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Neuroevolution in Biology

» Goal of neuroscience: ldentify how brain structures produce behavior.

» Neuroevolution can help understand the evolution of biological intelligence.

» Key questions:
> Why do specific neural structures exist?
» How do genetic and environmental factors combine in development?
» What evolutionary steps lead to complex behavior?
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Understanding Biology

» "Nothing in biology makes sense except in the light of evolution”
(Dobzhansky, 1973)
» Difficult to understand structure and function without considering how
evolution could have discovered it.
> E.g. speech arising from mastication (chewing).
» Not all structures are optimal; some are evolutionary remnants.
» Example: Human tailbone & appendix as vestigial structures.
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Variation in Brain Organization

» High-level brain organization is consistent across individuals and species.
» Evolution provides successful variations to adapt to niches.

» Artificial agents can simulate environments to understand brain evolution.




Undertanding Network Structures Example 1: Single-Cell Interpretation

. . » Simulated task: Agent navigates to food while avoiding poison.
» Can go beyond single-cell analysis because have access to full networks. g & &P

» Methods:
> Lesion studies.
> Shapley value for contribution analysis.

» Pruning networks to remove non-significant elements.
> Adaptation of methods for neuroscience (e.g., simulated EEG, fMRI, TMS).

» Neural network with 5 sensory, 4 motor, and 6-41 hidden neurons.

» Analyzed in simulated neuroscience experiments.
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Emergence of Command Neurons Example 2: Facilitating Synapses

» Command neurons switch behaviors (e.g., navigation to foraging). Facilitating synapses play roles in temporal sequence processing.

» Activation depends on input and the rate of change in activation:
A(T) = X(t) + r(X(t) — A(t — 1))

» Can compensate for delays in biological neural networks.

» Result in higher fitness for agents.

» Similar command neurons found in aplysia, crayfish, and lobsters.
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Implications for Predictive Mechanisms Example 3: Central Pattern Generators (CPGs)

» Delays compensated by synaptic facilitation suggest prediction.

L . . » CPGs control rhythmic activities like walking and swimming.
» Predictive mechanisms may be fundamental for cognition. . . .

. O . . » Hard to get the design right to reproduce behavior.
» Supports theories on predictive coding in the brain. )

» Evolved controllers often outperform hand-designed models.

- - » Robust enough to put on hardware.
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From Swimming to Walking Example 4: Network Building Blocks

» The oscillation patterns and connectivity structures closer to biology.
» Same circuit can control both swimming and walking.

» Demonstrating a crucial phase in vertebrate evolution?
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y s » Many tasks have common subgoals expressed as motifs.
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“ " . l “ » Feedforward loop filters information; single-input generates time variance.
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If a network is evolved to solve a task (e.g. single pattern recognition)
little systematicity.

However, if multiple tasks solved at once (e.g. multiple patterns), network
motifs arise.
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Multifunctionality in the Brain

» Similar motifs found in biological networks
» In general, many areas serve multiple functions.
» E.g. visual areas utilized for language.

» Neuroevolution demonstrates how multifunctionality arises from
complexity.
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Importance of Minimizing Wiring Length

» Minimizing wiring length is a key principle influencing brain structure.

» Supports the hypothesis that modularity in the brain may have
evolutionary origins.

» Modularity simplifies construction, maintenance, and adaptability.
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Example 5: Evolutionary Origins of Modularity

» The brain’s structure is influenced by physical requirements as well as
computational needs.

» Efficient metabolism and space constraints contribute to its organization.

» Gray matter and white matter distribution is an example of space
optimization.
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Computational Demonstration of Modularity

» Neuroevolution with two objectives: Performance and wiring length.
» An eight-pixel retina detecting objects on left, right, or both sides.
» Feedforward networks with three hidden layers were evolved.

» Modularity measured by comparing connection density within and across
modules.
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Results of Modularity in Evolution

» Evolution with wiring constraints produced more modular networks.
» Modular networks often corresponded to left/right decision-making.

Evolvability of Modular Networks

» Modular networks adapt faster to new tasks.
»> Modularly varying goals (MVG), i.e. composed of known subtasks.

» Modular networks outperformed nonmodular ones.

» With changing tas

ks, higher levels of modularity result.
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Example 6: Neuromodulation

» Neurons affecting input sum or Hebbian weight change multiplicatively.
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generation

» Sigma-pi units: networks using both summation and multiplication:

y; = Fi(ZiwMiy;

» XOR function represented with fewer neurons (e.g., AND, OR, and a

selector).

» Applicable to complex tasks like grammar recognition.
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Experiment on Neuromodulation in Evolution

» Neuromodulation i

ntegrated with Hebbian plasticity:

wji = n tanh(om)(Aojo; + Bo; + Co; + D).

» Modulatory neuron influences weight changes and learning rates.




T-Maze Navigation Task

» Navigate a T-maze to reach a reward, adapting to changing reward
locations.

» Network topology and Hebbian learning parameters evolved.

» Networks with and without neuromodulation were tested.
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Neurovelution Insight into Developmental Processes

» Key question in cognitive science: How much behavior is innate vs.
learned?
» Both nature and nurture contribute to intelligent behavior.

» Initial development and long-term stability often driven by genetically

directed learning.

Role of Neuromodulation in Performance

» Modulatory networks adapted more reliably than non-modulatory networks.
» When modulation turned off, still performed well locally but not globally.
» Not an add-on, but integrated into the dynamics of behavior.

» Evolution favors solutions that leverage all mechanisms available.
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Synergy of Evolution and Development

» With only about 24k human genes; much of brain complexity must be
learned.

» Genes provide initial structure, biases, and learning mechanisms.

» Evolution takes advantage of the ability to learn.

» Example: Language as an innate capacity needing environmental input.




Critical Periods Example 1: Synergy of Evolution and Learning

» Humans have extended development periods compared to other animals. » Experiment: Simulated creatures in a 2D grid world for foraging.
» Critical periods for acquiring skills such as walking, talking, and social » Input: Angle and distance to nearest food item, previous action.
behavior. » Output: Predicted sensory input and next action.
» Missing these periods can result in incomplete development.
» Example: Can learn to communicate late, but not grammatically. . )
P & y Planned Action at t1 Predicted Sensory Input at t1

» Learning is programmed into development.

Planned Action at t0 Sensory Input at t0

Learning and Evolution in the Model Benefits of Synergetic Development
> Networks trained via gradient descent to predict action outcomes. » Synergetic development facilitates the discovery of better solutions.
> |I.Dfev_elopmental process enhances evolution by allowing adaptation within a > Combines genetic structure with adaptable learning mechanisms.
Ifetime.

L e . . . . » Demonstrates evolution’s use of learning to enhance adaptability.
» Prediction ability improves over generations but is not directly genetic.
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Balancing Bias and Variance

Evolution and learning: Bias vs. variance balance.
Evolution: High bias, low variance — general principles.
Learning: High variance, low bias — specific situations.
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Developmental systems balance these aspects for robust learning.
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Example 3: Establishing Useful Biases

» Visual systems combine genetic predispositions and learning.

» Retinotopy and orientation sensitivity partially innate, refined through
early life learning.

» Innate preferences (e.g., face-like patterns) observed in human newborns.
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Example 2: Evolving Learning Systems

» Learning parameters can be evolved to enhance task performance.
» Example: Hebbian learning parameters evolved in robot navigation tasks.

» Evolution finds optimal parameters, balancing bias and variance.
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Mechanism of Internal Pattern Generation
» Evolution uses internal pattern generation for learning bias.
» Examples: Retinal activity waves for orientation detectors, patterns in the
ponto-geniculate-occipital loop for face preference.
» Less need for fully specified starting points, evolution provides pattern
generation processes.
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Experiment: Pattern Recognition with Neural Networks

> Task: Recognize handwritten digits (NIST dataset).

» Three approaches: learning, evolution, evolved pattern generation +
learning.
» Learning is based on simple Competitive learning model:

> An array of neurons with input weight vectors w;

» Neuron with the closest w; to input x; wins

> Winner's w; adapted towards the input: w;(t + 1) = w;(t) + n(x; — w;(t))
> Learns a categorization of the input vectors

Output Units

Input Units

Learning Weight Vectors

» Evolution does not care about representing digits.

» Evolved weight vectors emphasize key differences for classification.
> Still struggles with 1/7, 3/8/9.
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Learning Weight Vectors

» Initial weights are random.
» Competitive learning develops weight vectors resembling digit patterns.

> But struggles with 1/7, 3/8/9, often missing some of these categories.

Initial:
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Evolved Patterns

» Evolved pattern generators emphasize horizontal midline locations.
» Hard to learn from actual digits

» Provide initial separation for the difficult categories 1/3/7/8/9.

>

Discovered as a useful learning bias by evolution.

Generated Patterns:

11
[T NN [ [T O

[T
[T
[T

After Competitive Learning with Generated Patterns:
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Synergy of Evolution and Learning Example 4: Stability in Continual Learning (hypothesis)

> Result: Competitive learning with actual digits separates all categories. > Pattern generators may stabilize learning over an animal’s lifetime.

» Adaptive systems balance innate structure and postnatal learning. > Prevents overfitting and catastrophic forgetting.

» Synergy of the two mechanisms. » Insight for building adaptive, stable artificial systems.
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