Multiobjective Optimization in Evolution Pareto Front in Multiobjectivity

> Multiobjectivity is a natural extension of quality-diversity methods. > Multiobjective optimization results in a Pareto front of solutions.

> Inspired by biology: organisms must balance multiple conflicting objectives. > No single solution is better across all objectives.

> Solutions can be successful in many ways, promoting diversity in the » Trade-offs allow multiple niches of high-performing solutions.
population.

» Solutions on the Pareto front can be chosen based on deployment
conditions or other criteria.
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ER First Gen
Final Gen

Stringency

s o 2 s s s o 22
Logi(Cases)

Cases vs. stringengy in NPIs

Mammals

Multiobjective Evolution Methods Boosting Diversity through Multiobjectivity

» Pareto front can be formed from the population of standard evolution. o . .
» Multiobjective evolution naturally encourages diversity.

> E.g. combine objectives as a weighted average. . e ¢ ] ]
> Multiple objectives create different success paths, forming niches.

> May not get a comprehensive front though.

» Multiobjective optimization method like NSGA-II can be used to evolve » To further increase diversity:
the Pareto front explicitly > Novelty can be used as a secondary objective.

> Evaluate candidates in successive layers of nondominance. » NEAT and other speciation methods can further enhance diversity.

> Broad coverage as a front.
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Ensembling Diverse Solutions Basic Ensembling Techniques

» Ensembling can take advantage of this diversity. » Simple combinations: Voting, weighted averaging.
» Ensembling involves training multiple models and combining them. > All experts activated and their output combined.
» Each model contributes different insights, improving overall performance. Mlxtur.es of Experts . . .
. o ~ ) . . > Different experts used for different input regions.
» Inspired by studies in psychology, business, and social science, which show > Effective both in classificati q . dicti d .
that diversity improves decision-making in human teams ective both in classification and regression; prediction and prescription.
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Ensembling in Evolutionary Computation NEAT and Speciation in Ensembling

. . . . » NEAT employs a speciation mechanism to encourage diversity.
» Evolutionary Algorithms (EAs) naturally create diverse populations. . .
. . . . . » Species champions can be used as ensemble members.
» Final population members often have different skills, forming a good . . . . . .
» Combine with voting, averaging, or winner-take-all for improved
ensemble.
L . . . . performance.
» Multiobjective optimization enhances diversity for ensembling.

Species
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Ensembling Through Confidence Estimates

» Each network estimates whether they are the best choice to control the
agent at this point.
> A preference output, separate from the task outputs.
> Networks bet on having the right answer, maximizing returns.
» Networks act as ensemble members with preference neurons guiding
combination.

P> Can be a simple choice, or preference-weighted combination.
» Can be evolved as separate networks, or modules in one network.

Ensembling Through a Gating Network

» Tested in the fly-swatting task:
P> An extension of the cart-pole task with more diverse state space.
» Pushing left and right; extending and contracting the pole.
> Aim to keep the pole tip on the target.

%e

(@)

pole change

particle
force

Ensembling Through a Gating Network

» A NEAT population evolved in the control task first.

» Then a gating network evolved to select which controller to use when,
choosing among the species.
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Gated Ensembling Example

» The gating network partitions the space and uses different NEAT networks
at different times.

» Best results with ensemble size of eight.

» Gated ensembling significantly boosts performance.
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Ensembling in Enforced Sub-Populations

» Enforced SubPopulation (ESP) method evolves each neuron of the
network in a separate subpopulation.
» Each neuron encodes its own weights.
> A network is formed by selecting randomly from subpopulations.

» The neurons inherit the fitness of the network; they evolve to cooperate.

» Good network require different neurons; diversity is thus encouraged.
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Hierarchical ESP Example

» Particularly powerful in cooperative multiagent tasks.
» E.g. a team of predators capturing a prey:

P> One network chases, another captures the prey.
» One neuron turns towards the agent; another away from teammate.

Demo:

Hierarchical ESP

» Hierarchical ESP extends the approach to teams of networks.

» It forms a principled ensemble:
» Each neuron and each network is evolved for a specific role.
> Not just diversity, but optimized diversity.

» Particularly powerful in cooperative multiagent tasks.
> E.g. a team of predators capturing a prey:
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Multiobjectivity and Ensembling Conclusions

» Multiobjective optimization promotes diversity.

> Pareto fronts are diverse by definition.
> Especially by making novelty a secondary objective.

» Ensembling is a powerful way of taking advantange of this diversity.

» More robust decision-making in complex domains.
» Can be extended with various techniques to suit specific problems.

» Both are natural extensions of population-based search.
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Population Culture in Evolution

» Population culture refers to the knowledge across individuals.
» Includes both common behaviors and unique knowledge.

» Can be used to improve evolution in several ways: multiobjectivity and
ensembling; culling, training, selection, pruning...

Recognizing Promising Offspring
» Approximate evaluations help recognize good offspring fast.
P> Use a syllabus of inputs and compare answers to prominent population
members.
> Effectively identifies non-viable offspring.
> Expensive fitness evaluations not necessary.

» Can speed up neuroevolution by a factor of 3 in tasks like pole balancing.

» E.g. culling from a litter of 8:
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Culling: Speeding up Evolution

» Culling generates a large number of offspring, only keeping the most
promising.

> Efficient because "most crossovers are awful”.

Naive Crossover Distribution
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Cultural Selection of Parents
» Parents are chosen based on diversity, not just fitness.
> First parent based on fitness, second chosen as maximally different (in its
answers to the syllabus).
> Increases the chance of combining complementary strengths in offspring.
» Improves even though the second parent has low fitness:

Distribution of relative fitness of offspring
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Maintaining Diversity in the Population

» The syllabus can also be used to decide which solutions to discard.
» Find two closest solutions, discard the one with lower fitness.

» Increases diversity and accelerates evolution by 30%.

Evolution of Diversity
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Synergetic Development

» We've seen this before: Evolution discovers good starting points for
learning rather than near-optimal solutions.

» Learning will happen, so evolution discovers how to take it into account.

> A synergy between learning and evolution.

» Solutions are more robust and more effective.

Globol minimem at [0 0]

Using Culture to Enhance Learning

» Leverage population champions’ behaviors as a training set.

> Select the offspring that performs well after training (i.e. utilize the
Baldwin effect, not Lamarckian evolution).

» Speeds up neuroevolution by an order of magnitude.
» But performance at birth is poor! What's going on?
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Putting it Together
» Culture helps several aspects of evolution.
» Which methods are the most effective depends
Can be combined for a robust effect.
> E.g. the simulated Khepera maze running task:
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Egalitarian Social Learning (ESL) Foraging Domain Example

» Agents have limited view, variable speed, and forage for food that vary in
value (good, bad, poison)

> Different strategies evolve: move a lot / don’t miss anything,

» Not just the champion, but anyone can have useful knowledge.
» Learn from any other agent’s success in specific situations.
» Training examples from the entire population culture. i ) ) )
N - N . > If an agent receives a low reward when another receives a high reward in
» Promote diversity by dividing population into species (or subcultures). . .

the same situation, learn.

Results from ESL in Foraging Domain Demo of NEAT vs. ESL

» Good ideas propagate (e.g. slowing down not to miss)
» ESL learns faster than direct neuroevolution and student-teacher approach. NEAT —_— ESL -

& Social Leaming Platform [/ Social Leaming Platiorm

» Demonstrates value of diversity and social learning. Fie Fie
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Conclusion: The Importance of Diversity in Evolutionary Computation

» Why Diversity Matters:
> Diversity is essential for robust and adaptive search in evolutionary

computation.
> |t prevents premature convergence, enhances exploration, and enables

discovery of better and more creative solutions.

» Methods work at different levels: genetic, behavior, ensembles, population;
culling, selection, discarding, teaching; objectives, ensembles; can be

combined?
» Analogies to biology, society.
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