
Neuroevolution of Behavior

Risto Miikkulainen

September 23, 2024

Introduction to Neuroevolution of Behavior

I Neuroevolution aims to construct agents that behave intelligently in
simulated or real environments.

I Behavior is optimized at multiple levels:
I Control tasks: locomotion for robots, production in bioreactors.
I Behavioral strategies: navigation, gameplay, cognitive tasks.
I Decision strategies: business, healthcare, societal decisions.

Neuroevolution for Control

I Neuroevolution has been applied to various control tasks, demonstrating
creative solutions.

I Agents evolve to compensate for challenges such as hardware failures.
I E.g. controlling a robotic arm when a motor fails:

3

1

2

Creative Problem Solving

I Neuroevolution can find solutions not immediately obvious to human
designers.
I Driving a race cars by maximizing speed instead of minimizing distance.
I Stopping spacecraft by rotating it around.

Demo: Demo:

Challenge: Robustness

I Robust control is di�cult:
I Environments can be dynamic, nonlinear, and noisy.
I Conditions can change over time (e.g., sensor failure, obstacles, ice...).

I Neural networks can handle noise, nonlinear e↵ects, and partial
observability.

I Evolution needs to see enough such variation to be e↵ective.

Example: Controlling a Finless Rocket

I Task: Stabilize a finless version of the Interorbital Systems RSX-2
sounding rocket
I Scientific measurements in the upper atmosphere
I 4 liquid-fueled engines with variable thrust
I Without fins will fly much higher for same amount of fuel

Rocket Stability

I Drag from fins pulls the Center of Pressure (CP) behind Center of Gravity
(CG)

I Without fins, need active control.

roll

(a) Fins: stable

CG

CP

CG

CP

Thrust

Drag

(b) Finless: unstable

αα

β β

pitch
yaw

Side force

Lift

Active Rocket Guidance

I Used on large scale launch vehicles
(Saturn, Titan)

I Typically based on classical linear
feedback control

I High level of domain knowledge
required

I Expensive, heavy

Simulation Environment: JSBSim

I General rocket simulator

I Models complex interaction between
airframe, propulsion, aerodynamics,
and atmosphere

I Used by IOS in testing their rocket
designs

I Accurate geometric model of the
RSX-2

Rocket Guidance Network

pitch

yaw

roll

pitch rate

yaw rate

roll rate

throttle 1

throttle 2

throttle 3

throttle 4

altitude

volecity

o

o

o

o

4

3

2

1

throttle
commands

SC
A

LE u

u1

2

u3

u4

α
β

Idea: Adding Noise to Encourage Robust Control

I One approach to robust control is adding trajectory noise.

I Trajectory noise forces the controller into situations where it must recover.

I This method is more e↵ective than sensor noise because it doesn’t confuse
the agent.

Results: Control Policy

I Accurate control in the beginning.

I Flies through atmospheric disturbance later.

Results: Apogee

I Flies 20 miles higher without fins!
(much of it coasting in thin air)

Time: seconds

A
lti

tu
de

: f
t.

x
10

00 }20.2
miles}miles

16.3

full fins 1/4 fins

finless

 0
 0 50 100 150 200 250 300 350 400

 100

 150

 400

 350

 300

 250

 200

 50

Finless Rocket Control Demo

Demo: Demo:

No active stabilization Evolved active stabilization

Challenge: Generalizing to Novel Situations

I Even with robust control, handling significant changes remains a
challenge.
I Training on every possible scenario is not feasible.
I Need to come up with systematic approaches to extrapolate.

Demo:

Idea 1: Teacher Networks for Enhanced Learning

I Teacher networks generate learning targets for controllers that learn via
backprop.

I Teachers are evolved based on how well the controller performs after
training.

I E.g. in creating a controller that forages for food:
I With extra input for the age of the controller.
I Optimal training inputs do not correspond to correct targets!
I Instead, they create maximally e↵ective learning experiences

Idea 2: Coevolution of Problems and Solutions

I In some cases, problems and solutions can be coevolved together,
encouraging robust behavior.

I E.g. POET: coevolution of obstacle courses and runners.

I It starts with simple obstacle courses and gradually complexifies them as
agents evolve better behaviors.

I This process leads to more general and robust solutions

https://youtu.be/D1WWhQY9N4g?si=tmSrFmD8GNeNvA6L

Idea 3: Novelty Search

I Novelty search rewards diversity in behavior rather than just goal
achievement.

I This method encourages exploration, leading to more generalized and
robust solutions.

I Example: Novelty search discovered a dynamic, fast bipedal walk, while
fitness-based search failed.

Demo:

Idea 4: Modeling the Context Explicitly

I The system can be designed with three components:
I Skill network: Takes actions.
I Context network: Models the environment.
I Decision network: Uses context to modulate skill actions.

I This allows the controller to adapt actions based on the environment.

Context in Various Domains

I Opponent modeling in poker
I Learn basic game play against canonical opponents
I Track play by novel opponents; modulate play accordingly
I Can generalize to much better opponents

I Context+Skill in physical games
I Evaluated in FlappyBall, LunarLander, CARLA

I Tracking continuously changing environments
I E.g. modeling sensor drift in odor recognition

The FlappyBall Domain

Demo:

Example Behaviors in FlappyBall

I Extrapolated conditions: F=-7.0, G=0.58, Fwd=8.75, D=0.58

Demo: Demo: Demo:

Multilegged Walking

I Navigate rugged terrain better than wheeled robots
I Controller design is more challenging

I Leg coordination, robustness, stability, fault-tolerance, ...

I Hand-design is generally di�cult and brittle

I Large design space often makes evolution ine↵ective

Idea 5: Symmetry Evolution Approach

I Symmetry evolution approach
I A neural network controls each leg
I Connections between controllers evolved through symmetry breaking
I Connections within individual controllers evolved through neuroevolution

x2

y2

y4

x4

Module 3

Module 1

Module 2

Module 4
x1

y1

y3

x3

1 2

3 4

Versatile, Robust Gaits

I Symmetric gaits such as trotting and pacing are easier to evolve initially.
I Di↵erent gaits on flat ground

I Pronk, pace, bound, trot

I When facing more complex terrains, symmetry-breaking allows for more
adaptive gaits.
I For example, an agent might switch from a bound gait to a trot to

overcome obstacles.
I This automatic adaptation makes control more robust across various

terrains.

Demo: Demo:

Di↵erent gaits Obstacle field

Innovative, E↵ective Solutions

I As challenges increase, symmetry can be broken to evolve more complex
gaits.

I Asymmetric gait on inclines
I One leg pushes up, others forward
I Hard to design by hand

Demo: Demo:

Handcoded Evolved

Challenge: Transferring Solutions to Physical Robots

I Simulations are clean and deterministic.

I The real world is noisy, nondeterministic, and includes external factors.

I Transfer from simulation to reality is di�cult but critical.

Simulated Real

Transferring to Quadruped Robot

I A robot custom-built at Hod Lipson’s lab (Cornell U.)
I Standard motors, battery, controller board
I Custom 3D-printed legs, attachments
I Simulation modified to match

I General, robust transfer
I Noise to actuators during simulation
I Generalizes to di↵erent surfaces, motor speeds

Demo:

Simulated Real

Compensating for Damage

I Neuroevolution evolves controllers that can cope with imperfections and
even take advantage of them.

I Example: Evolved asymmetric gait for a four-legged robot with one
inoperative leg.

I This shows that neuroevolution transfers well to physical robots and can
solve unexpected issues.

Demo: Demo:

Handcoded Evolved

Simulating Physical Challenges in Neuroevolution

I Simulations can be extended with factors like wind, friction, and uneven
terrain.

I Stochastic noise can be added to simulate imperfections in sensors and
e↵ectors.

Dreamer robot

Recent Advances in Robotics Simulators

I Modern robotics simulators have become highly accurate, supporting
direct transfer to physical robots.

I Example: NEAT with Graspit! simulator for robotic grasping, transferred
to the Dreamer robot’s Mekahand.

I Controllers can handle sensor inaccuracies, novel objects, and imprecise
computation.

Dreamer robot

Evolutionary Robotics: Evolving Control in Hardware

I Evolutionary robotics emerged in the 1990s to evolve controllers and
sometimes hardware directly.

I Example: Evolving homing behavior in the Khepera mobile robot.

I Neural networks developed an internal topographic map to navigate
e�ciently.

Coevolving Morphology and Control

I Neuroevolution can coevolve both the controllers and the hardware.

I Example: Locomotion starts with eel-like robots and evolves into legged
designs.

I This process creates more robust gaits than evolving directly for legged
robots.

I GOLEM: Hardware designs and controllers coevolved in simulation, then
3D printed and tested physically.

https://youtu.be/qbUyWZZ_a9g

Swarm Robotics: Evolving Collective Behavior

I Swarms of robots exhibit collective behavior that single robots cannot.

I Example: Robots forming a train to traverse gaps that individual robots
cannot cross.

I Neuroevolution can evolve both collective and individual behaviors for the
swarm.

https://youtu.be/i3ernrkZ91E

Conclusion: Evolving Robust Control

I Robust control is essential for generalization and adaptability in complex
environments.

I Techniques like noise injection, coevolution of controllers with teachers
and problems, novelty search, explicit context representation, and
symmetry help build this robustness.

I Advanced simulators, noise injection, and coevolution with hardware make
transfer possible.

From Low-level Control to High-level Strategy

I Low-level control: Adjusting single behaviors (e.g., moving a leg faster).

I High-level strategy: Coordinating multiple behaviors.

I Example: Keepaway soccer: GetOpen, Intercept, Hold, EvaluatePass, Pass

I Challenge: Switching between behaviors e↵ectively.

Direct Evolution

I Mapping sensors directly to actions

I Di�cult to separate behaviors

I Ine↵ective combinations result

Demo:

Coevolution Approach

I Evolve a separate network for each behavior

I A decision tree to decide which network to activate

