
Conclusion: Evolving Robust Control

I Robust control is essential for generalization and adaptability in complex
environments.

I Techniques like noise injection, coevolution of controllers with teachers
and problems, novelty search, explicit context representation, and
symmetry help build this robustness.

I Advanced simulators, noise injection, and coevolution with hardware make
transfer possible.

From Low-level Control to High-level Strategy

I Low-level control: Adjusting single behaviors (e.g., moving a leg faster).

I High-level strategy: Coordinating multiple behaviors.

I Example: Keepaway soccer: GetOpen, Intercept, Hold, EvaluatePass, Pass

I Challenge: Switching between behaviors e↵ectively.

Direct Evolution

I Mapping sensors directly to actions

I Di�cult to separate behaviors

I Ine↵ective combinations result

Demo:

Coevolution Approach

I Evolve a separate network for each behavior

I A decision tree to decide which network to activate



Flexible Multimodal Behavior

I Discovering flexible multimodal behavior is a key step toward general
intelligence.

I Keepaway task:
I Networks learn individual tasks
I Learn to anticipate other tasks as well:

Lining up for a pass
I Cooperative coevolution of multimodal behavior

Demo:

Challenge 1: Abrupt Switching Between Behaviors

I Some strategies require abrupt behavior changes.

I Example: Small changes in soccer can shift the optimal action from
holding to shooting or passing.

I Di�cult to capture in a decision tree.

I Can we eolve a network to do it?

Using Radial Basis Activation Functions

I Radial Basis Functions (e.g. elongated Gaussians) activate neurons in local
regions.
I Many sigmoidal nodes are needed for the same e↵ect.
I Easier to discover fractured regions.

RBF vs. sigmoid activation functions.

Using Cascaded Network Structures

I Cascaded networks: new hidden neurons added on top of earlier ones.

I Earlier connections are frozen.

I Each new neuron refines the boundaries of existing behaviors.



RBF + Cascade Make Abrupt Changes Possible

I Scales to 4v2 Keepaway.

Number of teammates available for a pass https://vimeo.com/2155250

RBF + Cascade Make Abrupt Changes Possible

I Scales to 5v5 half-field soccer.

Subsets of actions (of 6) available) https://vimeo.com/5698040

Challenge 2: Blending and Interleaving Behaviors

I Intelligent agents often combine several behaviors.
I Example: Switching between o↵ense and defense in soccer.

I They can be blended or rapidly interleaved.

Example: Ms. Pac-Man

I In Ms. Pac-Man, agents perform several tasks:
Eat pills, avoid ghosts, eat powerpills, eat ghosts.

I Sometimes interleaved but clearly separate.

I Sometimes blended into multiple tasks at once.

I How can we evolve such complex combinations of behaviors?



Evolving a Simple Control Network

I Simple networks can be evolved for Ms. Pac-Man, but they struggle with
behavior separation.

I Results: Poor performance due to blended behaviors.

I Neuroevolution can learn multiple behaviors, but it needs a more
sophisticated approach to switch e↵ectively.

https://youtu.be/hkcvd8Aitd8

Multitask Networks for Isolated and Interleaved Tasks

I Multitask networks with separate outputs can be evolved for threatening
and edible ghosts.

I Decide on which outputs to use based on a rule.
I These networks work well in isolated or interleaved tasks.
I However, they still struggle in blended situations where multiple behaviors

are required simultaneously.

Demo:

Expert-designed Subtasks and Combiner Networks

I Evolve separate networks for each behavior, and a combiner network to
switch between them.

I Evolve one network for threatening and another for edible ghosts.

I The combiner could be gating or transforming the task-specific outputs.

I Possible to blend, but three coevolving populations di�cult to converge.

Preference Neurons: Letting Evolution Discover Task Divisions

I Preference neurons allow evolution to decide when to switch behaviors.

I Each output module is coupled with a preference neuron, indicating when
it should be used.

I Evolution can add modules similarly to nodes and connections in NEAT.

I This method enables evolution to discover more flexible and e↵ective task
divisions.



Surprising Strategy Discovery: Luring

I Evolution discovered an unexpected strategy: luring ghosts toward a power
pill, then eating them up.

I One module dedicated to this strategy.

I Human designers may not have discovered this behavior.

Demo:

Discovering E↵ective Task Divisions

I The same luring module was used to escape threatening ghosts in tight
spaces!

I A very di↵erent task division:
I Luring and escaping used only 5% of the time, but it counts.
I Eating pills, avoiding ghosts, chasing ghosts with the other module 95% of

the time; variations with a common base.
I With the freedom to explore di↵erent strategies, evolution finds surprising

and powerful solutions.

Conclusion on Discovering Flexible Strategies

I High-level strategies require flexible switching and blending of multiple
behaviors.

I RBF nodes, Cascaded networks, modular networks with preference neurons
allow evolution to discover such strategies.

I Optimal behaviors can be surprising, e.g. blending and luring.

Scaling up to Cognitive Behaviors

I Cognitive behaviors include communication, memory, and learning.

I These behaviors are complex and di�cult to evolve.

I The challenge: They require circuitry that doesn’t help until it works.

I Need to overcome deception during evolution.



Example: T-maze Task

I The T-maze task illustrates how communication, memory, and learning
can evolve.

I The agent must navigate to the reward at the correct end of the T-maze.

I Evolution struggles when the reward location changes frequently, requiring
cognitive strategies.

Deception in Evolving Communication

I To evolve communication, agents must develop mechanisms to send,
receive, and interpret signals.

I Deception occurs because partial solutions are not helpful unless all
components work together.

Deception in Evolving Memory

I Receives a signal at start: if AX, go left; if BX, BY, AY, go right.

I To evolve memory, agents must store activations, retrieve them at the
right time, and interpret them.

I Similar to communication, but internal to the network.

I Deception occurs because partial solutions are not helpful unless all
components work together.

Deception in Evolving Learning

I To evolve learning, agents must develop a learning rule that reinforces
good outcomes.

I Deception occurs because adaptation is mostly harmful—until it works.



Discovering Cognitive Behaviors with Novelty Search

I Fitness-based evolution reactive, i.e. always left or always right.

I Novelty search can overcome deception through stepping stones.
I The lineage of solutions shows multiple stepping stones:

I E.g. going to the opposite corridor with some communication inputs.

Novelty Search and Cognition

I How did cognition really evolve in biology?
I No explicit reward for novelty, but there are multiple goals and niches.
I Stepping stones can be rewarded for entirely other reasons.
I E.g. evolution of language based on social structure?

I Still a challenge, but its time may have come!

Scaling up further: Coevolution

I Coevolution: Agents evolve in competition or cooperation with each other.

I It drives agents to develop more sophisticated and adaptable behaviors.

I Discussed at length in next few weeks.

Conclusion on Evolving Behavior

I Evolving control, i.e. single behaviors:
I Neuroevolution excels at discovering robust control solutions for dynamic,

noisy, and nonlinear tasks.
I Creative behaviors are discovered that compensate for physical

imperfections or limitations.
I Adapting to new conditions outside training is a major challenge.

I Evolving strategy, i.e. multiple behaviors
I Complex strategies, such as switching between behaviors, can be evolved

with the right architectures.
I They can result in surprisingly e↵ective combinations.
I Evolving cognitive behaviors such as communication, memory, and learning

is a major challenge.


