Introduction to Evolutionary Algorithms
» Evolutionary Algorithms (EAs) are optimization techniques
inspired by Darwinian evolution.
» EAs mimic natural selection and survival of the fittest.
» EAs start with a population of random solutions and evolve

Introduction to Evolutionary Algorithms over generations.
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Figure: Survival of the fittest:

Mechanism of Evolutionary Algorithms Evolutionary Algorithms vs. Gradient-based Methods
o ) ] » Suitable for complex problems where no single perfect solution
» Each solution is evaluated based on a fitness function. exists.
> The best solutions (parents) are selected for the next » Do not require a clearly defined error function, unlike
generation. backpropagation.
> Varla'Elons (mutations) and recombination create new > Applicable in areas where traditional gradient-based
offspring. optimization is challenging.

» Over time, solutions become increasingly fit for the task.




Evolutionary Algorithms vs. Reinforcement Learning Local Optimum in RL

Demo:

» Reinforcement Learning (RL) improves a single solution by
estimating gradients

» RL struggles with sparse rewards, local optima, noisy
evaluations.

» RL can refine solutions, but cannot explore widely.

Figure: Bipedal walker agent stuck in a local optimum.
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Advantages of Evolutionary Algorithms

lllustrating Evolutionary Optimization
» EAs provide an alternative: a population-based search instead » Shaffer and Rastrigin functions in 2D
of improving a single solution » Highly deceptive and difficult for other methods
' » Demonstrating Genetic Algorithms and Evolutionary Strategy
» Two most common methods for evolving neural networks

» Can be more creative.
» Can scale-up to

> Large spaces (many possible solutions)

> High-dimensional spaces (many knobs to adjust)
> Deceptive spaces (hard to search)

» Many implementations




Overview of Genetic Algorithms (GAs)

» Genetic Algorithms (GAs) mimic natural selection and were
introduced by John Holland in the 1970s.

» In GAs, each individual is represented as a chromosome, i.e. a
string of binary or real numbers or other suitable forms.

» The initial population is generated randomly or heuristically to
provide a diverse set of starting solutions.

Simple GA Process
» Simple GA keeps only 10% of the best solutions, discarding
the rest.
» New solutions are sampled by recombining parameters from
surviving solutions.

» Gaussian noise is added to new solutions to maintain diversity.

Demo: Demo:
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Figure: Simple GA progress over 20 steps. The green dots represent members of the
elite population from the previous generation, the blue dots are the offsprings to form
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GA Operators: Selection upon Variation

» Selection: Determines which individuals contribute genetic
material to the next generation.
» Roulette Wheel Selection: Probability-based selection based
on fitness.
» Tournament Selection: Choose fittest from a random group.
» Rank-Based Selection: Individuals ranked by fitness,
selection probabilities assigned by rank.
» Variation: Generate new, diverse individuals.
» Crossover: Combines genetic material from two parents to
create offspring.
» Single-Point, Two-Point, and Uniform Crossover techniques.
» Mutation: Introduces small random changes to maintain
diversity and avoid local optima.
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Overview of Evolution Strategy (ES)

> Evolution Strategy (ES) was developed in the 1960s and
1970s by Ingo Rechenberg and Hans-Paul Schwefel.

» ES typically operates on real-valued vectors, optimizing
continuous functions.

» ES typically employs only mutation operations.

» Unlike GAs, ES focuses on continuous optimization rather
than binary or symbolic representations.



Mechanism of Evolution Strategy

» Each individual is represented by a vector of real numbers
(solution parameters).

» Initial population is generated randomly or based on prior
knowledge.

» Selection is deterministic, with the best individuals producing
the next generation.

> (u,A) Selection: 4 parents produce \ offspring, best A
selected.

» (1 + A) Selection: Best p individuals from both parents and
offspring selected.

Demo: Demo:

Figure: Simple ES progress over 20 steps. The green dot indicates the mean, blue
dots are sampled solutions, and the red dot is the best solution.

Variation in Evolution Strategy
» Variation primarily through mutation, adding a normally
distributed random vector.

» Mutation strength (o) controls the magnitude of
perturbations.

» Crossover is less common but can combine parameter vectors
from multiple parents.

» ES samples solutions from a normal distribution around a
mean g with standard deviation o.

Extension to CMA-ES
» CMA-ES addresses the limitation of fixed standard deviation
in Simple ES and GA.

» It adapts the search space by adjusting the mean p and
covariance matrix, thus capturing dependencies between
dimensions.

» Ideal for exploring large search spaces and fine-tuning near
optimal solutions.

» Particularly useful for neuroevolution: captures how weights
depend on each other.
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Covariance Matrix Estimation CMA-ES Step-by-Step lllustration
» To adapt the search space, CMA-ES uses the Npes;=25% of
the population to estimate the covariance matrix, and the
current generation’s mean, p(8).

1. Calculate fitness scores for each solution.
» First calculate the new mean:

2. Select the best 25% of the population.
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CMA-ES Process Conclusion on Basic Evolutionary Algorithms
Demo: ) ) Demo:

» EAs are powerful, adaptive algorithms for nonlinear
optimization.

» Population-based search allows for extensive exploration,
making it possible to find surprising and creative solutions.

» It also makes it possible to scale up optimization to high
dimensions, high dimensionality, and deceptive search spaces.
» Many implementations:

P Genetic algorithms (GA), evolution strategies (ES,CMA-ES), genetic
programming (GP), estimation of distribution algorithms (EDA),
particle-swarm optimization (PSO), differential evolution (DE),

evolutionary programming (EP), genetic cartesian programming (GCP)...
Figure: CMA-ES adapts both mean and covariance matrix over time, > GAs and CMA-ES most commonly used for neuroevolution.
allowing the search process to explore broadly or refine narrowly as
needed.
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They Can Get Over Local Minima!

Demo:

Introduction to Exercises

» Hands-on experience is the best way to understand EAs

#solver = es.SimpleES(...)
solver = es.CMAES(...)

while True:

» First exercises on Numpy and EvoJAX on Google Colab
» Different algorithms can be easily evaluated, e.g
#solver = es.SimpleGA(...)

solutions = solver.ask()
fitness_list = np.zeros(solver.popsize)
for i in range(solver.popsize):
fitness_list[i] = evaluate(solutions[il)

solver.tell(fitness_list)
Figure: Bipedal walker agent evolved with CMA-ES.

result = solver.result()

if result[1] > MY _REQUIRED_FITNESS:
break
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