Indirect Encodings: Hypernetworks and Attention

Risto Miikkulainen

November 11, 2024

Introduction to Hypernetworks

CPPN Function Composition

- ▶ Hypernetworks encode the weights of another network in their output.
 - Indirect encoding of the network that actually performs the task.
- ▶ No need for local interactions or temporal unfolding.
- ► Perform well in many standard benchmarks and extend to various domains like 3D robot morphologies.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Compositional Pattern Producing Networks (CPPNs)

- ▶ Hypernetwork implementation: patterns are the weights.
- ▶ The idea is to embed the task network into a substrate.
 - Each neuron then has specific coordinates.
 - Connections can be specified geometrically.

► They result from composition of activation functions (e.g., Gaussian, sigmoid, sine).

(applied at

each point

value at x,y

- ► They mimic natural phenomena like symmetry and repetition with variation.
- ► They can be useful as weights, e.g. similar to convolution.

► CPPNs generate regular patterns, e.g. in 2D:

▶ But is is also fun to just evolve images!

Evolving CPPNs with NEAT

- CPPNs are traditionally evolved using the NEAT algorithm.
- NEAT allows CPPNs to complexify gradually and evolve increasingly complex patterns.
- Structural mutations add nodes with different activation functions to evolve new patterns.

Repetition with Variation in CPPNs

- ▶ CPPNs can encode symmetric patterns, like mirror-image sunglasses.
- ▶ Altering a single connection can introduce subtle variations in symmetry.
- ▶ These changes preserve overall coherence of the pattern.

Elaborating on Discovered Patterns

- ▶ CPPNs can evolve patterns and elaborate upon them across generations.
- ► Early designs are refined into more complex structures while preserving their core.
- ▶ This property mirrors how biological structures evolve over time.

Evolving 2D Pictures

- ▶ With human selection, can evolve a range of images
- ► E.g. Picbreeder (https://nbenko1.github.io/)

Evolving 3D Forms

- ▶ Adding a third z-input enables generating 3D structures and morphologies
- ► E.g. endlessforms.com
- ► Can be 3D-printed in silver, bronze, plastic...

Evolving 4-D Forms: Virtual Creatures that Move

- ▶ Virtual creatures are digital entities interacting in a simulated environment.
- ► The challenge is to create not just viable forms but also effective behaviors —without a brain or a controller!
- Example: 3D soft robots are made of voxels of four different materials.
- Voxels are assigned properties like actuation and rigidity.
- ▶ The pattern of these materials determines the robot's behavior, such as locomotion.

Comparing CPPN Encoding vs Direct Encoding

- In CPPN-based encoding, symmetries and repeating motifs are easily produced.
- ► CPPNs generate globally coordinated behaviors necessary for efficient locomotion.
- Direct encoding optimizes each voxel independently, often leading to irregular structures.
- ▶ Direct evolution fails to discover locomotion.

https://youtu.be/EXuR_soDnFo

Evolving Neural Networks: HyperNEAT

- HyperNEAT applies CPPNs to generate neural network connectivity patterns.
- It exploits the geometry of input and output domains to create regularity in connections.
- Intended take advantage of repeating patterns and symmetry in biological neural networks.

HyperNEAT Substrates

- ▶ A substrate defines the spatial arrangement and roles of neurons.
- ► The CPPN is queried with each pair of neuron positions, producing a weight for the connection.
- ▶ Can discover patterns such as convolution and attention automatically.
- ▶ Often a 2D plane is a natural substrate:

Figure: A HyperNEAT substrate arranged in a 2D plane.

Taking Advantage of the Substrate: Quadruped Robot

- Substrate with three layers: input, hidden, and output.
- ▶ The input and output layers are arranged according to the sensor and motor geometry.
- ▶ As a result, HyperNEAT can discover consistent gait patterns.

Taking Advantage of the Substrate: Checkers Game

- ▶ In the checkers game task, the substrate mirrors the geometry of the checkerboard.
- ▶ One CPPN with separate outputs for input (AB) and output (BC) weights.
- ▶ The task network evaluates how good the board position is (C).
- ▶ The network evolves to generalize across the board.

Figure: HyperNEAT substrate designed for the checkers game.

Regularities in Weights and Gaits

- ▶ These regularities are reflected in the HyperNEAT weight patterns.
 - Inhibitory and excitatory connections are arranged in geometric patterns based on neuron positions (front and back view; input yellow, output blue).

- ► This regularity with variation results in smooth, coordinated gaits.
- Gaits include synchronized leg movement (pace) and variations like gallop.

Scaling up to Large Networks

- HyperNEAT can efficiently encode large networks with millions of connections using compact CPPNs.
 - ► Sample the substrate in finer resolution!
- ▶ This approach was first used to train neural networks to play Atari games from pixels (before Deep RL).
- ▶ Methods for systematic such scaleup is ongoing work.

Evolving the Substrate

- Well-designed substrates are important; Maybe we could optimize them for the task?
- Evolvable substrates HyperNEAT:
 Discover the number and locations of hidden nodes automatically.

ES-HyperNEAT

- ▶ Place nodes in areas where CPPN generates high variance in weights:
- ▶ There is more information in those areas; more representation is needed.
 - ▶ Start from input and identify good hidden neuron locations.
 - ► Then good locations for the next layer of hidden neurons.
 - ► Then good hidden locations to connect to the output.
 - Construct the network and prune.

Example: Maze Navigation Task

- ES-HyperNEAT was tested on a hard maze navigation task where an agent uses rangefinder sensors.
- ▶ The goal is to navigate the maze by learning to reach predefined waypoints (not visible to the agent).

Performance in Maze Domain

- ► ES-HyperNEAT improves from 45% successful runs to 95%.
- ES-HyperNEAT is better at discovering and elaborating on useful stepping stones.
- Over generations, ES-HyperNEAT evolves increasingly complex networks with more hidden nodes and connections.

Self-Attention as Dynamic Indirect Encoding

- ▶ So far, the indirect encoding methods have been static during performance.
- Self-attention in transformer networks can be seen as a dynamic form of indirect encoding: It adjusts representations based on input data.
- ► This flexibility allows models to adapt internal structures and relationships depending on context.

Self-Attention Implementation

▶ Recall that the Query and Key matrices (W_q and W_k) are used to calculate the association matrix A from input X:

$$A = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) = \operatorname{softmax}\left(\frac{(XW_{\mathbf{q}})(XW_{\mathbf{k}})^{\mathsf{T}}}{\sqrt{d_k}}\right)$$

▶ Thus, A identifies the input tokens that are in agreement.

Input-Dependent Association Architecture

$$A = \operatorname{softmax}\left(rac{QK^{\mathsf{T}}}{\sqrt{d_k}}
ight) = \operatorname{softmax}\left(rac{(XW_{\mathrm{q}})(XW_{\mathrm{k}})^{\mathsf{T}}}{\sqrt{d_k}}
ight)$$

- Now think of W_q and W_k as the *genotype* and the attention matrix A as the *phenotype*.
 - ▶ That is, think of *A* is part of the network architecture.
- Then A is indirectly encoded by this mapping.
- The mapping is input-dependent, and therefore the indirect encoding is dynamic.

Self-Attention-Based Agents

- AttentionAgent: Leverages self-attention to focus on relevant elements in task environment.
- ▶ It assigns attention only to task-relevant inputs and ignores distractions.
- lt improves interpretability in pixel-space reasoning.

Generating the Attention Matrix

- ▶ A simplification: Condense the attention matrix into $X_q X_k^T$
- ▶ Such an *A* represents the importance of each patch relative to others.
 - ► Each row of A can be interpreted as how a patch distributes its "votes" across other patches.

$$A = \operatorname{softmax}\left(\frac{X_{\mathbf{q}}X_{\mathbf{k}}^{\mathsf{T}}}{\sqrt{d}}\right)$$
 Importance Vector Summation along the row

Keys

Patch Segmentation in AttentionAgent

- Input game screen is divided into patches (like a convolution layer).
- ► Each patch is flattened to 1D, forming the input to the self-attention module.

Patch Importance Vector

- Summing the columns of the attention matrix A results in a patch importance vector.
- ▶ This vector ranks the importance of each patch.
- ▶ Only the top *k* patches are retained for further processing, improving focus on critical elements.

Action Selection

- After obtaining the top-k patches, their features are fed into a neural controller.
- Thus, they are used instead of the Value as output of the attention mechanism.
- ▶ The controller processes these features to output the agent's actions.
- Patches of low importance are discarded, allowing the agent to focus solely on relevant elements.

Robustness in Dynamic Environments

- AttentionAgent's focus on key patches allows it to remain robust to external changes.
- Experiments show the agent's ability to ignore distractions such as changing background colors or added text.
- AttentionAgent thus demonstrates the power of self-attention as a dynamic indirect encoding mechanism.

Regular vs. Self-Attention Agent

- Evaluated in CarRacing and DoomTakeCover domains.
- The agent pays attention to crucial parts of input and performs well.
 - Left: Actual game environment presented to humans.
 - Right: Resized images presented to AttentionAgent as input
 - Attention highlighted with white patches.

Why Indirect Encodings are Useful

- Solve the problem of scaling neuroevolution by reducing the number of genotypic parameters.
- Allow for the automatic discovery of regularities, such as symmetry, repetition, and modularity.
- Integrate evolutionary learning with individual learning.

Successes of Indirect Encodings

- Synergetic development: better than evolution, better than learning alone.
- Complexity and regularity from grammar-based encodings.
- ▶ HyperNEAT: Connectivity patterns with geometric regularities.
- Self-attention agents: Dynamic encoding enables agents to focus on relevant information.

Future Opportunities

- Combining indirect encodings with deep learning for hybrid systems.
- Utilizing biologically-inspired mechanisms like genetic regulatory networks.