
Indirect Encodings: Developmental Approaches

Risto Miikkulainen

October 21, 2024

Direct vs Indirect Encodings in Neuroevolution

I Direct encodings map genotype directly to phenotype (one-to-one).

I Indirect encodings compress genotype.

I A simple genotype can then be mapped into a complex phenotype.

Why Indirect Encodings?

I Biological organisms develop from a single starting point.

I Morphogenesis leads to the creation of complex structures.

I Reuse of structural motifs creates regularity.

I Structures specialize based on context.

The Role of Regularities in Encoding

I Regularity enables compression and compactness of neural networks.

I E.g. convolutional neural networks reuse feature detectors across multiple
locations.

I Neuroevolution could discover similar patterns without human
intervention.



Is NEAT Indirect Encoding?

I NEAT is a direct encoding algorithm, mapping each network parameter
directly to a node or connection.

I Works well for small networks, but is di�cult to discover e.g.
convolutional networks.

Figure: Example of the NEAT algorithm’s direct encoding.

Problem Example: Evolving a Quadruped Robot Controller

I Control for one leg helps control the others (symmetry and pattern reuse).

I Encouraging modularity through manual decomposition can assist
neuroevolution.

I Ideally, indirect encodings would capture these patterns automatically.

Developmental Processes in Neuroevolution

I The first major approach to indirect encoding: Imitate biology.
I There are about 24K genes and 1000 trillion synapses.

I Most of those are specified through development.

I Development can be mimicked in neuroevolution by
I Cell chemistry (low-level mechanisms).

I Grammatical encodings (high-level abstraction).

I Learning mechanism (engaging the environment).

Cell-Chemistry Approaches
I Chemical substances (morphogens) di↵use and interact to form patterns.

I E.g. Alan Turing’s reaction-di↵usion model:

I At each location, concentration C depends on reactions F and di↵usion D:

@C/@t = F (C) +Dr2
C

I Results in complex patterns such as seashells, fur, feathers, scales:

Figure: Natural vs. reaction-di↵usion patterns.



Applying Reaction-Di↵usion to Neural Networks

I Di↵usion models axonal growth, and chemical reactions model interactions
between axons and cells.

I Neuron definitions include location of cell bodies and axon branching rules.

I Growth is pruned to remove non-useful connections, allowing for indirect
encoding.

Genetic Regulatory Networks (GRNs)
I Gene expression creates proteins.
I Gene expression is followed by complex networks of gene interactions .

I Promoting and inhibiting expression

I Mediated by transcription factors (proteins).

I Much of the complexity in the phenotype is due to GRNs.

Applying GRNs to Neural Networks
I Indirect encoding through GRNs can evolve complex neural structures.

I Proteins represent neurons; connections form when the proteins match.

I For example,

G & ¬B =) B (1)

C =) D,H

D =) D,K

I If protein G is present and B is absent, then B is produced.

I B is similar to C, so D and H are produced.

I H is similar to G, which enhances B until there’s enough B.

Challenges and Potential of Cell-Chemistry Approaches

I Cell-chemistry approaches are powerful but complex to implement.

I GRNs and reaction-di↵usion models o↵er rich representations but are
di�cult to scale.

I Simplifications such as Boolean GRNs or string-based genomes help
balance complexity and e↵ectiveness.

I Complexity of GRNs may lead to open-ended evolution.



Grammatical Encodings

I Biological organisms exhibit repetition with variation.

I Examples: Vertebral columns, fingers, bilateral symmetry.

I Grammatical encodings aim to capture such structure.

I They are a high-level abstractions of development.

Lindenmayer Systems (L-systems)

I L-Systems (Lindenmayer systems) represent a formal grammar-based
method.

I Each rewrite rule step represents a stage in development.

Figure: L-System rewriting steps to generate plant-like structures.

L-Systems in Practice

I L-Systems can produce realistic plant structures and virtual foliage.

I Used in visual e↵ects for movies like Iron Man 3 and Avatar.

I Iterative rewriting generates increasingly complex structures.

Evolving Designs with L-Systems

I L-Systems can be optimized using evolutionary search methods.
I E.g. evolving table designs

I Direct encoding lacks reuse of components, producing more irregular

structures.

I Indirect encoding produces more symmetrical, modular, and regular

structures.

I More natural and aesthetically pleasing.



Grammatical Encoding of Neural Networks

I Cellular encoding (CE) uses grammars to describe neural network
construction step by step.

I A grammar tree encodes instructions for network modifications.

I Each node of the grammar tree specifies a network transformation.

Cellular Encoding Example: XOR Network

I An example of CE: XOR neural network construction.

I Sequential and parallel divisions of the ancestor node.

I Final network implements XOR logic after several steps.

Recurrency in Cellular Encoding

I Recurrency allows repeating entire structures in a grammar.

I By traversing the grammar multiple times, larger networks can be evolved.

I E.g. parity and symmetric networks can be created with recurrency.

Learning as Indirect Encoding

I Biological development also involves learning from interaction with the
environment.

I Learning mechanisms allow individuals to adapt their structure and
behavior during their lifetime.

I Synergy between evolution and learning can be a powerful computational
mechanism.



Lamarckian Evolution

I Lamarckian evolution suggests that acquired traits can be inherited.

I Discredited in biology: Darwinian selection achieves the same result.

Figure: Inheritance of acquired characteristic: A stretched neck.

Epigenetic Evolution

I However, epigenetic mechanisms have recently been found with a similar
e↵ect.

I Parts of DNA covered in methylation during lifetime.

I The methylation can be inherited.

I Methylation a↵ects RNA transcription, and eventually behavior.

I E.g. fearfulness that lasts for two or more generations.

Computational Lamarckian Evolution

I Computationally easy to take advantage of Lamarckian and epigenetic
principles.

I Can be applied e.g. to evolving deep learning networks.

I Gradient-based learning is combined with evolutionary exploration of
architectures.

I Success e,g, in evolving convolutional architectures for image processing.

Figure: Crossover of convolutional networks.

Challenges in Lamarckian Evolution

I Gradient-based learning can lead to a loss of diversity.

I Population diversity can be maintained using ensembling, data batching,
speciation.

I Balancing exploration and learning is an ongoing research challenge.



Darwinian Alternative: The Baldwin E↵ect

I The Baldwin e↵ect suggests that learning guides evolution without
encoding changes in the genome.

I Learning helps evolution discover promising individuals by broadening the
search space.

I Even just random walk helps solve di�cult problems, such as the
needle-in-the-haystack.
I Probability of success depends on initial distance to the goal.

Fi
tn

es
s With learning

Without learning

Genotype

Synergetic Development

I Surprise: Evolution discovers good starting points for learning rather than
near-optimal solutions.
I Learning will happen, so evolution discovers how to take it into account.

I A synergy between learning and evolution.

I Solutions are more robust and more e↵ective.

Hebbian Learning as an Online Adaptation Mechanism

I Hebbian learning is a local learning mechanism where neurons that fire
together wire together.

I It requires no learning targets and is more biologically plausible than
gradient descent.

I Hebbian learning can drive adaptive behavior by strengthening useful
connections.

I Not powerful enough to learn complex behavior, but could adapt to
changing environments.

�wij = ↵ijoioj � �ijwij (2)

Hebbian Adaptation

I Hebbian learning can evolve networks capable of switching tasks based on
experience.

I For example, turning on a light and then moving to a target area.

I It provides flexibility, but does it outperform recurrent activation for
adaptation?

Figure: Adapting to the switch location.



Hebbian Learning vs Recurrent State

I In simple tasks, recurrent networks can adapt by representing a state (e.g.
light on or o↵).

I Recurrent networks without Hebbian learning are simpler and often more
e�cient.

I However, weight adaptation persists over many trials, and may be an
advantage in more complex tasks.

Figure: Network with Hebbian learning vs network with simple recurrence.

Development Conclusions

I Development can be utilized to construct complex neural networks.
I Based on low-level chemistry, high-level grammars, and learning processes.

I Indirect encoding of solutions.

I Understanding biology; building artificial systems.

I The interplay between evolution, development, learning, and adaptation
remains an intriguing research direction.


