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Understanding Biology
I ”Nothing in biology makes sense except in the light of evolution”

(Dobzhansky, 1973)
I Di�cult to understand structure and function without considering how

evolution could have discovered it.
I E.g. speech arising from mastication (chewing).

I Not all structures are optimal; some are evolutionary remnants.
I Example: Human tailbone & appendix as vestigial structures.

https://www.uv.es/jgpausas/he.htm

Neuroevolution in Biology

I Goal of neuroscience: Identify how brain structures produce behavior.

I Neuroevolution can help understand the evolution of biological intelligence.
I Key questions:

I Why do specific neural structures exist?

I How do genetic and environmental factors combine in development?

I What evolutionary steps lead to complex behavior?

Variation in Brain Organization

I High-level brain organization is consistent across individuals and species.

I Evolution provides successful variations to adapt to niches.

I Artificial agents can simulate environments to understand brain evolution.



Undertanding Network Structures

I Can go beyond single-cell analysis because have access to full networks.
I Methods:

I Lesion studies.

I Shapley value for contribution analysis.

I Pruning networks to remove non-significant elements.

I Adaptation of methods for neuroscience (e.g., simulated EEG, fMRI, TMS).

I Examples: Neuron analysis; delays; pattern generators; network motifs;
modularity; neuromodulation.

Example 1: Single-Cell Interpretation

I Simulated task: Agent navigates to food while avoiding poison.

I Neural network with 5 sensory, 4 motor, and 6-41 hidden neurons.

I Analyzed in simulated neuroscience experiments.

Emergence of Command Neurons

I Command neurons switch behaviors (e.g., navigation to foraging).

I Result in higher fitness for agents.

I Similar command neurons found in aplysia, crayfish, and lobsters.

Example 2: Facilitating Synapses

I Facilitating synapses play roles in temporal sequence processing.

I Activation depends on input and the rate of change in activation:
A(T ) = X (t) + r(X (t)� A(t � 1))

I Can compensate for delays in biological neural networks.



Implications for Predictive Mechanisms

I Delays compensated by synaptic facilitation suggest prediction.

I Predictive mechanisms may be fundamental for cognition.

I Supports theories on predictive coding in the brain.

Example 3: Central Pattern Generators (CPGs)

I CPGs control rhythmic activities like walking and swimming.

I Hard to get the design right to reproduce behavior.

I Evolved controllers often outperform hand-designed models.

I Robust enough to put on hardware.

From Swimming to Walking

I The oscillation patterns and connectivity structures closer to biology.

I Same circuit can control both swimming and walking.

I Demonstrating a crucial phase in vertebrate evolution?

https://youtu.be/YVU8M_xcZec?si=THlSClwkFqnLYI72

Example 4: Network Building Blocks

I If a network is evolved to solve a task (e.g. single pattern recognition)
little systematicity.

I However, if multiple tasks solved at once (e.g. multiple patterns), network
motifs arise.

I Many tasks have common subgoals expressed as motifs.

I Feedforward loop filters information; single-input generates time variance.



Multifunctionality in the Brain

I Similar motifs found in biological networks

I In general, many areas serve multiple functions.

I E.g. visual areas utilized for language.

I Neuroevolution demonstrates how multifunctionality arises from
complexity.

Example 5: Evolutionary Origins of Modularity
I The brain’s structure is influenced by physical requirements as well as

computational needs.

I E�cient metabolism and space constraints contribute to its organization.

I Gray matter and white matter distribution is an example of space
optimization.

Importance of Minimizing Wiring Length

I Minimizing wiring length is a key principle influencing brain structure.

I Supports the hypothesis that modularity in the brain may have
evolutionary origins.

I Modularity simplifies construction, maintenance, and adaptability.

Computational Demonstration of Modularity

I Neuroevolution with two objectives: Performance and wiring length.

I An eight-pixel retina detecting objects on left, right, or both sides.

I Feedforward networks with three hidden layers were evolved.

I Modularity measured by comparing connection density within and across
modules.



Results of Modularity in Evolution
I Evolution with wiring constraints produced more modular networks.
I Modular networks often corresponded to left/right decision-making.
I Modular networks outperformed nonmodular ones.

Evolvability of Modular Networks
I Modular networks adapt faster to new tasks.

I Modularly varying goals (MVG), i.e. composed of known subtasks.

I With changing tasks, higher levels of modularity result.

I Suggests that while wiring length drives modularity, adaptation
strengthens it.

Example 6: Neuromodulation

I Neurons a↵ecting input sum or Hebbian weight change multiplicatively.

I Sigma-pi units: networks using both summation and multiplication:
yj = Fj(⌃iwij⇧iyi

I XOR function represented with fewer neurons (e.g., AND, OR, and a
selector).

I Applicable to complex tasks like grammar recognition.

Experiment on Neuromodulation in Evolution

I Neuromodulation integrated with Hebbian plasticity:
wji = ⌘ tanh(om)(Aojoi + Boj + Coi + D).

I Modulatory neuron influences weight changes and learning rates.



T-Maze Navigation Task

I Navigate a T-maze to reach a reward, adapting to changing reward
locations.

I Network topology and Hebbian learning parameters evolved.

I Networks with and without neuromodulation were tested.

Role of Neuromodulation in Performance

I Modulatory networks adapted more reliably than non-modulatory networks.

I When modulation turned o↵, still performed well locally but not globally.

I Not an add-on, but integrated into the dynamics of behavior.

I Evolution favors solutions that leverage all mechanisms available.

Neurovelution Insight into Developmental Processes

I Key question in cognitive science: How much behavior is innate vs.
learned?

I Both nature and nurture contribute to intelligent behavior.

I Initial development and long-term stability often driven by genetically
directed learning.

Synergy of Evolution and Development

I With only about 24k human genes; much of brain complexity must be
learned.

I Genes provide initial structure, biases, and learning mechanisms.

I Evolution takes advantage of the ability to learn.

I Example: Language as an innate capacity needing environmental input.



Critical Periods

I Humans have extended development periods compared to other animals.

I Critical periods for acquiring skills such as walking, talking, and social
behavior.

I Missing these periods can result in incomplete development.

I Example: Can learn to communicate late, but not grammatically.

I Learning is programmed into development.

Example 1: Synergy of Evolution and Learning

I Experiment: Simulated creatures in a 2D grid world for foraging.

I Input: Angle and distance to nearest food item, previous action.

I Output: Predicted sensory input and next action.

Learning and Evolution in the Model

I Networks trained via gradient descent to predict action outcomes.

I Developmental process enhances evolution by allowing adaptation within a
lifetime.

I Prediction ability improves over generations but is not directly genetic.

Benefits of Synergetic Development

I Synergetic development facilitates the discovery of better solutions.

I Combines genetic structure with adaptable learning mechanisms.

I Demonstrates evolution’s use of learning to enhance adaptability.



Balancing Bias and Variance

I Evolution and learning: Bias vs. variance balance.

I Evolution: High bias, low variance ! general principles.

I Learning: High variance, low bias ! specific situations.

I Developmental systems balance these aspects for robust learning.

Example 2: Evolving Learning Systems

I Learning parameters can be evolved to enhance task performance.

I Example: Hebbian learning parameters evolved in robot navigation tasks.

I Evolution finds optimal parameters, balancing bias and variance.

Example 3: Establishing Useful Biases

I Visual systems combine genetic predispositions and learning.

I Retinotopy and orientation sensitivity partially innate, refined through
early life learning.

I Innate preferences (e.g., face-like patterns) observed in human newborns.

Mechanism of Internal Pattern Generation
I Evolution uses internal pattern generation for learning bias.
I Examples: Retinal activity waves for orientation detectors, patterns in the

ponto-geniculate-occipital loop for face preference.
I Less need for fully specified starting points, evolution provides pattern

generation processes.

Demo:



Experiment: Pattern Recognition with Neural Networks

I Task: Recognize handwritten digits (NIST dataset).

I Three approaches: learning, evolution, evolved pattern generation +
learning.

I Learning is based on simple Competitive learning model:
I An array of neurons with input weight vectors wi
I Neuron with the closest wi to input xi wins
I Winner’s wi adapted towards the input: wi (t + 1) = wi (t) + ⌘(xi � wi (t))
I Learns a categorization of the input vectors

Learning Weight Vectors

I Initial weights are random.

I Competitive learning develops weight vectors resembling digit patterns.

I But struggles with 1/7, 3/8/9, often missing some of these categories.

Initial:

Final Competitive Learning:

Learning Weight Vectors

I Evolution does not care about representing digits.

I Evolved weight vectors emphasize key di↵erences for classification.

I Still struggles with 1/7, 3/8/9.

Initial:

Final Direct Evolution:

Evolved Patterns

I Evolved pattern generators emphasize horizontal midline locations.

I Hard to learn from actual digits

I Provide initial separation for the di�cult categories 1/3/7/8/9.

I Discovered as a useful learning bias by evolution.

Generated Patterns:

After Competitive Learning with Generated Patterns:



Synergy of Evolution and Learning

I Result: Competitive learning with actual digits separates all categories.

I Adaptive systems balance innate structure and postnatal learning.

I Synergy of the two mechanisms.

After Competitive Learning with Generated Patterns:

After Further Training with Actual Digits:

Example 4: Stability in Continual Learning (hypothesis)

I Pattern generators may stabilize learning over an animal’s lifetime.

I Prevents overfitting and catastrophic forgetting.

I Insight for building adaptive, stable artificial systems.


