Neuroevolution of Behavior

Risto Miikkulainen

December 31, 2025

Neuroevolution for Control

» Neuroevolution has been applied to various control tasks, demonstrating
creative solutions.
» Agents evolve to compensate for challenges such as hardware failures.
> E.g. controlling a robotic arm when a motor fails:

(Moriarty & Miikkulainen 1996)

Introduction to Neuroevolution of Behavior

» Neuroevolution aims to construct agents that behave intelligently in
simulated or real environments.
» Behavior is optimized at multiple levels:

> Control tasks: locomotion for robots, production in bioreactors.
> Behavioral strategies: navigation, gameplay, cognitive tasks.
> Decision strategies: business, healthcare, societal decisions.

2 :’g-—ﬁgff“ SR
, ey > I T e R ——

(Gomez & Miikkulainen é003; Stanley et al. 2005; https://evolution.ml/demos/npidashboard/)

Creative Problem Solving

» Neuroevolution can find solutions not immediately obvious to human
designers.
» Driving a race cars by maximizing speed instead of minimizing distance.
> Stopping spacecraft by rotating it around.

Embedded Demo:
I
\

(Stanley et al. 2005) (Sit & Miikkulainen 2005 with permission)

Challenge: Robustness

» Robust control is difficult:

» Environments can be dynamic, nonlinear, and noisy.

» Conditions can change over time (e.g., sensor failure, obstacles, ice...).

» Neural networks can handle noise, nonlinear effects, and partial

observability.

» Evolution needs to see enough such variation to be effective.

(Stanley et al. 2005)

Rocket Stability

» Drag from fins pulls the Center of Pressure (CP) behind Center of Gravity

(CG)

» Without fins, need active control.

(a) Fins: stable

"7

(b) Finless: unstable

(Gomez & Miikkulainen 2003)

Example: Controlling a Finless Rocket

» Task: Stabilize a finless version of the Interorbital Systems RSX-2
sounding rocket
P Scientific measurements in the upper atmosphere
> 4 liquid-fueled engines with variable thrust
> Without fins will fly much higher for same amount of fuel

(Interorbital Systems 2003)

Active Rocket Guidance

> Used on large scale launch vehicles
(Saturn, Titan)

» Typically based on classical linear
feedback control

» High level of domain knowledge
required

» Expensive, heavy

onzen sucrion yaes

$-1C STAGE SATURN V LAUNCH VEHICLE

(NASA 2004)

Simulation Environment: JSBSim

» General rocket simulator

» Models complex interaction between
airframe, propulsion, aerodynamics,
and atmosphere

» Used by I0S in testing their rocket
designs

» Accurate geometric model of the
RSX-2

(Gomez & Miikkulainen 2003)

Idea: Adding Noise to Encourage Robust Control

» One approach to robust control is adding trajectory noise.
» Trajectory noise forces the controller into situations where it must recover.

» This method is more effective than sensor noise because it doesn't confuse
the agent.

Genetic
2 Algorithm
L &

y . ‘ action
.

(Gomez & Miikkulainen 2003; Gomez & Miikkulainen 2004)

Rocket Guidance Network

piteh ()
e

rotl ()
pitch rate ()
yaw rate ()
roll rate ()
e
B
throttle 1 Q
throttle 2 Q
throttle 3 O
rotte 4 ()
attitude ()
volecity ()

SISISISISISI S SIS

throttle

commands

Results: Control Policy

(Gomez & Miikkulainen 2003)

» Accurate control in the beginning.

> Flies through atmospheric disturbance later.

100

98

O
=N

‘1hrottle %
©
£

92

920

1 1 1

0

10000 20000

30000 40000 50000

Altitude: ft.

(Gomez & Miikkulainen 2003)

60000

70000

80000

90000

Results: Apogee

» Flies 20 miles higher without fins!
(much of it coasting in thin air)

400

350 - b

300 - 163 2202 |

miles miles

250 - T

200 |- / \\

—finless

Altitude: ft. x 1000

0 I I I I I
0 50 100 150 200 250 300 350 400

Time: seconds
(Gomez & Miikkulainen 2003)

Challenge: Generalizing to Novel Situations

» Even with robust control, handling significant changes remains a
challenge.
> Training on every possible scenario is not feasible.
> Need to come up with systematic approaches to extrapolate.

Embedded Demo:

(https://nn.cs.utexas.edu/pages/research/neat-warning/)

Finless Rocket Control Demo

Embedded Demo: Embedded Demo:

No active stabilization Evolved active stabilization
(https://nn.cs.utexas.edu/pages, research /rocket /)

Idea 1: Teacher Networks for Enhanced Learning

» Teacher networks generate learning targets for controllers that learn via
backprop.
» Teachers are evolved based on how well the controller performs after
training.
» E.g. in creating a controller that forages for food:
> With extra input for the age of the controller.

» Optimal training inputs do not correspond to correct targets!
> Instead, they create maximally effective learning experiences

angle distance

angle aistance dye

(Nolfi & Parisi 1994)

Idea 2: Coevolution of Problems and Solutions

» In some cases, problems and solutions can be coevolved together,
encouraging robust behavior.

» E.g. POET: coevolution of obstacle courses and runners.

» |t starts with simple obstacle courses and gradually complexifies them as
agents evolve better behaviors.

» This process leads to more general and robust solutions

L . msininineie

Demo link: https://youtu.be/DIWWhQYON4g?si=tmSrFuDBGNeNVAEL

Idea 4: Modeling the Context Explicitly

» The system can be designed with three components:

> Skill network: Takes actions.
> Context network: Models the environment.
> Decision network: Uses context to modulate skill actions.

» This allows the controller to adapt actions based on the environment.

Actions

Controller
Feedforward

Network

Context module Skill module
LSTM cell Feedforward
Network

Observations
(Tutum & Miikkulainen 2020)

Idea 3: Novelty Search

» Novelty search rewards diversity in behavior rather than just goal
achievement.

» This method encourages exploration, leading to more generalized and
robust solutions.

» Example: Novelty search discovered a dynamic, fast bipedal walk, while
fitness-based search failed.

Embedded Demo:

Fitness Best Novelty Best

(Lehman & Stanley 2011)

Context in Various Domains

» Opponent modeling in poker
> Learn basic game play against canonical opponents
> Track play by novel opponents; modulate play accordingly
P Can generalize to much better opponents
» Context+Skill in physical games
> Evaluated in FlappyBall, LunarLander, CARLA
» Tracking continuously changing environments
> E.g. modeling sensor drift in odor recognition

(Li 2018) (Tutum et al. 2021)

"
Se EIZNIEASITE I se e
© 3 1 ' ['
ik '

N
8 i
23
£9 o 500 1000 1500 2000 2500

Samples of Acetone
(Warner et al. 2024)

Adapting to Novel Opponents in Poker

Evolve weights of poker-playing NN

¢ 10-LSTM Game Module integrates over each game

* 1-LSTM Opponent Module integrates over each opponent
« Afully connected Decision Network makes moves

Opponent Module: ‘Game Module
LSTM Block LSTMBlck LSTMBlock - LSTMBlack

§ i

Game Stte Inputs Game State Inputs

(Li & Miikkulainen 2017) @ TEXAS

& Cognizant

Adapting to Changing Worlds in Physical Games

Ablations

¥ N

Actions Actions

Controller
Feedforward
Network

Controller
Feedforward

Controller
Feedforward
Network

Network

Context module Skill module Context module Skill module
LSTM cell Feedforward LSTM cell Feedforward
Network Network
Observations Observations Observations
Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S)
(Tutum et al.2021) @ TEXAS

s Cognizant

Adapting to Novel Opponents in Poker (2)

[Opponent | Evolved LSTM [Slumbot 2017 |
Scared Limper 999 702
Calling Machine 46114 2761
Hothead Maniac 42333 4988
Candid Statistician 9116 4512

[Random Switcher 8996 2102

[Loose Aggressive 20005 2449

| Tight Aggressive 509 284

[Half-a-Pro 278 152

| Slumbot 2017 19

Adapts strategy dynamically according to opponent

» Exploits weaknesses better than Slumbot (in mBB)

« Ties against Slumbot (although evolved with only weak opponents)

Can cope robustly with novel game play @TEXAS

4 Cognizant

The FlappyBall Domain

Embedded Demo: » Extension of Flappy Bird: FlapFwd, Drag

* Inputs: 6 numerical state values
» Vertical position, distance to next pipe
» Horizontal and vertical velocity
» Height of the upper and lower pipe

» Outputs: select FlapUp, FlapFwd, glide

* Objectives:
« Safety: Don't hit pipes, ceiling, ground
» Performance: Fly fast
=== me== | » Task Variation:
(Tutum 2021) « Strength of Gravity, Drag, FlapUp, FlapFwd

lllustration of Extrapolation

FB Performance; CS-S; Lighter is better; variation across pairs of parameters

" 7 A -7 -
16 | -24 1.6 -2
2 | [* Training tasks
" - // distributed on the white
210 cross
o 08 o
N [+ Testing tasks distributed
S —— it e e L - outside the cross:
Flap . Flap Require interpolation
{ T and significant
" extrapolation
AREA ‘3
Lo o "
S1.0 &
v &8 2
08
e 06 o
R [> K @ TEXAS
0.25 050 0.75 1.00 1.25 1.50 1.75 2 4 6 R
Gravity Gravity Forward .
v ‘ Cognizant

(Tutum & Miikkulainen 2020)

Example Behaviors in FlappyBall

» Extrapolated conditions: F=-7.0, G=0.58, Fwd=8.75, D=0.58

Embedded Demo: Embedded Demo: Embedded Demo:

Pipes= 0, Hits= 0, Out= 0 Pipes= 0, Hits= 0, Out= 0

Pipes= 0, Hits= 0, Out=0

Flap - Fwd. L4 Lo Flop. . Fwd
B —— N — B
Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S)
Pipes = 21 Pipes = 15 Pipes =16 -
Hits =0 Hits =6 Hits =5 ©LED

(Tutum 2021)

Generalization in Fla Ball

X <CS better CS better> <CS better CS better> S better> C better>
fo (min hits) f1 (max pipes) fo (min hits) f1 (max pipes) fo (min hits) f1 (max pipes)
o o) o0 I — o o o | 150 i w0 o | i n
. . 0zs :) m 1 |
2 o o100 ots
- " o "
005 008 .02 o 002
00 000 0.00 000 — = 000
w0 s w0 ow o oo s w oo w0 owm © @ 0 o
(a)CS - S (b)CsS -C (©C-8

(Tutum et al.2021)

» Best networks from 5 independent evolutionary runs evaluated in new tasks
« Effect of Gravity, Drag, FlapUp, FlapFwd varied +/- 75% (instead of +/-20% during evolution)
« All parameters varied simultaneously; 10,000 tasks created randomly

* CS performs better than S and C in both objectives

« Sis better than C in safety, the same in performance _
OTEXAS

te Cognizant

Modulation by Context

— Context-PC1 [ext - nom) — Context-PC1 [ext - nom) —— SKill-PC1 [ext - nom)
20 === Context-PC2 [ext - nom] 20 -=-- Context-PC2 [ext - nom) 20 === Skill-PC2 [ext - nom]
—— SKill-PC1 [ext - nom)
15 === Skill-PC2 [ext - nom] s

1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300
(Tutum et al.2021)

¢ Output of Context and Skill modules mapped to 2D with PCA
« Difference in an extrapolated task and the nominal task plotted
« Differences are smaller in CS than in C-only and S-only
* Decision network needs to deal with less variance
« Easier to generalize
* CS evolves to make new tasks look more familiar
- Allows coping robustly in novel situations @ TEXAS

2 Cognizant

Multilegged Walking

> Navigate rugged terrain better than wheeled robots

» Controller design is more challenging
> Leg coordination, robustness, stability, fault-tolerance, ...

» Hand-design is generally difficult and brittle
» Large design space often makes evolution ineffective

(Bluck 2009) (Valsalam 2010)

Versatile, Robust Gaits

» Symmetric gaits such as trotting and pacing are easier to evolve initially.

» Different gaits on flat ground
»> Pronk, pace, bound, trot
» When facing more complex terrains, symmetry-breaking allows for more
adaptive gaits.
> For example, an agent might switch from a bound gait to a trot to

overcome obstacles.
> This automatic adaptation makes control more robust across various

terrains.
) Embedded Demo: Embedded Demo: X
Different gaits Obstacle field

(https://nn.cs.utexas.edu/?walkingtables-demo)

Idea 5: Symmetry Evolution Approach

» Symmetry evolution approach
> A neural network controls each leg
> Connections between controllers evolved through symmetry breaking
» Connections within individual controllers evolved through neuroevolution

(Valsalam 2010)

Innovative, Effective Solutions

> As challenges increase, symmetry can be broken to evolve more complex
gaits.
» Asymmetric gait on inclines
> One leg pushes up, others forward
> Hard to design by hand

Embedded Demo: Embedded Demo:

o Emsebme L i |]II“III | q’\’ |

Handcoded Evolved

(https://nn.cs.utexas.edu/demos bots/)

Challenge: Transferring Solutions to Physical Robots

» Simulations are clean and deterministic.

Transferring to Quadruped Robot

> A robot custom-built at Hod Lipson’s lab (Cornell U.)

> Standard motors, battery, controller board
» The real world is noisy, nondeterministic, and includes external factors.

» Transfer from simulation to reality is difficult but critical.

pe—

Real
(Valsalam & Miikkulainen 2012)

Simulated

Compensating for Damage

» Neuroevolution evolves controllers that can cope with imperfections and
even take advantage of them.

» Example: Evolved asymmetric gait for a four-legged robot with one
inoperative leg.

» This shows that neuroevolution transfers well to physical robots and can
solve unexpected issues.

Embedded Demo:

Embedded Demo:

Handcoded

(https://nn.cs.utexas.edu/demos/enso-realrobots/)

Evolved

» Custom 3D-printed legs, attachments
» Simulation modified to match

» General, robust transfer

> Noise to actuators during simulation
> Generalizes to different surfaces, motor speeds

Embedded Demo:
—

Simulated Real
(Valsalam & Miikkulainen 2012) (https://nn.cs.utexas.edu /demos /enso-realrobots/)

Simulating Physical Challenges in Neuroevolution

» Simulations can be extended with factors like wind, friction, and uneven

terrain.

» Stochastic noise can be added to simulate imperfections in sensors and

effectors.

(Huang 2014)
Dreamer robot

_\‘

Recent Advances in Robotics Simulators

» Modern robotics simulators have become highly accurate, supporting
direct transfer to physical robots.

» Example: NEAT with Graspit! simulator for robotic grasping, transferred
to the Dreamer robot's Mekahand.

» Controllers can handle sensor inaccuracies, novel objects, and imprecise
computation.

(Huang 2014)
Dreamer robot

Coevolving Morphology and Control

» Neuroevolution can coevolve both the controllers and the hardware.

» Example: Locomotion starts with eel-like robots and evolves into legged
designs.

» This process creates more robust gaits than evolving directly for legged
robots.

» GOLEM: Hardware designs and controllers coevolved in simulation, then
3D printed and tested physically.

Demo link: https://youtu.be/qbUyWZZ_a9g

Evolutionary Robotics: Evolving Control in Hardware

> Evolutionary robotics emerged in the 1990s to evolve controllers and
sometimes hardware directly.

» Example: Evolving homing behavior in the Khepera mobile robot.

» Neural networks developed an internal topographic map to navigate
efficiently.

(Floreano & Mondada 1996)

Swarm Robotics: Evolving Collective Behavior

» Swarms of robots exhibit collective behavior that single robots cannot.

» Example: Robots forming a train to traverse gaps that individual robots
cannot cross.

» Neuroevolution can evolve both collective and individual behaviors for the
swarm.

Demo link: https://youtu.be/i3ernrkZ91E

Conclusion: Evolving Robust Control

» Robust control is essential for generalization and adaptability in complex
environments.

» Techniques like noise injection, coevolution of controllers with teachers
and problems, novelty search, explicit context representation, and
symmetry help build this robustness.

» Advanced simulators, noise injection, and coevolution with hardware make

L

(Gomez & Miikkulainen 2003; Tutum 2021; https://nn.cs.utexas.edu/demos/enso-robots/)

transfer possible.

