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Scaling Laws and Applications of LLMs

» LLM performance improves logarithmically with size and data volume.
» Scaling laws predict the effectiveness of large models.

» Applications include chatbots, autonomous agents, and robotic interfaces.

7 4.2
5 L=(D/5.4-10%3)-0055 | 5.6 —— L=(N/8.8-10%3)70076
3.9
4.8
- 4.0
S
a 33 32
F 3
3.0
2.4
L= (Crin2.3-108)70.050
2 2.7
fo-° 107 105 10 107! 10! 108 10° 10 107 10°
Compute Dataset Size Parameters

PF-days, non-embedding tokens non-embedding

Introduction to Large Language Models (LLMs)

» Large Language Models (LLMs) such as GPT are key advancements in Al.
» LLMs generate human-like text and handle language-based tasks.
» Their foundation is the transformer architecture with self-attention.

» Self-attention helps manage long-range text dependencies efficiently.
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Training Large Language Models

» LLMs undergo pre-training on vast text corpora to predict the next token.
» Fine-tuning on task-specific data optimizes their performance.

» Models like BERT demonstrate the importance of meticulous tuning.
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A New Field: Prompt Engineering

» LLMs need prompts to perform specific tasks efficiently.

» Discrete prompt-based adaptation eliminates direct parameter
manipulation.

» Especially useful for black-box APIs like GPT-4 and Gemini.

» Effective prompt design, e.g. chain-of-thought, is crucial for LLM
performance.

Standard Prompting Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many

tennis balls does he have now? tennis balls does he have now?

A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls
leach is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
do they have?

_J

Model Output

A: The answer is 27. x

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

\answer is9. J

Evolutionary Algorithms for Prompt Optimization

» Prompts are treated like gene sequences in evolutionary algorithms.
» Evolution helps maintain prompt diversity, avoiding local optima.

» LLMs modify prompts iteratively, refining strategies.

Genetic Algorithm (GA) Implemented by LLMs

Query:

Please follow the instruction step-by-step to generate a better prompt.
1. Gross over the following prompts and generate a new prompt:

Prompt 1 ‘ " missic rtain

2. of
from [negative!, ‘positive’].</prompt>
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Challenges in Prompt Engineering

> Prefix (i.e. system prompt) tuning can be used to establish expertise.
» Prefix is fixed and often not readable.
» Visible online prompts can be optimized dynamically as well.

» Prompt engineering often requires extensive human effort and expertise.
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EvoPrompt Overview

> EvoPrompt uses Genetic Algorithm (GA) and Differential Evolution (DE)
for prompt optimization.

» Suitable for black-box LLM APIs.

» GA and DE improve prompts through crossover and mutation.

Genetic Algorithm (GA) Implemented by LLMs

Query:

Please follow the instruction step-by-step to generate a better prompt.

1. Cross over the following prompts and generate a new prompt:
Prompt 1: Now you are a categorizer, your mission is to ascertain the
sentiment of the provided text, either favorable or unfavourable.

Prompt 2: Assign a sentiment label to the given sentence from ['negative',
positive'] and return only the label without any other text.
2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed wit]
<prompt> and </prompt>.

1
Response: Crossover
1. Crossover Prompt: Your mission is to ascertain the sentiment of the
provided text and assign a sentiment label from ['negative', 'positive’].
Mutate

2. <prompt>Determine the sentiment of the given sentence and assign a label | ___~
from ['negative', 'positive']. </prompt>




EvoPrompt: The Evolutionary Process

» Initial prompts are evaluated and combined to create new ones.
» Crossover and mutation operations enhance the prompts.

» The LLM itself generates new candidate prompts based on performance
feedback.

Genetic Algorithm (GA) Implemented by LLMs

Query:

Please follow the instruction step-by-step to generate a better prompt.

1. Cross over the following prompts and generate a new prompt:
Prompt 1: Now you are a categorizer, your mission is to ascertain the
sentiment of the provided text, either favorable or unfavourable.

Prompt 2: Assign a sentiment label to the given sentence from ['negative',
positive'] and return only the label without any other text.
2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed wit]
<prompt> and </prompt>.

1
Response: Crossover

1. Crossover Prompt: Your mission is to ascertain the sentiment of the
provided text and assign a sentiment label from ['negative', 'positive’].

Mutate
2. <prompt>Determine the sentiment of the given sentence and assign a label | ____~

from ['negative', 'positive']. </prompt>

Promptbreeder: Optimizing Prompt Mutations as Well

» Promptbreeder automates prompt exploration and refinement.

» |t uses evolutionary algorithms to optimize both task and mutation
prompts.

» Self-referential system evolves mutation prompts as well.
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EvoPrompt Results on Benchmark Tasks

» EvoPrompt significantly improves performance on the challenging Big
Bench Hard (BBH) tasks.

» DE variant led to a 25% improvement in some tasks.

» GA variant also showed strong results with improvements up to 15%.
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Promptbreeder: Key Features

» Initial population of prompts comes from problem descriptions.

» LLMs are used to mutate task prompts with guidance from mutation
prompts.

» Evolution refines both task prompts and mutation prompts for continual
improvement.

» More complex mutations combine multiple prompts to explore new prompt
spaces.

Direct Mutation-Prompt Guided Hyper Mutation Promptbreeder




Performance of Promptbreeder Promptbreeder Case Study: ETHOS Hate Speech Classification

» Promptbreeder evolved a strategy for hate speech classification.

» |t improved accuracy from 80% to 89%.
» Tested across arithmetic reasoning, commonsense reasoning, instruction
induction, etc.

» Example: Two sequentially applied, relatively long prompts.

» Consistently outperformed Plan-and-Solve techniques.

Prompt 1: "Text contains hate speech if it includes any of the following:
* Words or phrases that are y, di ul, or izi

» Robust in both zero-shot and few-shot scenarios. ] o TS (o €8 R, © Gt (O et O
a particular group of people in a negative way. * Statements that incite
hatred or violence against a particular group of people. * Statements that
express a desire for the extermination or removal of a particular group
of people. 7 : Text contains hate speech if it contains language that is
hostile or discriminatory towards a particular group of people. This could

include language that is racist, sexist, homophobic, or other forms of hate

Method LLM MultiArith*  SingleEq* AddSub* SVAMP* SQA CSQA AQuA-RAT GSMSK speech. Hate speech is harmful because it can create a hostile enviromment
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Evaluate the context of the speech. This can include the speaker's intent,
the audience, and the time and place of the speech. The advice was: Remember
to alvays evaluate the context of the speech when making a determination as
to whether it is hate speech or not. Speech that is intended to be humorous
or satirical may not be considered hate speech, even if it contains harmful
language."

EvoPrompt vs. Promptbreeder Introduction to Model Merging

» Al development might follow a path similar to human collective

- . ) intelligence.
» EvoPrompt focuses on refining prompts with crossover and mutation. . . . .
» Al systems will consist of many small, specialized models instead of a

» Promptbreeder takes a more complex approach with self-referential single, all-knowing system.

evolution. . .
» Open-source Al models demonstrate a promising trend of merging

» Both demonstrate the effectiveness of evolutionary algorithms in prompt specialized models

optimization.
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Model Merging and Democratization of Al

» Open models are extended and fine-tuned for different niches.
» Model merging allows combining strengths from different domains.

» Top-performing models are often merged versions of base models.
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Evolutionary Model Merge Method

» Combines two approaches: Data Flow Space (Layer Merging) and
Parameter Space (Weight Merging).

» Uses evolution to optimize how layers and weights from multiple models
are merged.

» Capable of discovering architectural innovations beyond human intuition.

Q1: Mishka bought 3 pairs of shorts, 3 pairs of long pants, and 3 pairs of shoes. -+ How much were spent on all the clothing?

Q2: Cynthia eats one serving of ice cream every night. - How much will she have spent on ice cream after 60 days?
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Challenges in Model Merging

» Merging models manually is often difficult and relies on intuition.

» Evolutionary algorithms provide systematic ways to discover optimal
combinations.

» These algorithms explore novel combinations that human intuition might
miss.
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Merging in the Data Flow Space

» Evolution explores combinations of layers from different models.

» Combinatorial space is too large for manual exploration.

» Evolutionary algorithms find the best combinations of layers for model
merging.

Demo:

New Model C

Model A Model B




Merging in the Parameter Space Merging in Both Spaces

» Evolution can also combine both methods.
» Evolutionary algorithms also optimize weight merging between models. » Best of both worlds.

» Different layers can use different mixing ratios for optimal performance.

» Evolution explores infinite ways of mixing weights for merged models. Demo:
New Model C
Demo: Model A Model B
Model A New Model C Model B
N y
Case Study: Japanese Math LLM Case Study: Japanese Vision-Language Model

» Combined a Vision-Language Model (LLaVa-1.6-Mistral-7B) with a

. . . Japanese LLM (Shisa Gamma 7B v1).
» Combined three models: Shisa-Gamma (Japanese), WizardMath (Math), . .
and Abel (Math). > Evoc:ultlon produced a capable Japanese VLM that outperformed existing
» Evolution created a Japanese Math LLM over 100-150 generations. moders.

. C » Also learned aspects of Japanese culture, e.g. blue traffic light.
» This model outperformed the source models significantly.

o | = w94 1 i What color is this traffic light flashing?
Id. Model Type Size MGSM-JA (acc 1) ! P

1 Shisa Gamma 7B v1 JA general 7B 9.6 -

2 WizardMath 7B v1.1 EN math 7B 18.4 g L]

3 Abel 7B 002 EN math 7B 30.0 18 'F"l

4 Akiba et al. (2024) (PS) 1+2+3 7B 52.0 G e o

5 Akiba et al. (2024) (DFS) 3+1 10B 36.4 | zomsmoaxy ThzeuRTY.

6 Akiba et al. (2024) (PS+DFS) 4 +1 10B 55.2

The flashing color of this traffic light is blue.

7 Llama2 70B EN general 70B 18.0 o

8 Japanese StableLM 70B JA general  70B 17.2 ! e

9 Swallow 70B JA general  70B 13.6 =
10 GPT35 commercial - 50.4
11 GPT-4 commercial - 78.8 -




Case Study: Merging Diffusion Models

» Evolutionary merging applies to diffusion models (DM) as well.
» E.g. forming a 4-step DM that supports Japanese native prompts.

» Demonstrates the power of evolutionary algorithms in combining diverse
models.

“An apple riding wave” i P .
Py ‘Origami miso soup’
“Portrait of a fish

P " “Origami lunch box”
swimming in clouds’

“A lovely fish, knitted toy”
&

“Lovely rabbit ninja,

knitted toy” 'Sumo, knitted toy’

https://sakana.ai/evolutionary-model-merge/

Conclusion #1: Evolutionary Computing Enhances LLMs

» Evolutionary computing plays a significant role in optimizing LLM
performance.

» Techniques like EvoPrompt and Promptbreeder show the power of
evolutionary algorithms.

» Evolutionary model merging of multiple LLMs leads to more capable LLM
systems.

Enhance LLM performance via evolutionary
prompt tuning, model merging, etc

N

Evolutionary
Computing

“Comedian, knitted toy”
&

Conclusion: Evolutionary Model Merging

» Evolutionary algorithms can optimize model merging in both data flow and
parameter spaces.

» Combined models can address niche domains with improved capabilities.

» Evolutionary merging enables Al models to go beyond human intuition and
manual merging.

Q1: Mishka bought 3 pairs of shorts, 3 pairs of long pants, and 3 pairs of shoes. ‘- How much were spent on all the clothing?
Q2: Cynthia eats one serving of ice cream every night. -+ How much will she have spent on ice cream after 60 days?
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Going the Other Way: Evolution through LLMs

» E.g. ELM: Evolution through Large Models.

» Generating code for the Sodaracer domain:
» LLM trained on large datasets of sequential code changes.
» Then used to generate genetic operations.

» Three principles:

» 1. LLM generates “diff" mutations, simulating meaningful code changes.
» These mutations outperform traditional random mutations used in GP.
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MAP-Elites with Diff Mutation

» 2. MAP-Elites categorizes solutions into different niches based on features.

» LLMs generate targeted modifications to solutions using diff mutation.

> Systematic exploration of diverse solution landscapes.

Python Program

Map of Diverse Champions A
/
Height of T Diff Model
Sodaracer
A

Width of Sodaracer \

Python Program

Seed Solutions in Evolutionary Search

» Evolutionary search begins with seed solutions.

» LLMs enhance seed solutions by generating new body designs in
evolutionary robotics.

» Seed solutions allow evolutionary exploration of complex designs.

X
N

https://youtu.be/jeP8Nsulu4s

Fine-Tuning Diff Models

» 3. Fine-tuning LLMs on task-specific datasets, i.e. Sodaracer.

> Refined diff models generate more contextually appropriate code changes.
» Niches discovered, QD score, and code quality all improve with fine-tuning.
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Novel Solutions in Evolutionary Search

» From the seeds, distinctly different solutions evolve.

Wheel (from Radial Seed)

T —

Galloper (from Square Seed)

I%

Runner (from CPPN Seed)

|f

Seeded: https://youtu.be/8C2K5fk28HI
Varieties: https://youtu.be/QNyNtvwA9FI
Blob: https://youtu.be/JDUAI8yrNcY
Hopper: https://youtu.be/noSPGFX5m3M
Centipede: https://youtu.be/zhMsPzo22do



Exploration Process

» The lineage of one of these solutions demonstrates exploration and
refinement.

From square: https://youtu.be/MIpAJuX6dyM

Conclusion: LLMs Enhance Evolutionary Computing

» Evolution discovers novel and complex body designs.
» LLM-based mutations can explore and refine.

» The combination can drive innovation in complex task-solving.

Adjusting to Changes

» Evolution can adjust to changes in the environment.

LA &

(a)

(b)

(c)
A&.‘ a

Bump Challenge: https://youtu.be/Mo-rXnFqévQ
Solution 1: https://youtu.be/15PVSLDknWM
Solution 2: https://youtu.be/WEM1dBtLLTw

Tunnel Challenge: https://youtu.be/P9A1rul3_tU

LLMs as Evolution Strategies

» Can LLMs function as optimization tools for evolutionary strategies (ES)?
» E.g. LLM (Claude) optimizing the function f(x) = 3 x (x — 2024)? + 10.

» Creating new points based on evaluations.

» With population size eight, getting close in five iterations:
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EvoLLM: LLMs in Evolutionary Cycles

» The EvoLLM strategy utilizes LLMs as a mutation operator:

» LLMs suggest optimal sampling

points for evaluation.

» Points are evaluated; results consolidated; then iterated.

» Improves over standard ES.

LLM: PaLM/GPT/Llama

ask: Query LLM with
BBO context/prompt

Int discretize:
LLM mean
proposal

eval: Sample/Evaluate
black-box function
tell: Update BBO
context/prompt

Ask LLM to
improve “least-
to-most” sort

EvoLLM Process

)

EvolLM: Averagle Rank Across 8 BBOB Settings
I

Average Rank
w

EvoLLM: Average Rank Across 3 Conltrol Tasks

Average Rank
~

-

o

» Population forms a context buffer for LLM:

» Initialize through random search.

» Form two prompts: Top K and last K generations.

» Query LLM to get new solutions; add to context buffer.
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EvoLLM Design: High-Level Prompt Design

» EvolLLM represents solution candidates as integers.

» The LLM prompt includes top M solutions from K generations.

» An improvement query is added to the prompt.

>k
ffl XT3 X1, X1,2, - -

< LLM-Output >;

query
Jim

*
8 xl,K;xK’l, XK,2>- s XK.M

*
3 xl’k;Xk’l,Xk’z, coey xk’M

> X1M

Figure: x;7, f* denotes the best-performing solution and its fitness up to generation k.

Evaluating EvoLLM Performance: BBOB Tasks
» EvolLLM outperforms Random Search, Hill Climbing, ES in BBOB tasks.

» More efficient in generating solutions, taking less than 10 generations.
» EvolLLM works with different LLMs such as PaLM2, GPT-4, and Llama2.
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Evaluating EvoLLM Performance: Control Tasks

» Control tasks from OpenAl Gym (e.g., CartPole-vl and Acrobot-v1).

» Tasks involve evolving 16 to 40 parameters of feedforward neural networks.

» EvolLLM achieves higher performance than baseline algorithms.
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Generalizing to Language Model Crossover (LMX)
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» LLMs can be used to implement crossover operations as well.

» They generate remarkably meaningfully crossovers in various domains.

» Even when it is difficult to form formal crossover operators.
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LLM Model Size and Compute

» Larger LLMs tend to perform worse than smaller models in EvoLLM.

» EvolLLM outperforms baselines even with smaller compute budgets.
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LMX in a Mathematical Domain

> Symbolic regression to a dataset (SRBench Banana problem; 5300

samples of 2 features).
> Settles on a skeleton quickly.

» Fine tunes the constants with surprising specificity.
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LMX in a Language Domain

» Make the sentiment of the statement more positive.

» Creating a variety of changes from meaningful to extreme.
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Conclusion: Synergies of Neuroevolution with Generative Al

» Neuroevolution and generative Al form a powerful synergy, combining the

creative capacity of generative models with the optimization power of

evolutionary algorithms.
» Key successes:

> Efficient model adaptation through evolutionary prompt engineering.
> Novel model merging strategies creating unique capabilities.
> LLMs aiding evolutionary computing through intelligent mutation and

optimization.
» Future opportunities:

> Extending evolutionary optimization to previously infeasible domains.
> Evolutionary optimization of LLM architectures and parameters.

Conclusion #2: LLMs Enhance Evolutionary Computation

» EvolLLM demonstrates the potential of LLMs in enhancing evolutionary
strategies.

» LMX utilizes LLM crossover in a wide variety of domains.

» More efficient and effective optimization, especially in black-box
optimization.

» Expands the scope of evolutionary optimization.

Enhance LLM performance via evolutionary
prompt tuning, model merging, etc
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