAX, GPUs/TPUs) for more

scalable NE solutions.
» Exploring open-ended evolution for continuous, autonomous learning.



