Neural Networks

Risto Miikkulainen

October 7, 2024

The Biological Neuron

ELECTRICAL

; +30mV

Yerhold
~2m!
_~ »
14'!,‘07 Vn’lc
T
= a

Motivation for Neural Networks

1 4 i
st il
00 04 @4

» Statistical machines with real-world applications
> Pattern recognition, control, behavior
> Biological and cognitive modeling
> Usually simulated, but also hardware

» Motivation from biological neural networks

> Abstracted into computational structures
> Massively parallel, simple operations
» Performance from scale

Artificial Neuron

/

F
x > L NET s out

/ ARTIFICIAL NEURON

\

Figure 1-3. Artificial Neuron with Activation Function
> OUT = F(XW) = F(3 wixi)
» Activity = Firing rate

» Nonlinear activation functions, e.g.:

Sigmoid | tanh] —
o(2) = o= tanh(z) s .

max(0, z)

= FINET

Feedforward Neural Networks (FNNs)

» Feedforward Neural Networks are the simplest type of artificial neural
network.
» Consist of:
> Input layer
» One or more hidden layers
> Output layer
» Information flows in one direction, from input to output, without loops or
cycles.

Learning Through Gradient Descent

» Weights typically trained with gradient descent
(a.k.a. backpropagation)
» Form a training corpus of input-target pairs
> Initialize the weights to be small and random
» Then train until convergence or out of time
> Evaluate on a test corpus of unseen data

INPUT HIDDEN QuTPUT
LAYER LAYER LAYER
; 9 [
Wai
ouT,
W, TARGET,
ERROR, <——J
i W, ouT
2 . TARGET "
/ war ERROR,<——
ouTt
W °s{ — |€— TARGET,
w
3n
ERROR, <——

Details of Feedforward Neural Networks (FNNs)

» Input layer:
> Receives raw data.
» Each node corresponds to a feature or variable.
> Passes input values to the next layer.
» Hidden layers:
» Perform computations.
P> Each neuron calculates a weighted sum of inputs, passes through an
activation function (e.g., ReLU, Sigmoid, Tanh).
» OQutput layer:
> Produces the network’s prediction.
» Number of neurons matches the number of possible outputs.

Learning Through Gradient Descent

> Gradient descent (online, i.e. stochastic version):

Select a training pair and present to the network
Compute output: OUT = F(F(XU)W)

Calculate error (i.e. loss): 0y = F/(NETk) * (T — OUTY)

Backpropagate error through the network: 6; = F'(NETj)Zkék Wi
Compute weight changes (i.e. the gradient):
AW = né, OUT;; AU = nd;OUT;

» Demo: https://playground.tensorflow.org

vVYyVvYvYy

» Alternatively, the weights can be discovered through evolution
> Structure can be discovered through evolution as well

INPUT HIDDEN OUTPUT
LAYER LAYER LAYER
i N k
Wai
ouT
W, ! TARGET,
ERROR, <——J
e T TARGET
war ERROR,<——
ouTt
War) w [€— TARGET

Example Evolved FFN: Pandemic Interventions Recurrent Neural Networks (RNNs)

» The prescriptor receives an input vector of 21 days of past cases and NPIs » Recurrent Neural Networks (RNNs) are designed to recognize patterns in
» It outputs stringency in 12 possible interventions sequences of data.

» Optimal strategy is not known; cannot use backprop » RNNSs have connections that loop back, allowing information to persist.
» Evolved with predictor as the fitness evaluator » Well-suited for tasks where context and order matter, such as time series,

text, or audio.

N
b OuT:
o (C4_Restrictions_on_gatherings: Dense
e e e p——— uTe
= P —— L e
j’:?. LAYER 0 LAYER 1
Details of Recurrent Neural Networks (RNNs) Example Evolved RNN: Controlling a Game Agent

» Neurons receive input from the previous layer and their previous states,
allowing for memory.
» Sensors convey information about the current state
» Recurrency provides information from the past
> E.g. speed, an opponent disappearing behind a wall...

) OUT: = F(U-IN: + W - OUTe) » Combined to make a decision, implemented by effectors
OUT;: hidden state at time step t.
IN¢: input at time step t.
U, W: weight matrices.
F: activation function (e.g., tanh, RelLU).

» Process sequences one element at a time, maintaining a hidden state
OUT; that captures sequence information:

» Evolved with success in game play as a fitness

vvyyy

» Weights learned through backprop (e.g. BP through time), or evolved

» The recurrent structure can be customized through evolution

OuT:
OuTe
Enemy Radars On Object Rangefiners ~ Enemy
Target LOF
—— 0OUT. Sensors

LAYER 0 LAYER 1

dotted lines indicate weights of zero

Long Short-Term Memory Networks (LSTMs)

» LSTMs are a special type of Recurrent Neural Network (RNN) designed to

learn and retain long-term dependencies.

» Overcome the limitations of traditional RNNs, particularly in handling long

sequences.

» Highly effective for tasks involving sequential data, such as language

modeling, speech recognition, and time-series forecasting.

output

block output

LSTM block y
output
recurrent

R peepholes

S input

SRN
unit
recurrent
@) input
7N
N
input ecurrent input

input recurrent

Legend
— unweighted connection
= weighted connection

onnection with time-lag

branching point
mutliplication
sum over all inputs

gate activation function
(always sigmoid)

L]

o]
input activation function
(usually tanh)

output activation function
(usually tanh)

Figure: Left: Recurrent NN. Right: LSTM.

LSTM Gate Operations

> Forget Gate: fr = o(Wex,t + br)

» Input Gate: ir = o(Wixit + bi)
z; = tanh(Wyx: + bc)
» Cell State: Ct="fr*xc1+it*2z
» OQutput Gate: or = o(Woxo,t + bo)
Y = o * tanh(c:)
» Weights can be learned through gradient descent, or evolved
» The internal structure can be optimized through evolution

output

block output

LSTM block y
output
recurrent

7

R peepholes

input

@) input
NS

input recurrent input

input recurrent

Legend
— unweighted connection
= weighted connection

onnection with time-lag

branching point
mutliplication
sum over all inputs

°
o]
gate activation function
(always sigmoid)
@ input activation function

(usually tanh)

output activation function
(usually tanh)

LSTM Cell Structure

» LSTM networks consist of LSTM cells, each with three main gates:
> Forget Gate: Decides which parts of the cell's state to forget.

> Input Gate: Determines which new information will be added to the cell

state.

» Qutput Gate: Controls the output based on the cell state.

output

recurrent

7 recurrent

block output Y ¢
K
/e

output gate

LSTM block
e
& pecploles
2
recurrent ’é'
SRN * o
unit
.

. S

! S .

%
input recurrent

Examples of Evolved LSTM Designs

Legend
—— unweighted connection
= weighted connection
connection with time-lag
branching point
mutliplication
sum over all inputs
gate activation function
(always sigmoid)

input activation function
(usually tanh)

output activation function
(usually tanh)

» Using the same components, but allowing more complexity

» More paths, nonlinearities, memory cells

» Still trained with gradient descent

» Improved 25-year old designs by 15% (in language modeling)

h(y)

h(t)

Figure: Original LSTM Language

Convolutional Neural Networks (CNNs)

» CNNs are deep learning models designed to process grid-like data
structures, such as images.

» Effective for tasks involving spatial hierarchies, such as image recognition,
object detection, and video analysis.

» Inspired by the visual cortex, where neurons respond to overlapping regions

in the visual field.
e,
\Oulput
\\/‘

Convolutions i i i Fully

Feature maps

CNN Layers: Pooling and Fully Connected Layers

» Pooling Layer:
» Reduces spatial dimensions of feature maps.
» Commonly uses Max Pooling to retain prominent features:

P(x,y) = max{f(i,j) : i,j € window(x, y)}

» Fully Connected Layer:

> High-level reasoning is performed.
> Each neuron connects to every neuron in the previous layer.
> Outputs class scores or other task-specific outputs:

y=W-x+b
> Weights learned through gradient descent (limited evolution)

» Structure can be optimized through evolution

Feature maps

.
*., Output
“»

Convolutions i C i i Fully

CNN Layers: Convolutional and Activation Layers

» Convolutional Layer:

» Core component of a CNN.
> Performs convolution operation using filters to extract spatial features.
> With input /, kernel K, expressed as

(I K)6y) =D D Hx+iyy +J) - K(i.J)

i=1 j=1

» Activation Function:
> Typically uses the Rectified Linear Unit (ReLU).

» Introduces non-linearity:
f(x) = max(0, x)

Feature maps

f.maps

-
*.. Output
»

Convolutions

Example of an Evolved CNN Architecture

> > 1M weights difficult to evolve directly
» But can evolve network structure and train it with gradient descent
» Evolutionary Neural Architecture Search (NAS)!

» E.g. AmoebaNet: Given a search space of building blocks, evolve
organization
» Scale up to more channels and widths

» State of the art in ImageNet in 2018

Normal Cell | xN red
(+
avg

Reduction Cell 3x3 @ \

Normal Cell | xN

(¥ (+
max " /sep sepravg
3x3 7x7|[3x3

-
sep —’sep ‘ i
55 [3\ |
\ \ S5 none | |
xn L T3 rz]
A\l | T av T
[Reduction can] x2 wgtha) \ | pone[38 ElEi
5 N E \ w
N\ |
SO l \ J‘//// |

o
Sep'Ix7
33| |71

Transformer Networks

» Transformers are deep learning models that rely on self-attention
mechanisms rather than traditional recurrent or convolutional layers.

» Highly effective for handling sequential data and long-range dependencies.
> Widely used in natural language processing (NLP) tasks such as machine

translation, text generation, and summarization.

Output
Probabilties

"Add & Norm
Feed
Forward
"Add & Norm

Muiti-Head
Attention

Nx

"Add & Norm
Feed
Forward

Multi-Head
Attention

-

"Add & Norm
—
Masked
Multi-Head
Attention

L -

Nx

Positional Positional

Encoding Encoding
Tnput Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure: Transformer architecture: encoder (left) and decoder (right).

Self-Attention Mechanism in Transformers

» A single attention head:
» Computes a transformation of each token representation vector (i.e.
embedding) based on its relation (i.e. attention) to other tokens.
> Based on projecting embeddings in three ways:
> Query Qi = X; VV,Q formed from current word embedding X;
> Keys Kj = XJVVJK formed from nearby word embeddings X;
> Values V; = XJVVJV formed from nearby word embeddings X;
> Self-attention matches queries with keys and forms a representation by
combining the values proportionally.

» Could do it simply with embeddings themselves, but only once
» Q, K V mappings make it possible in many different ways.
» They are learned; the process becomes opaque.

The. The,
animal_ animal
didn_ didn
L _
cross cross.
the_ he_
street_ street
because because

§
SEEL

Transformer Architecture

» Trained to predict the next token (e.g. word, symbol) by gradient descent
> Initially designed to beat LSTMs on perplexity
» The core idea is transformations of token embeddings based on their
relationships with other words

> Many different relationships in parallel; Many stacked transformations
P> Transformations are learned and opaque
» When scaled up, a powerful sequence processing architecture

Output
Probabilties

= The_ The.
(Addz Norm))
AddF& iorm animal_ animal
eed
= o gon
(R332 Nom) © T
Mult-Head cross cross
Attention e the_ the_
street_ street
Nx because because,
Masked 2 it
Mult-Head Muiti-Head - -
Attention Attention Was. was,
L — L — too_ too0,
tire tire
Positional Positional d d
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Self-Attention Mechanism in Transformers

> Calculating attention scores:

> Take the dot product of Q and K, measuring relevance of each nearby word
to the current word.
Scale by the square root of the dimensionality of K.
Take a softmax to scale between 0..1.
Interpret the result as weights determining how much each token j
influences the transformed representation for token /i

vvyy

AttentionScore(Q, K) ft (QKT>
ention>core s = sortmax
Vd,

k
The. The.
animal, animal
didn_ didn,
T t
cross, cross.
the_ the_
street_ street,
because. because
L] it
was, was,
too_ t00,
tire tire
d d

Self-Attention Mechanism in Transformers Self-Attention Mechanism in Transformers
» Multihead attention:

P> Multiple attention heads calculate different transformations in parallel,
attending to different aspects (e.g. verb/subject, semantics, style, etc.)
Their outputs are combined in a feed-forward layer.

The output is passed on as input to the next layer
Many such transformations are stacked, forming more complex
representations.

» Calculating the transformation:
> Form an AttentionScore-weighted sum of value vectors V.
» The result is an attention-based representation for token /.
» The collection of these representations for all tokens j is the output of the
attention head.
> It is a transformation of the token embeddings based on their relationships Output

Probabilities

vvyy

with other tokens, i.e. attention.
T
- i QK7 cE
AttentionRepresentation(Q, K, V) = softmax NG 1%
k
- o
animal_ animal
ddn_ didn, (Add & Norm J~
' Multi-Head
: e Attenti
the_ e Add & Norm
street_ street, Nx o
because because. lasked
b Multi-Head Multi-Head
[} it Attention Attention
was was - X
too, 00, L |_}_4)
ﬂ: :m Positional B Positional
Encoding Encoding
Tnput Output
Embedding Embedding
Inputs Outputs
(shifted right)
Transformer Encoder-Decoder Structure Making it Work
» Positional Encoding
» Encoder-Decoder Structure: > Sequential structure is encoded into initial embeddings.
» The encoder processes the input sequence into an internal representation. » Gradient descent:
> The dec'oder generates an output sequence, based on input so far and the > Matrices W@, WK WV, feedforward parameters.
> eDnCOdZ'.S repres;ntatlsn. W th J v the decod both b > The resulting representations are opaque and hard to understand.
epending on the task, only the encoder, only the decoder, or both may be
nee’;ed g » only »only ' Y » Layer Normalization and Residual Connections:
’ P Layer normalization stabilizes and speeds up training.
o > Residual connections help prevent the vanishing gradient problem.
utput
Probaglhhes
Output
Probabilities
l
Forward
—
Atenton o
Multi-Head Multi-Head
Attention Attention
o — he Wasked
Multi-Head Multi-Head
Posit " " N Attention Attention
Erovang = A =
e e Positional Positional
Encoding Encoding
Input Output
Inputs Outputs Embedding Embedding
(shifted right)
Inputs Outputs

(shifted right)

Example of an Evolved LLM Model Merging

» LLMs are large trainsformer models trained with language

» With 70B weights, difficult to train or evolve
» But can evolve an optimal way of combining existing models
> Recombine layers, or recombine weights

» E.g. a model fine-tuned for Japanese and another for math

» The merged model can do both

Q1: Mishka bought 3 pairs of shorts, 3 pairs of long pants, and 3 pairs of shoes. - How much were spent on all the clothing?
Q2: Cynthia eats one serving of ice cream every night. - How much will she have spent on ice cream after 60 days?

~~_
@
5 4
2 9
0} 5 ® ®
3 3 3 3
= 2 g
» E
—
A4 A8 A4 AL INH V]
A2 A2: A2: A2: A2:
Accuracy: 0.18 Accuracy: 0.31 Accuracy: 0.52 Accuracy: 0.36 Accuracy: 0.56
Collection of Models) | Our Merged Modelsl

Conclusion

» Neural networks include several designs in size and complexity

» They make many difficult applications possible
» The common training method of gradient descent only works in known
domains
P> Where the optimal outputs are known
» Neuroevolution allows training neural networks with only fitness
information

» Can also be combined with gradient descent to find optimal designs

v

Makes impactful applications possible that otherwise would not be.

h(t)

_Norma\ Cell | xN
_Norma\ Cell | xN

Reduction Cell| x 2 Pos

3x3 conv, stride 2]
Input Image

