
Synergies with Reinforcement Learning

Sebastian Risi and Risto Miikkulainen

November 12, 2024

Introduction to RL and NE

I Reinforcement Learning (RL) and Neuroevolution (NE) are two key
methods to optimize neural networks.

I RL uses trial-and-error with rewards/punishments, while NE optimizes
networks through evolutionary algorithms.

I Both approaches have distinct strengths and weaknesses, and they can be
combined for better performance.

Key Strengths and Weaknesses of RL

I RL excels at solving sequential decision-making tasks and dynamic
environments.

I Useful in domains where the environment model is unknown or complex
(e.g., robotics, game playing).

I Challenges:
I High data and computational requirements.

I Sensitive to hyperparameters and unstable training.

I Struggles with high-dimensional state/action spaces.

Key Strengths and Weaknesses of NE

I NE optimizes both network topology and parameters simultaneously.

I More robust to local minima compared to gradient-based methods in RL.
I Strengths:

I Diverse policies through repeated evolution.

I Suitable when the network structure is unknown.

I Limitations:
I Less e↵ective for real-time adaptation.

I Lower sample e�ciency in dense reward environments.



Synergistic Combinations

I RL and NE can be combined to leverage their strengths.

I Hybrid methods such as Evolutionary Reinforcement Learning (ERL)
improve exploration and sample e�ciency.

I We explore examples of these combinations.

Evolutionary Reinforcement Learning (ERL)

I ERL combines evolutionary algorithms (EA) with deep RL to tackle
exploration issues.

I Periodically injects RL agent’s gradient information into the evolutionary
population.

I Balances exploration and exploitation with evolutionary diversity and
gradient-based learning.

Benefits of ERL

I EA provides e↵ective exploration and handles sparse rewards better than
RL.

I RL improves sample e�ciency through gradient-based learning.

I ERL outperforms pure EA and RL approaches in various continuous
control tasks.

ERL Exploration and Training Process
I EA explores in parameter space, RL explores in action space.
I Replay bu↵er stores state-action-reward transitions for RL training.
I Synchronization phase copies RL actor network weights back to the EA

population.



ERL in Continuous Control Tasks

I ERL significantly outperforms state-of-the-art DRL methods such as
DDPG and PPO.

I E↵ective in tasks with sparse rewards and deceptive fitness landscapes.

Evolving Value Networks for RL

I Many RL algorithms rely on value functions to estimate cumulative
rewards.

I NEAT evolves both network weights and architectures for better value
networks.

I NEAT+Q-learning can outperform standard value function approximation
methods.

Q-learning Overview

I Q-learning is a model-free RL algorithm aiming to learn the optimal
action-value function Q(s, a).

I The agent updates its Q-values based on observed rewards and future
states.

I Neural networks can approximate Q-tables for high-dimensional spaces.

NEAT+Q learning Performance

I NEAT evolves network architectures that help Q-learning learn more
e�ciently.

I Q-learning with NEAT outperforms manually designed networks in tasks
like the mountain car and server job scheduling.



NEAT+Q: Evolved Network Topologies

I NEAT evolves sparse, irregular network topologies that are hard to design
manually.

I These evolved networks excel in various RL tasks.

Evolutionary Meta-Learning

I Meta-learning aims to evolve networks that can rapidly adapt to new
tasks.
I Same term as before but more specific meaning in RL.

I Model-Agnostic Meta-Learning (MAML) finds good starting points for
learning.

I Evolutionary methods like MAML-Baldwin and ES-MAML improve on
MAML by using evolutionary algorithms.

MAML-Baldwin Approach

I MAML-Baldwin combines an evolutionary algorithm in the outer loop with
RL in the inner loop.

I Evolves initial weights that can adapt to di↵erent tasks during the agent’s
lifetime.

I E.g. in the half-cheetah tasks, adapts to changing directions within
seconds of simulation.

ES-MAML Overview

I ES-MAML uses evolutionary strategies (ES) in both the outer and inner
loops.

I It is conceptually simple, avoids second-order derivatives of MAML and
MAML-Baldwin, and is e↵ective in noisy environments.

I Example: Adapting to reduced motor power or payload changes.

I ES-MAML outperforms standard MAML in noisy and real-world scenarios.

https://youtu.be/_QPMCDdFC3E



Conclusions on Synergistic Combinations

I RL and NE can be combined to tackle the limitations of each approach.

I NE explores more broadly, RL refines more carefully.

I Hybrid methods like ERL, NEAT+Q, (ES-)MAML(-Baldwin) show
promising results in various domains.

Evolving Neural Networks to Reinforcement Learn

I Hybrid RL and NE approaches can still take many trials to learn.

I Idea: Evolve neural networks that can learn their own learning rules,
allowing them to adapt during their lifetime

I Evolution handles slow environmental changes; learning allows adaptation
to fast changes.

Evolving Hebbian Learning Rules

I Hebbian learning adjusts weights based on the activation of neurons.

I Evolution optimizes both initial weights and how those weights change
during learning.

I Example rule: �wi!j = ⌘xixj , where ⌘ is the learning rate, xi the activity
of the presynaptic neuron, and xj the activity of the postsynaptic neuron.

Scaling Hebbian Networks

I Recent advances in evolution strategies allow scaling Hebbian networks.

I A more general Hebbian rule �wji = ⌘[Aojoi + Boj + Coi + D], includes
five parameters for each connection.

I Evolution optimizes these parameters, allowing the network to adapt to
more complex environments.



Adaptation Without Rewards

I The evolved Hebbian network adapts without explicit reward feedback.

I The network starts from random weights and adjusts based on activity.

I Adaptation occurs in fewer timesteps compared to traditional RL methods
— even in real time.

I Evolution sets up the learning so the task is solved.

Demo:

Hebbian Networks for Complex Tasks
I Evolved Hebbian networks handle complex, dynamic environments.
I Example: Quadrupedal robot control using Hebbian rules.
I The network adapts to morphological changes, such as limb damage.

Demo:

Comparing Hebbian and Feedforward Networks

I Standard feedforward networks struggle to adapt to new robot
morphologies.

I Hebbian networks quickly adapt, achieving high performance across
di↵erent morphologies.

I The adaptive capability of Hebbian networks comes from the evolved
learning rules.

Evolving Neural Networks to Continually Learn

I Key challenge in AI: learning new tasks without forgetting previous ones.

I Catastrophic forgetting is a major issue in most current neural networks.

I Need for mechanisms that allow memory retention across tasks.



Foundation: Memory-Augmented Neural Networks

I Neural Turing Machine (NTM) combines traditional neural networks with
external memory.
I External memory allows the network to store and retrieve data over time.

I Read and write heads interact with memory.

I Fully di↵erentiable; trained with gradient descent.

I Capable of performing tasks like copy, sort, and associative recall.

Di↵erentiable vs Evolved NTM

I Di↵erentiable NTM has limitations: fixed memory size, ”soft” attention.

I Evolved Neural Turing Machine (ENTM) uses neuroevolution to improve
generalization and flexibility.

I ENTM allows hard attention and theoretically unlimited memory capacity.

ENTM Operations
I Write: Updates memory vector at the head’s location.
I Content Jump: Head jumps to memory location most similar to write

vector.
I Shift: Moves the memory head left, right, or maintains position.
I Read: Reads content from the memory vector for use in the next cycle.

Performance in Copy Task

I Copy task: memorize and retrieve a sequence of binary vectors.

I Evolved NTM generalizes perfectly to long sequences.

I Evolved network is smaller and simpler compared to the original NTM.



Continual Learning with ENTM

I External memory helps solve the problem of catastrophic forgetting.

I Memory allows storing new information without overwriting old
information.

Season Task Example

I Continual learning in the Season task: Learn which food items are
nutritious or poisonous across di↵erent seasons.

I Test agent’s ability to retain knowledge across changing environments.

Season Task Example

I ENTM excels at learning new associations while retaining old ones.

I Learns the seasons quickly, retains over time.

ENTM inputs and outputs over time

Scaling Up Neuroevolution in RL Tasks

I Advances in hardware accelerators like GPUs have driven scaling in deep
learning.

I Neuroevolution (NE) approaches are catching up by leveraging parallel
computing resources.

I NE is competitive with RL on larger tasks by scaling across CPUs and
GPUs.



Parallelism in Neuroevolution

I Evolution Strategies (ES), Genetic Algorithms (GA), and even Random
Search (RS) can benefit from parallelism.

I ES can scale e↵ectively with thousands of CPUs by reducing
communication overhead.

I E.g. found optimal solutions in 10 minutes on humanoid tasks with
massive parallelism.

Demo:

ES Advantages

I ES advantages over RL include handling sparse rewards, long time
horizons, and no backpropagation.

I Invariant to the frequency of actions.

I Applies to a broader range of tasks.

Simple GA in Atari Games

I Next step from ES isSimple GA: No crossover, no evolving topologies, just
simple truncation selection and additive Gaussian noise.

I Demonstrated competitive results on Atari games by optimizing a deep
CNN with 4M parameters.

Broad Comparison in Atari Games

I GA, ES, DQN, and A3C each performed best on di↵erent Atari games.

I No clear winner across the board, but di↵erent strengths in di↵erent
games. Highlights the potential for hybridizing RL and NE methods.



Random Search is Surprisingly E↵ective

I On several Atari Games, even random search outperformed RL!
I Local search sometimes finds sophisticated policies.

I Example: Frostbite game strategy discovered by random search.

I Similar results in Backgammon.

I Suggests that sometimes following gradients may hinder optimization.

Demo:

Scaling to GPUs and TPUs

I While NE has mostly relied on CPU parallelism, there is potential for
GPU/TPU acceleration.
I Can bring another level of speed and capability.

I Possible through libraries like JAX, i.e. EvoJAX and EvoSAX.

I JIT compilation and vectorized operations.

EvoJAX in Action

I EvoJAX allows scaling NE across GPUs with parallel fitness evaluations.

I Demonstrated e↵ectiveness in training large neural networks.

I Significant speedup and scalability compared to traditional CPU-based NE
approaches.

I Accessible in Colab notebooks!

An Alternate History of NE

I Imagine if DeepMind had used a GA instead of RL for their Atari
breakthrough.

I How would the trajectory of AI research have changed?

I Highlights the untapped potential of neuroevolution in large-scale tasks.



Conclusion: Reinforcement Learning and Neuroevolution

I Di↵erences:

I RL uses gradient-based optimization and learns through trial-and-error in an

environment.

I NE is a gradient-free, population-based method that explores the policy

space using evolutionary processes.

I Synergistic Combinations:

I Hybrid methods such as ERL, NEAT+Q, (ES-)MAML(-Baldwin) combine

NE’s exploration power with RL’s gradient-based finetuning.

I NE can help overcome RL’s issues with sparse rewards and long time

horizons.

Conclusion: Reinforcement Learning and Neuroevolution

I Successes:

I ES and GAs scaled to thousands of CPUs, solving complex tasks like 3D

humanoid locomotion in minutes.

I NE demonstrated competitive results with RL in Atari games, with GA

achieving high scores in games like Frostbite.

I Evolutionary Neural Turing Machines (ENTMs) showed promising

performance in continual learning tasks.

I Future Opportunities:

I Hybridizing NE and RL to achieve robust exploration and e�cient

exploitation.

I Scaling indirect encodings (e.g., HyperNEAT) to tackle more complex tasks.

I Leveraging hardware acceleration (e.g., JAX, GPUs/TPUs) for more

scalable NE solutions.

I Exploring open-ended evolution for continuous, autonomous learning.


