
Indirect Encodings: Hypernetworks and Attention

Risto Miikkulainen

November 11, 2024

Introduction to Hypernetworks

I Hypernetworks encode the weights of another network in their output.
I Indirect encoding of the network that actually performs the task.

I No need for local interactions or temporal unfolding.

I Perform well in many standard benchmarks and extend to various domains
like 3D robot morphologies.

Compositional Pattern Producing Networks (CPPNs)

I Hypernetwork implementation: patterns are the weights.
I The idea is to embed the task network into a substrate.

I Each neuron then has specific coordinates.

I Connections can be specified geometrically.

CPPN Function Composition

I CPPNs generate regular patterns, e.g. in 2D:

I They result from composition of activation
functions (e.g., Gaussian, sigmoid, sine).

I They mimic natural phenomena like
symmetry and repetition with variation.

I They can be useful as weights, e.g. similar
to convolution.

I But is is also fun to just evolve images!

Evolving CPPNs with NEAT

I CPPNs are traditionally evolved using the NEAT algorithm.

I NEAT allows CPPNs to complexify gradually and evolve increasingly
complex patterns.

I Structural mutations add nodes with di↵erent activation functions to
evolve new patterns.

Repetition with Variation in CPPNs

I CPPNs can encode symmetric patterns, like mirror-image sunglasses.

I Altering a single connection can introduce subtle variations in symmetry.

I These changes preserve overall coherence of the pattern.

Elaborating on Discovered Patterns

I CPPNs can evolve patterns and elaborate upon them across generations.
I Early designs are refined into more complex structures while preserving

their core.
I This property mirrors how biological structures evolve over time.

Evolving 2D Pictures

I With human selection, can evolve a range of images

I E.g. Picbreeder (https://nbenko1.github.io/)

An Interesting Observation

• NEAT-evolved networks (called CPPNs 58)
produce nice patterns: Can this ability help
to evolve brains?

CPPN = Compositional
Pattern
Producing Network

Mapping

45

An Interesting Observation

• NEAT-evolved networks (called CPPNs 58)
produce nice patterns: Can this ability help
to evolve brains?

46

CPPN Patterns (Also for brains?)
From http://picbreeder.org 52,53

(All are 100% evolved: no retouching)

47

CPPN-based Indirect Encoding:
Hypercube-based NEAT (HyperNEAT)19,60
• Main insight: 2-D connections isomorphic to 4-D points

– Nodes situated in 2 spatial dimensions (x,y)
– Connections expressed with 4 spatial dim. (x1,y1,x2,y2)

• HyperNEAT extends 2-D CPPNs to 4-D
– CPPN encodes 4-D patterns (i.e. inside a hypercube)

• 4-D patterns can express the same regularities as 2d patterns
• 4-D patterns interpreted as connectvitity patterns

 CPPN Output CPPN Output

48

Evolving 3D Forms

I Adding a third z-input enables generating 3D structures and morphologies

I E.g. endlessforms.com

I Can be 3D-printed in silver, bronze, plastic...

Evolving 4-D Forms: Virtual Creatures that Move

I Virtual creatures are digital entities interacting in a simulated environment.

I The challenge is to create not just viable forms but also e↵ective behaviors
—without a brain or a controller!

I Example: 3D soft robots are made of voxels of four di↵erent materials.

I Voxels are assigned properties like actuation and rigidity.

I The pattern of these materials determines the robot’s behavior, such as
locomotion.

Comparing CPPN Encoding vs Direct Encoding

I In CPPN-based encoding, symmetries and repeating motifs are easily
produced.

I CPPNs generate globally coordinated behaviors necessary for e�cient
locomotion.

I Direct encoding optimizes each voxel independently, often leading to
irregular structures.

I Direct evolution fails to discover locomotion.

https://youtu.be/EXuR_soDnFo

Evolving Neural Networks: HyperNEAT

I HyperNEAT applies CPPNs to generate neural network connectivity
patterns.

I It exploits the geometry of input and output domains to create regularity
in connections.

I Intended take advantage of repeating patterns and symmetry in biological
neural networks.

HyperNEAT Substrates

I A substrate defines the spatial arrangement and roles of neurons.

I The CPPN is queried with each pair of neuron positions, producing a
weight for the connection.

I Can discover patterns such as convolution and attention automatically.

I Often a 2D plane is a natural substrate:

Figure: A HyperNEAT substrate arranged in a 2D plane.

Taking Advantage of the Substrate: Checkers Game

I In the checkers game task, the substrate mirrors the geometry of the
checkerboard.

I One CPPN with separate outputs for input (AB) and output (BC) weights.

I The task network evaluates how good the board position is (C).

I The network evolves to generalize across the board.

Figure: HyperNEAT substrate designed for the checkers game.

Taking Advantage of the Substrate: Quadruped Robot

I Substrate with three layers: input, hidden, and output.

I The input and output layers are arranged according to the sensor and
motor geometry.

I As a result, HyperNEAT can discover consistent gait patterns.

Regularities in Weights and Gaits

I These regularities are reflected in the HyperNEAT weight patterns.
I Inhibitory and excitatory connections are arranged in geometric patterns

based on neuron positions (front and back view; input yellow, output blue).

I This regularity with variation results in smooth, coordinated gaits.

I Gaits include synchronized leg movement (pace) and variations like gallop.

Scaling up to Large Networks

I HyperNEAT can e�ciently encode large networks with millions of
connections using compact CPPNs.
I Sample the substrate in finer resolution!

I This approach was first used to train neural networks to play Atari games
from pixels (before Deep RL).

I Methods for systematic such scaleup is ongoing work.

Evolving the Substrate

I Well-designed substrates are important;
Maybe we could optimize them for the task?

I Evolvable substrates HyperNEAT:
Discover the number and locations of hidden nodes automatically.

ES-HyperNEAT

I Place nodes in areas where CPPN generates high variance in weights:
I There is more information in those areas; more representation is needed.

I Start from input and identify good hidden neuron locations.

I Then good locations for the next layer of hidden neurons.

I Then good hidden locations to connect to the output.

I Construct the network and prune.

Example: Maze Navigation Task

I ES-HyperNEAT was tested on a hard maze navigation task where an
agent uses rangefinder sensors.

I The goal is to navigate the maze by learning to reach predefined
waypoints (not visible to the agent).

Performance in Maze Domain

I ES-HyperNEAT improves from 45% successful runs to 95%.

I ES-HyperNEAT is better at discovering and elaborating on useful stepping
stones.

I Over generations, ES-HyperNEAT evolves increasingly complex networks
with more hidden nodes and connections.

Self-Attention as Dynamic Indirect Encoding

I So far, the indirect encoding methods have been static during performance.

I Self-attention in transformer networks can be seen as a dynamic form of
indirect encoding: It adjusts representations based on input data.

I This flexibility allows models to adapt internal structures and relationships
depending on context.

Self-Attention Implementation

I Recall that the Query and Key matrices (Wq and Wk) are used to
calculate the association matrix A from input X :

A = softmax

✓
QKT

p
dk

◆
= softmax

✓
(XWq)(XWk)

|
p
dk

◆

I Thus, A identifies the input tokens that are in agreement.

Input-Dependent Association Architecture

A = softmax

✓
QKT

p
dk

◆
= softmax

✓
(XWq)(XWk)

|
p
dk

◆

I Now think of Wq and Wk as the genotype and the attention matrix A as
the phenotype.
I That is, think of A is part of the network architecture.

I Then A is indirectly encoded by this mapping.

I The mapping is input-dependent, and therefore the indirect encoding is
dynamic.

Self-Attention-Based Agents

I AttentionAgent: Leverages self-attention to focus on relevant elements in
task environment.

I It assigns attention only to task-relevant inputs and ignores distractions.

I It improves interpretability in pixel-space reasoning.

White patches indicate high attention areas.

Patch Segmentation in AttentionAgent

I Input game screen is divided into patches (like a convolution layer).

I Each patch is flattened to 1D, forming the input to the self-attention
module.

Generating the Attention Matrix

I A simplification: Condense the attention matrix into XqXT
k

I Such an A represents the importance of each patch relative to others.
I Each row of A can be interpreted as how a patch distributes its “votes”

across other patches.

A = softmax

✓
XqX

|
kp

d

◆

Patch Importance Vector

I Summing the columns of the attention matrix A results in a patch
importance vector.

I This vector ranks the importance of each patch.

I Only the top k patches are retained for further processing, improving focus
on critical elements.

Action Selection

I After obtaining the top-k patches, their features are fed into a neural
controller.

I Thus, they are used instead of the Value as output of the attention
mechanism.

I The controller processes these features to output the agent’s actions.

I Patches of low importance are discarded, allowing the agent to focus solely
on relevant elements.

Regular vs. Self-Attention Agent

I Evaluated in CarRacing and DoomTakeCover domains.
I The agent pays attention to crucial parts of input and performs well.

I Left: Actual game environment presented to humans.

I Right: Resized images presented to AttentionAgent as input

I Attention highlighted with white patches.

Demo: Demo:

Demo: Demo:

Robustness in Dynamic Environments

I AttentionAgent’s focus on key patches allows it to remain robust to
external changes.

I Experiments show the agent’s ability to ignore distractions such as
changing background colors or added text.

I AttentionAgent thus demonstrates the power of self-attention as a
dynamic indirect encoding mechanism.

Normal Color/Walls Framesize/Floor Blob/Text

Why Indirect Encodings are Useful

I Solve the problem of scaling neuroevolution by reducing the number of
genotypic parameters.

I Allow for the automatic discovery of regularities, such as symmetry,
repetition, and modularity.

I Integrate evolutionary learning with individual learning.

Successes of Indirect Encodings

I Synergetic development: better than evolution, better than learning alone.

I Complexity and regularity from grammar-based encodings.

I HyperNEAT: Connectivity patterns with geometric regularities.

I Self-attention agents: Dynamic encoding enables agents to focus on
relevant information.

Future Opportunities

I Combining indirect encodings with deep learning for hybrid systems.

I Utilizing biologically-inspired mechanisms like genetic regulatory networks.

