
Neuroevolution of Behavior

Risto Miikkulainen

December 31, 2025

Introduction to Neuroevolution of Behavior

↭ Neuroevolution aims to construct agents that behave intelligently in
simulated or real environments.

↭ Behavior is optimized at multiple levels:
↭ Control tasks: locomotion for robots, production in bioreactors.
↭ Behavioral strategies: navigation, gameplay, cognitive tasks.
↭ Decision strategies: business, healthcare, societal decisions.

(Gomez & Miikkulainen 2003; Stanley et al. 2005; https://evolution.ml/demos/npidashboard/)

Neuroevolution for Control

↭ Neuroevolution has been applied to various control tasks, demonstrating
creative solutions.

↭ Agents evolve to compensate for challenges such as hardware failures.
↭ E.g. controlling a robotic arm when a motor fails:

3

1

2

(Moriarty & Miikkulainen 1996)

Creative Problem Solving

↭ Neuroevolution can find solutions not immediately obvious to human
designers.
↭ Driving a race cars by maximizing speed instead of minimizing distance.
↭ Stopping spacecraft by rotating it around.

Embedded Demo: Embedded Demo:

(Stanley et al. 2005) (Sit & Miikkulainen 2005 with permission)

Challenge: Robustness

↭ Robust control is di!cult:
↭ Environments can be dynamic, nonlinear, and noisy.
↭ Conditions can change over time (e.g., sensor failure, obstacles, ice...).

↭ Neural networks can handle noise, nonlinear e”ects, and partial
observability.

↭ Evolution needs to see enough such variation to be e”ective.

(Stanley et al. 2005) (Sit & Miikkulainen 2005 with permission)

Example: Controlling a Finless Rocket

↭ Task: Stabilize a finless version of the Interorbital Systems RSX-2
sounding rocket
↭ Scientific measurements in the upper atmosphere
↭ 4 liquid-fueled engines with variable thrust
↭ Without fins will fly much higher for same amount of fuel

(Interorbital Systems 2003)

Rocket Stability

↭ Drag from fins pulls the Center of Pressure (CP) behind Center of Gravity
(CG)

↭ Without fins, need active control.

roll

(a) Fins: stable

CG

CP

CG

CP

Thrust

Drag

(b) Finless: unstable

αα

β β

pitch
yaw

Side force

Lift

(Gomez & Miikkulainen 2003)

Active Rocket Guidance

(NASA 2004)

↭ Used on large scale launch vehicles
(Saturn, Titan)

↭ Typically based on classical linear
feedback control

↭ High level of domain knowledge
required

↭ Expensive, heavy

Simulation Environment: JSBSim

(Gomez & Miikkulainen 2003)

↭ General rocket simulator

↭ Models complex interaction between
airframe, propulsion, aerodynamics,
and atmosphere

↭ Used by IOS in testing their rocket
designs

↭ Accurate geometric model of the
RSX-2

Rocket Guidance Network

pitch

yaw

roll

pitch rate

yaw rate

roll rate

throttle 1

throttle 2

throttle 3

throttle 4

altitude

volecity

o

o

o

o

4

3

2

1

throttle
commands

SC
A

LE u

u1

2

u3

u4

α
β

(Gomez & Miikkulainen 2003)

Idea: Adding Noise to Encourage Robust Control

↭ One approach to robust control is adding trajectory noise.

↭ Trajectory noise forces the controller into situations where it must recover.

↭ This method is more e”ective than sensor noise because it doesn’t confuse
the agent.

(Gomez & Miikkulainen 2003; Gomez & Miikkulainen 2004)

Results: Control Policy

↭ Accurate control in the beginning.

↭ Flies through atmospheric disturbance later.

(Gomez & Miikkulainen 2003)

Results: Apogee

↭ Flies 20 miles higher without fins!
(much of it coasting in thin air)

Time: seconds

A
lti

tu
de

: f
t.

x
10

00 }20.2
miles}miles

16.3

full fins 1/4 fins

finless

 0
 0 50 100 150 200 250 300 350 400

 100

 150

 400

 350

 300

 250

 200

 50

(Gomez & Miikkulainen 2003)

Finless Rocket Control Demo

Embedded Demo: Embedded Demo:

No active stabilization Evolved active stabilization
(https://nn.cs.utexas.edu/pages/research/rocket/)

Challenge: Generalizing to Novel Situations

↭ Even with robust control, handling significant changes remains a
challenge.
↭ Training on every possible scenario is not feasible.
↭ Need to come up with systematic approaches to extrapolate.

Embedded Demo:

(https://nn.cs.utexas.edu/pages/research/neat-warning/)

Idea 1: Teacher Networks for Enhanced Learning

↭ Teacher networks generate learning targets for controllers that learn via
backprop.

↭ Teachers are evolved based on how well the controller performs after
training.

↭ E.g. in creating a controller that forages for food:
↭ With extra input for the age of the controller.
↭ Optimal training inputs do not correspond to correct targets!
↭ Instead, they create maximally e!ective learning experiences

(Nolfi & Parisi 1994)

Idea 2: Coevolution of Problems and Solutions

↭ In some cases, problems and solutions can be coevolved together,
encouraging robust behavior.

↭ E.g. POET: coevolution of obstacle courses and runners.

↭ It starts with simple obstacle courses and gradually complexifies them as
agents evolve better behaviors.

↭ This process leads to more general and robust solutions

Demo link: https://youtu.be/D1WWhQY9N4g?si=tmSrFmD8GNeNvA6L

Idea 3: Novelty Search

↭ Novelty search rewards diversity in behavior rather than just goal
achievement.

↭ This method encourages exploration, leading to more generalized and
robust solutions.

↭ Example: Novelty search discovered a dynamic, fast bipedal walk, while
fitness-based search failed.

Embedded Demo:

(Lehman & Stanley 2011)

Idea 4: Modeling the Context Explicitly

↭ The system can be designed with three components:
↭ Skill network: Takes actions.
↭ Context network: Models the environment.
↭ Decision network: Uses context to modulate skill actions.

↭ This allows the controller to adapt actions based on the environment.

(Tutum & Miikkulainen 2020)

Context in Various Domains

↭ Opponent modeling in poker
↭ Learn basic game play against canonical opponents
↭ Track play by novel opponents; modulate play accordingly
↭ Can generalize to much better opponents

↭ Context+Skill in physical games
↭ Evaluated in FlappyBall, LunarLander, CARLA

↭ Tracking continuously changing environments
↭ E.g. modeling sensor drift in odor recognition

(Li 2018) (Tutum et al. 2021)

(Warner et al. 2024)

(Li & Miikkulainen 2017)

(Tutum et al.2021)

The FlappyBall Domain

Embedded Demo:

(Tutum 2021)

(Tutum & Miikkulainen 2020)

(Tutum et al.2021)

Example Behaviors in FlappyBall

↭ Extrapolated conditions: F=-7.0, G=0.58, Fwd=8.75, D=0.58

Embedded Demo: Embedded Demo: Embedded Demo:

(Tutum 2021)

(Tutum et al.2021)

Multilegged Walking

↭ Navigate rugged terrain better than wheeled robots
↭ Controller design is more challenging

↭ Leg coordination, robustness, stability, fault-tolerance, ...

↭ Hand-design is generally di!cult and brittle

↭ Large design space often makes evolution ine”ective

(Bluck 2009) (Valsalam 2010)

Idea 5: Symmetry Evolution Approach

↭ Symmetry evolution approach
↭ A neural network controls each leg
↭ Connections between controllers evolved through symmetry breaking
↭ Connections within individual controllers evolved through neuroevolution

x2

y2

y4

x4

Module 3

Module 1

Module 2

Module 4
x1

y1

y3

x3

1 2

3 4

(Valsalam 2010)

Versatile, Robust Gaits

↭ Symmetric gaits such as trotting and pacing are easier to evolve initially.
↭ Di”erent gaits on flat ground

↭ Pronk, pace, bound, trot

↭ When facing more complex terrains, symmetry-breaking allows for more
adaptive gaits.
↭ For example, an agent might switch from a bound gait to a trot to

overcome obstacles.
↭ This automatic adaptation makes control more robust across various

terrains.

Embedded Demo: Embedded Demo:

Di!erent gaits Obstacle field
(https://nn.cs.utexas.edu/?walkingtables-demo)

Innovative, E!ective Solutions

↭ As challenges increase, symmetry can be broken to evolve more complex
gaits.

↭ Asymmetric gait on inclines
↭ One leg pushes up, others forward
↭ Hard to design by hand

Embedded Demo: Embedded Demo:

Handcoded Evolved
(https://nn.cs.utexas.edu/demos/enso-robots/)

Challenge: Transferring Solutions to Physical Robots

↭ Simulations are clean and deterministic.

↭ The real world is noisy, nondeterministic, and includes external factors.

↭ Transfer from simulation to reality is di!cult but critical.

Simulated Real
(Valsalam & Miikkulainen 2012)

Transferring to Quadruped Robot

↭ A robot custom-built at Hod Lipson’s lab (Cornell U.)
↭ Standard motors, battery, controller board
↭ Custom 3D-printed legs, attachments
↭ Simulation modified to match

↭ General, robust transfer
↭ Noise to actuators during simulation
↭ Generalizes to di!erent surfaces, motor speeds

Embedded Demo:

Simulated Real
(Valsalam & Miikkulainen 2012) (https://nn.cs.utexas.edu/demos/enso-realrobots/)

Compensating for Damage

↭ Neuroevolution evolves controllers that can cope with imperfections and
even take advantage of them.

↭ Example: Evolved asymmetric gait for a four-legged robot with one
inoperative leg.

↭ This shows that neuroevolution transfers well to physical robots and can
solve unexpected issues.

Embedded Demo: Embedded Demo:

Handcoded Evolved
(https://nn.cs.utexas.edu/demos/enso-realrobots/)

Simulating Physical Challenges in Neuroevolution

↭ Simulations can be extended with factors like wind, friction, and uneven
terrain.

↭ Stochastic noise can be added to simulate imperfections in sensors and
e”ectors.

(Huang 2014)

Dreamer robot

Recent Advances in Robotics Simulators

↭ Modern robotics simulators have become highly accurate, supporting
direct transfer to physical robots.

↭ Example: NEAT with Graspit! simulator for robotic grasping, transferred
to the Dreamer robot’s Mekahand.

↭ Controllers can handle sensor inaccuracies, novel objects, and imprecise
computation.

(Huang 2014)

Dreamer robot

Evolutionary Robotics: Evolving Control in Hardware

↭ Evolutionary robotics emerged in the 1990s to evolve controllers and
sometimes hardware directly.

↭ Example: Evolving homing behavior in the Khepera mobile robot.

↭ Neural networks developed an internal topographic map to navigate
e!ciently.

(Floreano & Mondada 1996)

Coevolving Morphology and Control

↭ Neuroevolution can coevolve both the controllers and the hardware.

↭ Example: Locomotion starts with eel-like robots and evolves into legged
designs.

↭ This process creates more robust gaits than evolving directly for legged
robots.

↭ GOLEM: Hardware designs and controllers coevolved in simulation, then
3D printed and tested physically.

Demo link: https://youtu.be/qbUyWZZ_a9g

Swarm Robotics: Evolving Collective Behavior

↭ Swarms of robots exhibit collective behavior that single robots cannot.

↭ Example: Robots forming a train to traverse gaps that individual robots
cannot cross.

↭ Neuroevolution can evolve both collective and individual behaviors for the
swarm.

Demo link: https://youtu.be/i3ernrkZ91E

Conclusion: Evolving Robust Control

↭ Robust control is essential for generalization and adaptability in complex
environments.

↭ Techniques like noise injection, coevolution of controllers with teachers
and problems, novelty search, explicit context representation, and
symmetry help build this robustness.

↭ Advanced simulators, noise injection, and coevolution with hardware make
transfer possible.

(Gomez & Miikkulainen 2003; Tutum 2021; https://nn.cs.utexas.edu/demos/enso-robots/)

