
Neural Networks

Risto Miikkulainen

October 7, 2024

Motivation for Neural Networks

I Statistical machines with real-world applications
I Pattern recognition, control, behavior
I Biological and cognitive modeling
I Usually simulated, but also hardware

I Motivation from biological neural networks
I Abstracted into computational structures
I Massively parallel, simple operations
I Performance from scale

The Biological Neuron Artificial Neuron

I OUT = F(XW) = F(
P

wixi )

I Activity = Firing rate

I Nonlinear activation functions, e.g.:



Feedforward Neural Networks (FNNs)

I Feedforward Neural Networks are the simplest type of artificial neural
network.

I Consist of:
I Input layer
I One or more hidden layers
I Output layer

I Information flows in one direction, from input to output, without loops or
cycles.

Details of Feedforward Neural Networks (FNNs)

I Input layer:
I Receives raw data.
I Each node corresponds to a feature or variable.
I Passes input values to the next layer.

I Hidden layers:
I Perform computations.
I Each neuron calculates a weighted sum of inputs, passes through an

activation function (e.g., ReLU, Sigmoid, Tanh).

I Output layer:
I Produces the network’s prediction.
I Number of neurons matches the number of possible outputs.

Learning Through Gradient Descent

I Weights typically trained with gradient descent
(a.k.a. backpropagation)
I Form a training corpus of input-target pairs
I Initialize the weights to be small and random
I Then train until convergence or out of time
I Evaluate on a test corpus of unseen data

Learning Through Gradient Descent

I Gradient descent (online, i.e. stochastic version):
I Select a training pair and present to the network
I Compute output: OUT = F (F (XU)W )
I Calculate error (i.e. loss): �k = F

0
(NETk ) ⇤ (Tk � OUTk )

I Backpropagate error through the network: �j = F
0
(NETj )⌃k�kWjkI Compute weight changes (i.e. the gradient):

�Wjk = ⌘�kOUTj ; �Uij = ⌘�jOUTi

I Demo: https://playground.tensorflow.org

I Alternatively, the weights can be discovered through evolution
I Structure can be discovered through evolution as well



Example Evolved FFN: Pandemic Interventions

I The prescriptor receives an input vector of 21 days of past cases and NPIs

I It outputs stringency in 12 possible interventions

I Optimal strategy is not known; cannot use backprop

I Evolved with predictor as the fitness evaluator

Recurrent Neural Networks (RNNs)

I Recurrent Neural Networks (RNNs) are designed to recognize patterns in
sequences of data.

I RNNs have connections that loop back, allowing information to persist.

I Well-suited for tasks where context and order matter, such as time series,
text, or audio.

Details of Recurrent Neural Networks (RNNs)

I Neurons receive input from the previous layer and their previous states,
allowing for memory.

I Process sequences one element at a time, maintaining a hidden state
OUTt that captures sequence information:

OUTt = F (U · INt +W · OUTt�1)
I OUTt : hidden state at time step t.
I INt : input at time step t.
I U, W : weight matrices.
I F : activation function (e.g., tanh, ReLU).

I Weights learned through backprop (e.g. BP through time), or evolved

I The recurrent structure can be customized through evolution

Example Evolved RNN: Controlling a Game Agent

I Sensors convey information about the current state
I Recurrency provides information from the past

I E.g. speed, an opponent disappearing behind a wall...

I Combined to make a decision, implemented by e↵ectors

I Evolved with success in game play as a fitness



Long Short-Term Memory Networks (LSTMs)

I LSTMs are a special type of Recurrent Neural Network (RNN) designed to
learn and retain long-term dependencies.

I Overcome the limitations of traditional RNNs, particularly in handling long
sequences.

I Highly e↵ective for tasks involving sequential data, such as language
modeling, speech recognition, and time-series forecasting.

Figure: Left: Recurrent NN. Right: LSTM.

LSTM Cell Structure

I LSTM networks consist of LSTM cells, each with three main gates:
I Forget Gate: Decides which parts of the cell’s state to forget.
I Input Gate: Determines which new information will be added to the cell

state.
I Output Gate: Controls the output based on the cell state.

LSTM Gate Operations

I Forget Gate: ft = �(Wf xf ,t + bf )

I Input Gate: it = �(Wixi,t + bi )

zt = tanh(Wzxt + bc)

I Cell State: ct = ft ⇤ ct�1 + it ⇤ zt
I Output Gate: ot = �(Woxo,t + bo)

yt = ot ⇤ tanh(ct)
I Weights can be learned through gradient descent, or evolved
I The internal structure can be optimized through evolution

Examples of Evolved LSTM Designs

I Using the same components, but allowing more complexity

I More paths, nonlinearities, memory cells

I Still trained with gradient descent

I Improved 25-year old designs by 15% (in language modeling)

Figure: Original LSTM Language Music



Convolutional Neural Networks (CNNs)

I CNNs are deep learning models designed to process grid-like data
structures, such as images.

I E↵ective for tasks involving spatial hierarchies, such as image recognition,
object detection, and video analysis.

I Inspired by the visual cortex, where neurons respond to overlapping regions
in the visual field.

CNN Layers: Convolutional and Activation Layers

I Convolutional Layer:

I Core component of a CNN.
I Performs convolution operation using filters to extract spatial features.
I With input I , kernel K , expressed as

(I ⇤ K)(x , y) =
mX

i=1

nX

j=1

I (x + i , y + j) · K(i , j)

I Activation Function:

I Typically uses the Rectified Linear Unit (ReLU).
I Introduces non-linearity:

f (x) = max(0, x)

CNN Layers: Pooling and Fully Connected Layers

I Pooling Layer:

I Reduces spatial dimensions of feature maps.
I Commonly uses Max Pooling to retain prominent features:

P(x , y) = max{f (i , j) : i , j 2 window(x , y)}
I Fully Connected Layer:

I High-level reasoning is performed.
I Each neuron connects to every neuron in the previous layer.
I Outputs class scores or other task-specific outputs:

y = W · x + b

I Weights learned through gradient descent (limited evolution)

I Structure can be optimized through evolution

Example of an Evolved CNN Architecture

I > 1M weights di�cult to evolve directly
I But can evolve network structure and train it with gradient descent

I Evolutionary Neural Architecture Search (NAS)!

I E.g. AmoebaNet: Given a search space of building blocks, evolve
organization

I Scale up to more channels and widths

I State of the art in ImageNet in 2018



Transformer Networks

I Transformers are deep learning models that rely on self-attention
mechanisms rather than traditional recurrent or convolutional layers.

I Highly e↵ective for handling sequential data and long-range dependencies.
I Widely used in natural language processing (NLP) tasks such as machine

translation, text generation, and summarization.

Figure: Transformer architecture: encoder (left) and decoder (right).

Transformer Architecture

I Trained to predict the next token (e.g. word, symbol) by gradient descent
I Initially designed to beat LSTMs on perplexity

I The core idea is transformations of token embeddings based on their
relationships with other words
I Many di↵erent relationships in parallel; Many stacked transformations
I Transformations are learned and opaque
I When scaled up, a powerful sequence processing architecture

Self-Attention Mechanism in Transformers

I A single attention head:

I Computes a transformation of each token representation vector (i.e.
embedding) based on its relation (i.e. attention) to other tokens.

I Based on projecting embeddings in three ways:
I Query Qi = XiW

Q

i
formed from current word embedding Xi

I Keys Kj = XjW
K

j
formed from nearby word embeddings Xj

I Values Vj = XjW
V

j
formed from nearby word embeddings Xj

I Self-attention matches queries with keys and forms a representation by
combining the values proportionally.

I Could do it simply with embeddings themselves, but only once
I Q, K V mappings make it possible in many di↵erent ways.
I They are learned; the process becomes opaque.

Self-Attention Mechanism in Transformers

I Calculating attention scores:

I Take the dot product of Q and K, measuring relevance of each nearby word
to the current word.

I Scale by the square root of the dimensionality of K.
I Take a softmax to scale between 0..1.
I Interpret the result as weights determining how much each token j

influences the transformed representation for token i

AttentionScore(Q,K) = softmax

✓
QKT

p
dk

◆



Self-Attention Mechanism in Transformers

I Calculating the transformation:

I Form an AttentionScore-weighted sum of value vectors Vj .
I The result is an attention-based representation for token i .
I The collection of these representations for all tokens j is the output of the

attention head.
I It is a transformation of the token embeddings based on their relationships

with other tokens, i.e. attention.

AttentionRepresentation(Q,K ,V ) = softmax

✓
QKT

p
dk

◆
V

Self-Attention Mechanism in Transformers
I Multihead attention:

I Multiple attention heads calculate di↵erent transformations in parallel,
attending to di↵erent aspects (e.g. verb/subject, semantics, style, etc.)

I Their outputs are combined in a feed-forward layer.
I The output is passed on as input to the next layer
I Many such transformations are stacked, forming more complex

representations.

Transformer Encoder-Decoder Structure

I Encoder-Decoder Structure:

I The encoder processes the input sequence into an internal representation.
I The decoder generates an output sequence, based on input so far and the

encoder’s representation.
I Depending on the task, only the encoder, only the decoder, or both may be

needed.

Making it Work

I Positional Encoding

I Sequential structure is encoded into initial embeddings.
I Gradient descent:

I Matrices WQ ,WK ,WV , feedforward parameters.
I The resulting representations are opaque and hard to understand.

I Layer Normalization and Residual Connections:

I Layer normalization stabilizes and speeds up training.
I Residual connections help prevent the vanishing gradient problem.



Example of an Evolved LLM Model Merging

I LLMs are large trainsformer models trained with language

I With 70B weights, di�cult to train or evolve
I But can evolve an optimal way of combining existing models

I Recombine layers, or recombine weights

I E.g. a model fine-tuned for Japanese and another for math

I The merged model can do both

Our Merged ModelsCollection of Models

M
od

el 
La

ye
rs M

erge in PS

M
erge in DFS

M
erge in both

Q1: Mishka bought 3 pairs of shorts, 3 pairs of long pants, and 3 pairs of shoes. … How much were spent on all the clothing?
Q2: Cynthia eats one serving of ice cream every night. … How much will she have spent on ice cream after 60 days?

… 

A1: 

✅

A2: 

❎

… 
Accuracy: 0.18

A1: 

❎

A2: 

✅

… 
Accuracy: 0.31

A1: 

✅

A2: 

✅

… 
Accuracy: 0.52

A1: 

✅

A2: 

✅

… 
Accuracy: 0.36

A1: 

✅

A2: 

✅

… 
Accuracy: 0.56

Conclusion

I Neural networks include several designs in size and complexity

I They make many di�cult applications possible
I The common training method of gradient descent only works in known

domains
I Where the optimal outputs are known

I Neuroevolution allows training neural networks with only fitness
information

I Can also be combined with gradient descent to find optimal designs

I Makes impactful applications possible that otherwise would not be.


