
Introduction to Evolutionary Algorithms

Risto Miikkulainen

November 11, 2024

Introduction to Evolutionary Algorithms

I Evolutionary Algorithms (EAs) are optimization techniques
inspired by Darwinian evolution.

I EAs mimic natural selection and survival of the fittest.
I EAs start with a population of random solutions and evolve

over generations.

Figure: Survival of the fittest.

Mechanism of Evolutionary Algorithms

I Each solution is evaluated based on a fitness function.

I The best solutions (parents) are selected for the next
generation.

I Variations (mutations) and recombination create new
o↵spring.

I Over time, solutions become increasingly fit for the task.

Evolutionary Algorithms vs. Gradient-based Methods

I Suitable for complex problems where no single perfect solution
exists.

I Do not require a clearly defined error function, unlike
backpropagation.

I Applicable in areas where traditional gradient-based
optimization is challenging.



Evolutionary Algorithms vs. Reinforcement Learning

I Reinforcement Learning (RL) improves a single solution by
estimating gradients

I RL struggles with sparse rewards, local optima, noisy
evaluations.

I RL can refine solutions, but cannot explore widely.

Local Optimum in RL

Demo:

Figure: Bipedal walker agent stuck in a local optimum.

Advantages of Evolutionary Algorithms

I EAs provide an alternative: a population-based search instead
of improving a single solution.

I Can be more creative.
I Can scale-up to

I Large spaces (many possible solutions)
I High-dimensional spaces (many knobs to adjust)
I Deceptive spaces (hard to search)

I Many implementations

Illustrating Evolutionary Optimization

I Sha↵er and Rastrigin functions in 2D
I Highly deceptive and di�cult for other methods

I Demonstrating Genetic Algorithms and Evolutionary Strategy
I Two most common methods for evolving neural networks



Overview of Genetic Algorithms (GAs)

I Genetic Algorithms (GAs) mimic natural selection and were
introduced by John Holland in the 1970s.

I In GAs, each individual is represented as a chromosome, i.e. a
string of binary or real numbers or other suitable forms.

I The initial population is generated randomly or heuristically to
provide a diverse set of starting solutions.

GA Operators: Selection upon Variation

I Selection: Determines which individuals contribute genetic
material to the next generation.
I Roulette Wheel Selection: Probability-based selection based

on fitness.
I Tournament Selection: Choose fittest from a random group.
I Rank-Based Selection: Individuals ranked by fitness,

selection probabilities assigned by rank.
I Variation: Generate new, diverse individuals.

I Crossover: Combines genetic material from two parents to
create o↵spring.

I Single-Point, Two-Point, and Uniform Crossover techniques.
I Mutation: Introduces small random changes to maintain

diversity and avoid local optima.

Simple GA Process

I Simple GA keeps only 10% of the best solutions, discarding
the rest.

I New solutions are sampled by recombining parameters from
surviving solutions.

I Gaussian noise is added to new solutions to maintain diversity.

Demo: Demo:

Figure: Simple GA progress over 20 steps. The green dots represent members of the

elite population from the previous generation, the blue dots are the o↵springs to form

the set of candidate solutions, and the red dot is the best solution.

Overview of Evolution Strategy (ES)

I Evolution Strategy (ES) was developed in the 1960s and
1970s by Ingo Rechenberg and Hans-Paul Schwefel.

I ES typically operates on real-valued vectors, optimizing
continuous functions.

I ES typically employs only mutation operations.

I Unlike GAs, ES focuses on continuous optimization rather
than binary or symbolic representations.



Mechanism of Evolution Strategy

I Each individual is represented by a vector of real numbers
(solution parameters).

I Initial population is generated randomly or based on prior
knowledge.

I Selection is deterministic, with the best individuals producing
the next generation.

I (µ,�) Selection: µ parents produce � o↵spring, best �
selected.

I (µ+ �) Selection: Best µ individuals from both parents and
o↵spring selected.

Variation in Evolution Strategy

I Variation primarily through mutation, adding a normally
distributed random vector.

I Mutation strength (�) controls the magnitude of
perturbations.

I Crossover is less common but can combine parameter vectors
from multiple parents.

I ES samples solutions from a normal distribution around a
mean µ with standard deviation �.

Simple ES Process

Demo: Demo:

Figure: Simple ES progress over 20 steps. The green dot indicates the mean, blue

dots are sampled solutions, and the red dot is the best solution.

Extension to CMA-ES

I CMA-ES addresses the limitation of fixed standard deviation
in Simple ES and GA.

I It adapts the search space by adjusting the mean µ and
covariance matrix, thus capturing dependencies between
dimensions.

I Ideal for exploring large search spaces and fine-tuning near
optimal solutions.

I Particularly useful for neuroevolution: captures how weights
depend on each other.



Covariance Matrix Estimation

I To adapt the search space, CMA-ES uses the Nbest=25% of
the population to estimate the covariance matrix, and the
current generation’s mean, µ(g).

I First calculate the new mean:

µ(g+1)

x =
1

Nbest

NbestX

i=1

xi , µ(g+1)

y =
1

Nbest

NbestX

i=1

yi

I Then the 2D covariance matrix entries:

�2,(g+1)

x =
1

Nbest

NbestX

i=1

(xi � µ(g)
x )2,

�2,(g+1)

y =
1

Nbest

NbestX

i=1

(yi � µ(g)
y )2

�(g+1)

xy =
1

Nbest

NbestX

i=1

(xi � µ(g)
x )(yi � µ(g)

y )

CMA-ES Step-by-Step Illustration

1. Calculate fitness scores for each solution.

2. Select the best 25% of the population.

3. Use these best solutions to update the covariance matrix and
mean for the next generation.

4. Sample new candidate solutions from the updated distribution.

CMA-ES Process

Demo: Demo:

Figure: CMA-ES adapts both mean and covariance matrix over time,
allowing the search process to explore broadly or refine narrowly as
needed.

Conclusion on Basic Evolutionary Algorithms

I EAs are powerful, adaptive algorithms for nonlinear
optimization.

I Population-based search allows for extensive exploration,
making it possible to find surprising and creative solutions.

I It also makes it possible to scale up optimization to high
dimensions, high dimensionality, and deceptive search spaces.

I Many implementations:
I Genetic algorithms (GA), evolution strategies (ES,CMA-ES), genetic

programming (GP), estimation of distribution algorithms (EDA),

particle-swarm optimization (PSO), di↵erential evolution (DE),

evolutionary programming (EP), genetic cartesian programming (GCP)...

I GAs and CMA-ES most commonly used for neuroevolution.



They Can Get Over Local Minima!

Demo:

Figure: Bipedal walker agent evolved with CMA-ES.

Introduction to Exercises

I Hands-on experience is the best way to understand EAs.

I First exercises on Numpy and EvoJAX on Google Colab.

I Di↵erent algorithms can be easily evaluated, e.g.:

#solver = es.SimpleGA(...)
#solver = es.SimpleES(...)
solver = es.CMAES(...)

while True:
solutions = solver.ask()
fitness list = np.zeros(solver.popsize)

for i in range(solver.popsize):
fitness list[i] = evaluate(solutions[i])

solver.tell(fitness list)
result = solver.result()

if result[1] > MY REQUIRED FITNESS:
break


