Neuroevolution of Behavior

Risto Miikkulainen

September 23, 2024

Neuroevolution for Control

» Neuroevolution has been applied to various control tasks, demonstrating
creative solutions.
» Agents evolve to compensate for challenges such as hardware failures.
> E.g. controlling a robotic arm when a motor fails:

Introduction to Neuroevolution of Behavior

» Neuroevolution aims to construct agents that behave intelligently in
simulated or real environments.

» Behavior is optimized at multiple levels:

» Control tasks: locomotion for robots, production in bioreactors.
> Behavioral strategies: navigation, gameplay, cognitive tasks.
> Decision strategies: business, healthcare, societal decisions.

Creative Problem Solving

» Neuroevolution can find solutions not immediately obvious to human
designers.

» Driving a race cars by maximizing speed instead of minimizing distance.
> Stopping spacecraft by rotating it around.

Demo:

Challenge: Robustness

» Robust control is difficult:

» Environments can be dynamic, nonlinear, and noisy.

» Conditions can change over time (e.g., sensor failure, obstacles, ice...).

» Neural networks can handle noise, nonlinear effects, and partial

observability.

» Evolution needs to see enough such variation to be effective.

Rocket Stability

» Drag from fins pulls the Center of Pressure (CP) behind Center of Gravity

(CG)

» Without fins, need active control.

Ay

(a) Fins: stable

77

(b) Finless: unstable

Example: Controlling a Finless Rocket

» Task: Stabilize a finless version of the Interorbital Systems RSX-2

sounding rocket

> Scientific measurements in the upper atmosphere
» 4 liquid-fueled engines with variable thrust
» Without fins will fly much higher for same amount of fuel

Active Rocket Guidance

$-1C STAGE SATURN V LAUNCH VEHICLE

» Used on large scale launch vehicles
(Saturn, Titan)

» Typically based on classical linear
feedback control

» High level of domain knowledge
required

» Expensive, heavy

Simulation Environment: JSBSim Rocket Guidance Network

pitch O
yaw Q
roll O

» General rocket simulator pitch rate O @
» Models complex interaction between yaw rate Q @ throttle
airframe, propulsion, aerodynamics, @ commands
roll rate O
and atmosphere @
» Used by I0S in testing their rocket o O (@
designs B O &
» Accurate geometric model of the throttle 1 () o
RSX-2 throttle 2 O @
throttle 3 Q @
throttle 4 O @

altitude ()
volecity O

Idea: Adding Noise to Encourage Robust Control Results: Control Policy

» One approach to robust control is adding trajectory noise. > Accurate control in the beginning.

» Trajectory noise forces the controller into situations where it must recover. > Flies through atmospheric disturbance later.

» This method is more effective than sensor noise because it doesn't confuse
the agent.

100 T T T T T T

98 - 1

o
=)
|

©
£
1

‘Throttle %

Genetic
AIgoriThm

90 1 1 I 1 I 1 1 I
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Altitude: ft.

action

-
N -HOISS I .
observation

Results: Apogee

» Flies 20 miles higher without fins!
(much of it coasting in thin air)

400

350 -

16.3 20.2 |

300) -
miles miles

250 -

Altitude: ft. x 1000

— finless

0 I I I I I
0 50 100 150 200 250 300 350 400

Time: seconds

Challenge: Generalizing to Novel Situations

» Even with robust control, handling significant changes remains a
challenge.

> Training on every possible scenario is not feasible.
> Need to come up with systematic approaches to extrapolate.

Demo:

Finless Rocket Control Demo

No active stabilization Evolved active stabilization

Idea 1: Teacher Networks for Enhanced Learning

» Teacher networks generate learning targets for controllers that learn via
backprop.
» Teachers are evolved based on how well the controller performs after
training.
» E.g. in creating a controller that forages for food:
» With extra input for the age of the controller.

> Optimal training inputs do not correspond to correct targets!
> Instead, they create maximally effective learning experiences

angle distance

dllgl!f aistance dyv

Idea 2: Coevolution of Problems and Solutions Idea 3: Novelty Search

» Novelty search rewards diversity in behavior rather than just goal
achievement.

» This method encourages exploration, leading to more generalized and
robust solutions.

. . » Example: Novelty search discovered a dynamic, fast bipedal walk, while

» It starts with simple obstacle courses and gradually complexifies them as fitness-based search failed
agents evolve better behaviors. ’

» In some cases, problems and solutions can be coevolved together,
encouraging robust behavior.

» E.g. POET: coevolution of obstacle courses and runners.

» This process leads to more general and robust solutions Demor

i u_ssiinisie

https://youtu.be/D1WWhQY9IN4g?si=tmSrFmD8GNeNvA6L

Novelty Best

Fitness Best

Idea 4: Modeling the Context Explicitly Context in Various Domains

» Opponent modeling in poker
P> Learn basic game play against canonical opponents

» The system can be designed with three components:)
» Track play by novel opponents; modulate play accordingly

> Skill network: Takes actions. X
» Can generalize to much better opponents

» Context+Skill in physical games
> Evaluated in FlappyBall, LunarLander, CARLA
» Tracking continuously changing environments
»> E.g. modeling sensor drift in odor recognition

P> Context network: Models the environment.
» Decision network: Uses context to modulate skill actions.

» This allows the controller to adapt actions based on the environment.

Controller

Feedforward
Network

Context module Skill module
LSTM cell Feedforward
Network

Observations

Steady-State Feature;
Sensor 1, Z-score

T T T L T T
0 500 1000 1500 2000 2500
Samples of Acetone

Adapting to Novel Opponents in Poker

Evolve weights of poker-playing NN
¢ 10-LSTM Game Module integrates over each game

TIBXIL * 1-LSTM Opponent Module integrates over each opponent
¥ ¥ « Afully connected Decision Network makes moves
f f
YTEXAS
© Cognizant

Adapting to Changing Worlds in Physical Games

Ablations

¥ N

Actions

Controller

Feedforward
Network

Controller

Controller

Feedforward
Network

Feedforward
Network

Context module Skill module Context module skill module
LSTM cell Feedforward LSTM cell Feedforward
Network Network
Observations Observations Observations
Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S)

UTEXAS

5 Cognizant

Adapting to Novel Opponents in Poker (2)

[Opponent | Evolved LSTM [Slumbot 2017 |
Scared Limper 999 702
Calling Machine 46114 2761
Hothead Maniac 42333 4988
Candid Statistician 9116 4512

[Random Switcher 8996 2102

[Loose Aggressive 20005 2449

| Tight Aggressive 509 284

[Half-a-Pro 278 152

| Slumbot 2017 19

Adapts strategy dynamically according to opponent

» Exploits weaknesses better than Slumbot (in mBB)

« Ties against Slumbot (although evolved with only weak opponents)

Can cope robustly with novel game play @TEXAS

4 Cognizant

The FlappyBall Domain

» Extension of Flappy Bird: FlapFwd, Drag

Time: 153

* Inputs: 6 numerical state values
» Vertical position, distance to next pipe
» Horizontal and vertical velocity
» Height of the upper and lower pipe

» Outputs: select FlapUp, FlapFwd, glide

* Objectives:
« Safety: Don't hit pipes, ceiling, ground
» Performance: Fly fast
* Task Variation:
» Strength of Gravity, Drag, FlapUp, FlapFwd

lllustration of Extrapolation

FB Performance; CS-S; Lighter is better; variation across pairs of parameters

-

I i e -+ Training tasks
“ 1:) /' distributed on the white
o 210 cross
-
. 08
N [\ - Testing tasks distributed
| —— L, T emmm——L outside the cross:
Flap Flap . Require interpolation
(i and significant
R extrapolation
PR .
w9 "
g1.0
. & w
08 .,
-¢ 06 -6
A . R [> K @ TEXAS
0.25 050 0.75 1.00 1.25 1.50 1.75 0.25 050 0.75 1.00 1.25 1.50 1.75 2 4 6 8 B —
Gravity Gravity Forward N
1 Cognizant

Example Behaviors in FlappyBall

» Extrapolated conditions: F=-7.0, G=0.58, Fwd=8.75, D=0.58

Demo: Demo: Demo:

Pipes= 0, Hits= 0, Out= 0 Pipes= 0, Hite= 0, Out= 0 Pipes= 0, Hits= 0, Out= 0

= = = -
L I @ L=
Context+Skill Network (CS) Context-only Network (C) Skill-only Network (S)
Pipes = 21 Pipes =15 Pipes = 16
Hits =0 Hits =6 Hits =5 TE)

Generalization in FlappyBall

<CS better CS better> <CS better CS better> S better> C better>
fo (min hits) f1 (max pipes) fo (min hits)
o o oz

— w0

Jf1 (max pipes) fo (min hits) f1 (max pipes)

— o — o2 — mun-
o i\ ! = U=

i

w0 0 w0 o= -0

(b)CS - C

« Best networks from 5 independent evolutionary runs evaluated in new tasks
« Effect of Gravity, Drag, FlapUp, FlapFwd varied +/- 75% (instead of +/-20% during evolution)
« All parameters varied simultaneously; 10,000 tasks created randomly
» CS performs better than S and C in both objectives
» Sis better than C in safety, the same in performance

GTEXAS
te Cognizant
Modulation by Context
= Context-PC1 [ext - nom] —— Context-PC1 [ext - nom] ~— Skill-PC1 [ext - nom]
20 === Context-PC2 [ext - nom) 20 ~=- Context-PC2 [ext - nom] 20 -~ Skill-PC2 [ext - nom]
15{ T Srczien - nem) 15
10 10
05+, 0s
0.0 Sreszsts = £ 0.0
-05 -05
~1.0 -1.0
1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300 1000 1050 1100 1150 1200 1250 1300
» Output of Context and Skill modules mapped to 2D with PCA
« Difference in an extrapolated task and the nominal task plotted
« Differences are smaller in CS than in C-only and S-only
» Decision network needs to deal with less variance
« Easier to generalize
» CS evolves to make new tasks look more familiar
« Allows coping robustly in novel situations @TEXAS
0 Cognizant

Multilegged Walking

» Navigate rugged terrain better than wheeled robots
» Controller design is more challenging
> Leg coordination, robustness, stability, fault-tolerance, ...

» Hand-design is generally difficult and brittle

» Large design space often makes evolution ineffective

Versatile, Robust Gaits

» Symmetric gaits such as trotting and pacing are easier to evolve initially.
» Different gaits on flat ground
> Pronk, pace, bound, trot
» When facing more complex terrains, symmetry-breaking allows for more
adaptive gaits.
> For example, an agent might switch from a bound gait to a trot to
overcome obstacles.
> This automatic adaptation makes control more robust across various
terrains.

Demo: Demo:

Different gaits Obstacle field

Idea 5: Symmetry Evolution Approach

» Symmetry evolution approach

» A neural network controls each leg
» Connections between controllers evolved through symmetry breaking
> Connections within individual controllers evolved through neuroevolution

Module 2

Innovative, Effective Solutions

» As challenges increase, symmetry can be broken to evolve more complex
gaits.
> Asymmetric gait on inclines

» One leg pushes up, others forward
> Hard to design by hand

Demo:

o L BTN '“J |

=

N
g7 7)

Handcoded

Challenge: Transferring Solutions to Physical Robots Transferring to Quadruped Robot

> A robot custom-built at Hod Lipson’s lab (Cornell U.)
» Simulations are clean and deterministic.

> Standard motors, battery, controller board
» Custom 3D-printed legs, attachments

» Simulation modified to match
» Transfer from simulation to reality is difficult but critical.

» General, robust transfer

» The real world is noisy, nondeterministic, and includes external factors.

> Noise to actuators during simulation
— P> Generalizes to different surfaces, motor speeds

Demo:

Simulated Real
Simulated Real
CIRY- = = o <D = = =
Compensating for Damage Simulating Physical Challenges in Neuroevolution
) o) > Simulations can be extended with factors like wind, friction, and uneven
» Neuroevolution evolves controllers that can cope with imperfections and terrain.
even take advantage of them.

. .) » Stochastic noise can be added to simulate imperfections in sensors and
» Example: Evolved asymmetric gait for a four-legged robot with one effectors.
inoperative leg.
» This shows that neuroevolution transfers well to physical robots and can
solve unexpected issues.

Demo:

Demo:

Handcoded

Dreamer robot

Recent Advances in Robotics Simulators Evolutionary Robotics: Evolving Control in Hardware

» Modern robotics simulators have become highly accurate, supporting

direct transfer to physical robots. . . .
p. Y o)) » Evolutionary robotics emerged in the 1990s to evolve controllers and
» Example: NEAT with Graspit! simulator for robotic grasping, transferred sometimes hardware directly.
to the Dreamer robot’s Mekahand.
))))) » Example: Evolving homing behavior in the Khepera mobile robot.
» Controllers can handle sensor inaccuracies, novel objects, and imprecise . . .
. » Neural networks developed an internal topographic map to navigate
computation. ur
efficiently.
Dreamer robot
Coevolving Morphology and Control Swarm Robotics: Evolving Collective Behavior
» Neuroevolution can coevolve both the controllers and the hardware. » Swarms of robots exhibit collective behavior that single robots cannot.
» Example: Locomotion starts with eel-like robots and evolves into legged » Example: Robots forming a train to traverse gaps that individual robots

designs. cannot cross.

» This process creates more robust gaits than evolving directly for legged » Neuroevolution can evolve both collective and individual behaviors for the

robots. swarm.

» GOLEM: Hardware designs and controllers coevolved in simulation, then
3D printed and tested physically.

https://youtu.be/qbUyWZZ_a9g https://youtu.be/i3ernrkZ91E

Conclusion: Evolving Robust Control From Low-level Control to High-level Strategy

> Low-level control: Adjusting single behaviors (e.g., moving a leg faster).
» Robust control is essential for generalization and adaptability in complex > High-level strategy: Coordinating multiple behaviors.
environments. » Example: Keepaway soccer: GetOpen, Intercept, Hold, EvaluatePass, Pass
» Techniques like noise injection, coevolution of controllers with teachers
and problems, novelty search, explicit context representation, and
symmetry help build this robustness.

» Challenge: Switching between behaviors effectively.

» Advanced simulators, noise injection, and coevolution with hardware make
transfer possible.

Direct Evolution Coevolution Approach

» Mapping sensors directly to actions
> Difficult to separate behaviors » Evolve a separate network for each behavior
> Ineffective combinations result > A decision tree to decide which network to activate

Demo:

,/ —
Possession

PR

‘ Intercept W ‘ Get Open ‘
. J . J

