
Synergies of Neuroevolution with Generative AI

Yujin Tang and Risto Miikkulainen

November 13, 2024

Introduction to Large Language Models (LLMs)

I Large Language Models (LLMs) such as GPT are key advancements in AI.

I LLMs generate human-like text and handle language-based tasks.

I Their foundation is the transformer architecture with self-attention.

I Self-attention helps manage long-range text dependencies e�ciently.

(a) Transformer model

architecture.

(b) Multi-head

attention. (c) Scaled dot-product attention.

Scaling Laws and Applications of LLMs

I LLM performance improves logarithmically with size and data volume.

I Scaling laws predict the e↵ectiveness of large models.

I Applications include chatbots, autonomous agents, and robotic interfaces.

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

Te
st

 L
os

s

Training Large Language Models

I LLMs undergo pre-training on vast text corpora to predict the next token.

I Fine-tuning on task-specific data optimizes their performance.

I Models like BERT demonstrate the importance of meticulous tuning.

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

A New Field: Prompt Engineering

I LLMs need prompts to perform specific tasks e�ciently.

I Discrete prompt-based adaptation eliminates direct parameter
manipulation.

I Especially useful for black-box APIs like GPT-4 and Gemini.

I E↵ective prompt design, e.g. chain-of-thought, is crucial for LLM
performance.

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9.

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

A: The answer is 27.

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

Model Input

Model Output Model Output

Model Input

Challenges in Prompt Engineering

I Prefix (i.e. system prompt) tuning can be used to establish expertise.

I Prefix is fixed and often not readable.

I Visible online prompts can be optimized dynamically as well.

I Prompt engineering often requires extensive human e↵ort and expertise.

Evolutionary Algorithms for Prompt Optimization

I Prompts are treated like gene sequences in evolutionary algorithms.

I Evolution helps maintain prompt diversity, avoiding local optima.

I LLMs modify prompts iteratively, refining strategies.

Genetic Algorithm (GA) Implemented by LLMs
Query:
Please follow the instruction step-by-step to generate a better prompt.
1. Cross over the following prompts and generate a new prompt:

2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed with
<prompt> and </prompt>.

Response:

Prompt 2: Assign a sentiment label to the given sentence from ['negative',
'positive'] and return only the label without any other text.

Prompt 1: Now you are a categorizer, your mission is to ascertain the
sentiment of the provided text, either favorable or unfavourable.

!"#$$#%&"

1. Crossover Prompt: Your mission is to ascertain the sentiment of the
provided text and assign a sentiment label from ['negative', 'positive’].

2. <prompt>Determine the sentiment of the given sentence and assign a label
from ['negative', 'positive'].</prompt>

'()*)&

(a) EvoPrompt.

Thinking
Styles

“Let’s think step by step” + “Change this instruction to make it more fun” +
“INSTRUCTION:” + “Solve this math word problem” + “INSTRUCTION MUTANT = ”

Mutation
Prompts

Sample Sample

Problem Description

specific to GSM8K, AQuA,
ETHOS, SVAMP etc.

 LLM “Make up a systematic answer that
makes you look quite clever”

 P: "Make up a systematic answer that makes you look quite clever"
 M: "Change this instruction to make it more fun"

 P: "Draw a diagram representing the math problem"
 M: "Mutate the prompt with an unexpected twist"

 P = "Let’s think step through this maths problem"
 M = "Modify the instruction like no self-respecting LLM would"

 P: "SOLUTION:"
 M: "Consider how a better teacher would put this"

0.2

0.4

0.1

0.9

PopulateMutate N

Replace

Initialization of Population of Task-Prompts and Mutation-Prompts

Population (N Task-Prompts and their Mutation-Prompts)

Estimated fitness from a batch of training Q&A pairs

Direct Mutation Estimation of
Distribution Mutation

Hyper Mutation
Mutate mutation-prompt

Lamarckian Mutation
Generate task-prompt
from the "working out"

Prompt Crossover
and

Context Shuffling

Mutation Operators

(b) Promptbreeder.

EvoPrompt Overview

I EvoPrompt uses Genetic Algorithm (GA) and Di↵erential Evolution (DE)
for prompt optimization.

I Suitable for black-box LLM APIs.

I GA and DE improve prompts through crossover and mutation.

Genetic Algorithm (GA) Implemented by LLMs
Query:
Please follow the instruction step-by-step to generate a better prompt.
1. Cross over the following prompts and generate a new prompt:

2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed with
<prompt> and </prompt>.

Response:

Prompt 2: Assign a sentiment label to the given sentence from ['negative',
'positive'] and return only the label without any other text.

Prompt 1: Now you are a categorizer, your mission is to ascertain the
sentiment of the provided text, either favorable or unfavourable.

!"#$$#%&"

1. Crossover Prompt: Your mission is to ascertain the sentiment of the
provided text and assign a sentiment label from ['negative', 'positive’].

2. <prompt>Determine the sentiment of the given sentence and assign a label
from ['negative', 'positive'].</prompt>

'()*)&

EvoPrompt: The Evolutionary Process

I Initial prompts are evaluated and combined to create new ones.

I Crossover and mutation operations enhance the prompts.

I The LLM itself generates new candidate prompts based on performance
feedback.

Genetic Algorithm (GA) Implemented by LLMs
Query:
Please follow the instruction step-by-step to generate a better prompt.
1. Cross over the following prompts and generate a new prompt:

2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed with
<prompt> and </prompt>.

Response:

Prompt 2: Assign a sentiment label to the given sentence from ['negative',
'positive'] and return only the label without any other text.

Prompt 1: Now you are a categorizer, your mission is to ascertain the
sentiment of the provided text, either favorable or unfavourable.

!"#$$#%&"

1. Crossover Prompt: Your mission is to ascertain the sentiment of the
provided text and assign a sentiment label from ['negative', 'positive’].

2. <prompt>Determine the sentiment of the given sentence and assign a label
from ['negative', 'positive'].</prompt>

'()*)&

EvoPrompt Results on Benchmark Tasks

I EvoPrompt significantly improves performance on the challenging Big
Bench Hard (BBH) tasks.

I DE variant led to a 25% improvement in some tasks.

I GA variant also showed strong results with improvements up to 15%.

Promptbreeder: Optimizing Prompt Mutations as Well

I Promptbreeder automates prompt exploration and refinement.

I It uses evolutionary algorithms to optimize both task and mutation
prompts.

I Self-referential system evolves mutation prompts as well.

Thinking
Styles

“Let’s think step by step” + “Change this instruction to make it more fun” +
“INSTRUCTION:” + “Solve this math word problem” + “INSTRUCTION MUTANT = ”

Mutation
Prompts

Sample Sample

Problem Description

specific to GSM8K, AQuA,
ETHOS, SVAMP etc.

 LLM “Make up a systematic answer that
makes you look quite clever”

 P: "Make up a systematic answer that makes you look quite clever"
 M: "Change this instruction to make it more fun"

 P: "Draw a diagram representing the math problem"
 M: "Mutate the prompt with an unexpected twist"

 P = "Let’s think step through this maths problem"
 M = "Modify the instruction like no self-respecting LLM would"

 P: "SOLUTION:"
 M: "Consider how a better teacher would put this"

0.2

0.4

0.1

0.9

PopulateMutate N

Replace

Initialization of Population of Task-Prompts and Mutation-Prompts

Population (N Task-Prompts and their Mutation-Prompts)

Estimated fitness from a batch of training Q&A pairs

Direct Mutation Estimation of
Distribution Mutation

Hyper Mutation
Mutate mutation-prompt

Lamarckian Mutation
Generate task-prompt
from the "working out"

Prompt Crossover
and

Context Shuffling

Mutation Operators

Promptbreeder: Key Features

I Initial population of prompts comes from problem descriptions.

I LLMs are used to mutate task prompts with guidance from mutation
prompts.

I Evolution refines both task prompts and mutation prompts for continual
improvement.

I More complex mutations combine multiple prompts to explore new prompt
spaces.

Performance of Promptbreeder

I Tested across arithmetic reasoning, commonsense reasoning, instruction
induction, etc.

I Consistently outperformed Plan-and-Solve techniques.

I Robust in both zero-shot and few-shot scenarios.

Promptbreeder Case Study: ETHOS Hate Speech Classification

I Promptbreeder evolved a strategy for hate speech classification.

I It improved accuracy from 80% to 89%.

I Example: Two sequentially applied, relatively long prompts.

EvoPrompt vs. Promptbreeder

I EvoPrompt focuses on refining prompts with crossover and mutation.

I Promptbreeder takes a more complex approach with self-referential
evolution.

I Both demonstrate the e↵ectiveness of evolutionary algorithms in prompt
optimization.

Aspect EvoPrompt PromptBreeder
Core Approach Traditional genetic algorithm with

simple text-based mutations and

population-based evolution

Meta-learning system that evolves

both prompts and mutation operators,

using LLM for generating mutations

LLM Integration Used primarily for fitness evaluation Actively involved in evolution process,

generates mutation operators

Complexity Simpler implementation, straightfor-

ward evolution process

More complex architecture with meta-

learning and self-improvement capa-

bilities

Flexibility Task-focused with predefined muta-

tion operators

Can discover novel optimization

strategies through meta-learning

Introduction to Model Merging

I AI development might follow a path similar to human collective
intelligence.

I AI systems will consist of many small, specialized models instead of a
single, all-knowing system.

I Open-source AI models demonstrate a promising trend of merging
specialized models.

Model Merging and Democratization of AI

I Open models are extended and fine-tuned for di↵erent niches.

I Model merging allows combining strengths from di↵erent domains.

I Top-performing models are often merged versions of base models.

(a) Performance boost. (b) Skill integration.

Challenges in Model Merging

I Merging models manually is often di�cult and relies on intuition.

I Evolutionary algorithms provide systematic ways to discover optimal
combinations.

I These algorithms explore novel combinations that human intuition might
miss.

(a) Performance boost. (b) Skill integration.

Evolutionary Model Merge Method

I Combines two approaches: Data Flow Space (Layer Merging) and
Parameter Space (Weight Merging).

I Uses evolution to optimize how layers and weights from multiple models
are merged.

I Capable of discovering architectural innovations beyond human intuition.

Our Merged ModelsCollection of Models

M
od

el
La

ye
rs M

erge in PS

M
erge in DFS

M
erge in both

Q1: Mishka bought 3 pairs of shorts, 3 pairs of long pants, and 3 pairs of shoes. … How much were spent on all the clothing?
Q2: Cynthia eats one serving of ice cream every night. … How much will she have spent on ice cream after 60 days?

…

A1:

✅

A2:

❎

…
Accuracy: 0.18

A1:

❎

A2:

✅

…
Accuracy: 0.31

A1:

✅

A2:

✅

…
Accuracy: 0.52

A1:

✅

A2:

✅

…
Accuracy: 0.36

A1:

✅

A2:

✅

…
Accuracy: 0.56

Merging in the Data Flow Space

I Evolution explores combinations of layers from di↵erent models.

I Combinatorial space is too large for manual exploration.

I Evolutionary algorithms find the best combinations of layers for model
merging.

Demo:

Merging in the Parameter Space

I Evolutionary algorithms also optimize weight merging between models.

I Di↵erent layers can use di↵erent mixing ratios for optimal performance.

I Evolution explores infinite ways of mixing weights for merged models.

Demo:

Merging in Both Spaces

I Evolution can also combine both methods.

I Best of both worlds.

Demo:

Case Study: Japanese Math LLM

I Combined three models: Shisa-Gamma (Japanese), WizardMath (Math),
and Abel (Math).

I Evolution created a Japanese Math LLM over 100-150 generations.

I This model outperformed the source models significantly.

Case Study: Japanese Vision-Language Model

I Combined a Vision-Language Model (LLaVa-1.6-Mistral-7B) with a
Japanese LLM (Shisa Gamma 7B v1).

I Evolution produced a capable Japanese VLM that outperformed existing
models.

I Also learned aspects of Japanese culture, e.g. blue tra�c light.

Case Study: Merging Di↵usion Models

I Evolutionary merging applies to di↵usion models (DM) as well.

I E.g. forming a 4-step DM that supports Japanese native prompts.

I Demonstrates the power of evolutionary algorithms in combining diverse
models.

https://sakana.ai/evolutionary-model-merge/

Conclusion: Evolutionary Model Merging

I Evolutionary algorithms can optimize model merging in both data flow and
parameter spaces.

I Combined models can address niche domains with improved capabilities.

I Evolutionary merging enables AI models to go beyond human intuition and
manual merging.

Our Merged ModelsCollection of Models

M
od

el
La

ye
rs M

erge in PS

M
erge in DFS

M
erge in both

Q1: Mishka bought 3 pairs of shorts, 3 pairs of long pants, and 3 pairs of shoes. … How much were spent on all the clothing?
Q2: Cynthia eats one serving of ice cream every night. … How much will she have spent on ice cream after 60 days?

…

A1:

✅

A2:

❎

…
Accuracy: 0.18

A1:

❎

A2:

✅

…
Accuracy: 0.31

A1:

✅

A2:

✅

…
Accuracy: 0.52

A1:

✅

A2:

✅

…
Accuracy: 0.36

A1:

✅

A2:

✅

…
Accuracy: 0.56

Conclusion #1: Evolutionary Computing Enhances LLMs

I Evolutionary computing plays a significant role in optimizing LLM
performance.

I Techniques like EvoPrompt and Promptbreeder show the power of
evolutionary algorithms.

I Evolutionary model merging of multiple LLMs leads to more capable LLM
systems.

Going the Other Way: Evolution through LLMs

I E.g. ELM: Evolution through Large Models.
I Generating code for the Sodaracer domain:

I LLM trained on large datasets of sequential code changes.

I Then used to generate genetic operations.

I Three principles:
I 1. LLM generates “di↵” mutations, simulating meaningful code changes.

I These mutations outperform traditional random mutations used in GP.

MAP-Elites with Di↵ Mutation

I 2. MAP-Elites categorizes solutions into di↵erent niches based on features.

I LLMs generate targeted modifications to solutions using di↵ mutation.

I Systematic exploration of diverse solution landscapes.

Map of Diverse Champions

Python Program

Diff Model

Python Program

Width of Sodaracer

Height of
Sodaracer

Fine-Tuning Di↵ Models

I 3. Fine-tuning LLMs on task-specific datasets, i.e. Sodaracer.
I Refined di↵ models generate more contextually appropriate code changes.

I Niches discovered, QD score, and code quality all improve with fine-tuning.

Seed Solutions in Evolutionary Search

I Evolutionary search begins with seed solutions.

I LLMs enhance seed solutions by generating new body designs in
evolutionary robotics.

I Seed solutions allow evolutionary exploration of complex designs.

https://youtu.be/jeP8Nsulu48

Novel Solutions in Evolutionary Search
I From the seeds, distinctly di↵erent solutions evolve.

Seeded: https://youtu.be/8C2K5fk28HI

Varieties: https://youtu.be/QNyNtvwA9FI

Blob: https://youtu.be/JDUAI8yrNcY

Hopper: https://youtu.be/noSPGFX5m3M

Centipede: https://youtu.be/zhMsPzo22do

Exploration Process

I The lineage of one of these solutions demonstrates exploration and
refinement.

From square: https://youtu.be/M9pAJuX6dyM

Adjusting to Changes

I Evolution can adjust to changes in the environment.

Bump Challenge: https://youtu.be/Mo-rXnFq6vQ

Solution 1: https://youtu.be/l5PVSLDknWM

Solution 2: https://youtu.be/WEM1dBtLLTw

Tunnel Challenge: https://youtu.be/P9A1ruI3_tU

Conclusion: LLMs Enhance Evolutionary Computing

I Evolution discovers novel and complex body designs.

I LLM-based mutations can explore and refine.

I The combination can drive innovation in complex task-solving.

LLMs as Evolution Strategies

I Can LLMs function as optimization tools for evolutionary strategies (ES)?

I E.g. LLM (Claude) optimizing the function f (x) = 3⇥ (x � 2024)2 + 10.

I Creating new points based on evaluations.

I With population size eight, getting close in five iterations:

EvoLLM: LLMs in Evolutionary Cycles

I The EvoLLM strategy utilizes LLMs as a mutation operator:
I LLMs suggest optimal sampling points for evaluation.

I Points are evaluated; results consolidated; then iterated.

I Improves over standard ES.

EvoLLM Design: High-Level Prompt Design

I EvoLLM represents solution candidates as integers.

I The LLM prompt includes top M solutions from K generations.

I An improvement query is added to the prompt.

Figure: x?k , f
?
k denotes the best-performing solution and its fitness up to generation k.

EvoLLM Process

I Population forms a context bu↵er for LLM:

I Initialize through random search.

I Form two prompts: Top K and last K generations.

I Query LLM to get new solutions; add to context bu↵er.

Evaluating EvoLLM Performance: BBOB Tasks

I EvoLLM outperforms Random Search, Hill Climbing, ES in BBOB tasks.

I More e�cient in generating solutions, taking less than 10 generations.

I EvoLLM works with di↵erent LLMs such as PaLM2, GPT-4, and Llama2.

Evaluating EvoLLM Performance: Control Tasks

I Control tasks from OpenAI Gym (e.g., CartPole-v1 and Acrobot-v1).

I Tasks involve evolving 16 to 40 parameters of feedforward neural networks.

I EvoLLM achieves higher performance than baseline algorithms.

LLM Model Size and Compute
I Larger LLMs tend to perform worse than smaller models in EvoLLM.

I EvoLLM outperforms baselines even with smaller compute budgets.

Generalizing to Language Model Crossover (LMX)

I LLMs can be used to implement crossover operations as well.

I They generate remarkably meaningfully crossovers in various domains.

I Even when it is di�cult to form formal crossover operators.

LMX in a Mathematical Domain
I Symbolic regression to a dataset (SRBench Banana problem; 5300

samples of 2 features).

I Settles on a skeleton quickly.

I Fine tunes the constants with surprising specificity.

LMX in a Language Domain

I Make the sentiment of the statement more positive.

I Creating a variety of changes from meaningful to extreme.

Conclusion #2: LLMs Enhance Evolutionary Computation

I EvoLLM demonstrates the potential of LLMs in enhancing evolutionary
strategies.

I LMX utilizes LLM crossover in a wide variety of domains.

I More e�cient and e↵ective optimization, especially in black-box
optimization.

I Expands the scope of evolutionary optimization.

Conclusion: Synergies of Neuroevolution with Generative AI

I Neuroevolution and generative AI form a powerful synergy, combining the
creative capacity of generative models with the optimization power of
evolutionary algorithms.

I Key successes:
I E�cient model adaptation through evolutionary prompt engineering.

I Novel model merging strategies creating unique capabilities.

I LLMs aiding evolutionary computing through intelligent mutation and

optimization.

I Future opportunities:
I Extending evolutionary optimization to previously infeasible domains.

I Evolutionary optimization of LLM architectures and parameters.

