Neural Networks for Decision Al Risto Miikkulainen The University of Texas at Austin and Cognizant Technology Solutions Joint work with Olivier Francon, Santiago Gonzalez, Babak Hodjat, Elliot Meyerson, Xin Qiu, and Hormoz Shahrzad Cognizant #### How to Make Good Decisions? Organizations have lots of data • Can build predictive models of patients, customers, students... Such models do not specify how to make decisions • It is a different learning problem Cognizant # Challenges in Learning to Make Decisions Optimal decisions not known; domain partially observable; interactions nonlinear · Direct methods like LP, gradient descent are ineffective Need to search for decision strategies - But testing strategy candidates in the real world is costly - Simulators often not available, inaccurate, or costly # Surrogate Optimization Approach Use a predictive model as a surrogate for the world Train model with historical data: Context+Actions \rightarrow Outcomes - Phenomenological model (based on data) - Not a simulation from first principles Search for a good decision strategy (i.e. policy): Context \rightarrow Actions Use the model to evaluate strategies # **Evolutionary Surrogate Optimization** Search space is nonlinear, deceptive, large, high-dimensional, multiobjective - · Difficult for Kriging, Bayesian optimization - · Difficult for RL as well, e.g. DQN, A3C, PPO Surrogate-assisted evolution might work - · But need to evolve a strategy, not a single point - · Evolve neural networks to represent the strategy # ESP: Evolutionary Surrogate-Assisted Prescription Combine a neural-network surrogate with neural-network strategy - Train the surrogate, evolve the strategy - · Predictor and Prescriptor neural networks (Variations: RF, SVM, Linear Predictors; Rule-set Prescriptors) Cognizant Cognizant # ESP: Evolutionary Surrogate-Assisted Prescription Based on components in existing applications: Cyberag: Evolving growth recipes for vertical farming - · Millions evaluated with surrogate, hundreds planted - · Discovered a 24-hr light preference, size/taste tradeoff Ascend: Evolving auto-segmented web designs - · A neural network evolved to create different pages for different users - Discovers and utilizes surprising interactions (e.g. day/provider/urgency) ### **ESP Method: Prescriptor** Find a decision policy that optimizes outcomes - Expressed as a Prescriptor model Pr (e.g. a NN, ruleset) - Map contexts to actions: Pr(C) = A - · Optimal A not known: Pr needs to be evolved - · How can we evaluate Pr candidates? Cognizant 8 Cognizant Cognizant #### **ESP Method: Predictor** #### Predictor model Pd trained with historical data - Pd(C,A) = O - · Can be used to evaluate each Prescriptor candidate - Can be multiobjective - Can be a neural net, random forest, SVM etc. (in special cases: a simulator, or the real world) #### Static ESP Process Can be learned in one step, or in an incremental outer loop - Train Predictor with historical data - · Evolve Prescriptors with the Predictor - · Apply the best Prescriptor to the world - · Collect new data - Repeat 9 Cognizant 10 Cognizant # **ESP Process on Sequences** #### Many iterations of the outer loop - Apply Prescriptors to the world; Collect C, A, O - Train the Predictor; Evolve Prescriptors - Repeat #### Surprising synergy emerges: - · Incremental co-learning regularizes both models! - · Results in automated curricular learning # Illustrating ESP in Function Approximation Ground truth known; easy to visualize - Samples - Predictor - Prescriptor - · Optimal actions for Predictor - · Optimal actions for ground truth # **ESP Learning Process** Predictor approaches ground truth Prescriptor approaches ground-truth-optimal actions Prescriptor is closer to ground-truth-optimal than Predictor-optimal - · Prescriptors regularize! - · By ensembling approximate Predictors - (Demo) # Cognizant # Qualitative Comparison of ESP, DE, and RL Direct Evolution (DE) using real-world evaluations instead of the surrogate PPO is SotA in continuous RL DE, PPO need many samples in the real world • Even with 10x samples, still have not learned well Cognizant # Quantitative Comparison of ESP, DE, and RL ESP is faster, more accurate, has lower variance · i.e. is more reliable ESP has lower regret · i.e. has lower cost, is safer # Standard RL Benchmark: CartPole-v0 OpenAl Gym benchmark with known DQN and PPO implementations Similar results as in function approximation - ESP learns faster, has better solutions, lower variance, lower regret # Regularization Through Surrogate Modeling - 1. Ensembling of approximate Predictors -> regularized Prescriptors - 2. In more complex domains, Predictors regularized as well - Incomplete learning of complex landscapes - · Results in automatic incremental evolution, i.e. a curriculum Cognizant # **Demo of Surrogate Regularization** Flappy bird: fly a 2 min track without crashing ESP finds optimal solutions very fast - Surrogate rewards approximate behaviors DE gets stuck with suboptimal solutions - · Overfits to nonlinear effects in the game - (Demo) Cognizant # Making Decisions Trustworthy: Estimating Uncertainty Cognizant - ESP predicts value, cost, side effects... - · How can we trust it? © 2018 Cognizant 17 It needs to estimate uncertainty of its predictions # RIO: Residual Estimation with Input, Output Kernel - · Train a Gaussian Process model to predict residuals (i.e. signed errors) - · Based on model input, output, and labels - · Provides estimates of uncertainty in model output - · Provides corrections to model output - Applies to ESP Predictor (and any model trained with labeled data) ### Why does it work? - · Why is RIO better than NN alone or GP alone? - NN is expressive (i.e. high variance) - · Learns structure that GP would treat as noise - · Remaining structure is easier to learn - · GP can capture part of it 21 · GP is more regular than NN Cognizant # RED: Residual-based Error Detection Extension of RIO to classification tasks - Softmax output of the NN estimates class probabilities - Form a GP model of softmax residual errors: $\hat{c}'_* \sim \mathcal{N}(\hat{c}_* + \bar{\hat{r}}_*, \text{var}(\hat{r}_*))$ - Use the model to identify likely classification errors: - Does the model have a different argmax? Cognizant # **RED Analysis of Error Types** Mean and variance of confidence score is different for correctly classified, misclassified, OOD inputs, adversarial inputs # Example 1: ESP for Optimizing NPIs for COVID-19 From prediction to prescription: A new role for AI - · Current models predict outcomes of given NPIs - · Given a desired health/cost balance, ESP prescribes NPIs Not just what will happen, but what we should do about it 22 # First build a predictor with available data - · Oxford dataset of cases and NPIs - (Hale, Webster, Petherick, Phillips, Kira (2020). Oxford COVID-19 Government Response Tracker) - Daily case numbers, NPIs (eight kinds with 2-4 levels of stringency) - Standard compartmental models - · Based on epidemiological assumptions on S, I, R - Require setting unknown interaction parameters - · Data-driven modeling is phenomenological - · Requires no assumptions; includes all the interactions - · Requires sufficient data ²⁵ Cognizant ### How well does it work? - · Surprisingly accurate rollouts even with limited data - 20 countries with highest number of cases - Several metrics over 14 days - More accurate than MLP, RF, SVR, Linear baselines (e.g. MAE 0.42 vs. 2.47, 0.95, 0.71, 0.64) - Reasonable confidence intervals - · Randomly selected 14 days across 20 countries as test data - · Allows correcting the predictions slightly # **Predictor Design** - Train a Deep Learning (LSTM) model to predict new cases - Predict transmission rate; 7-day moving avg; scaled by susceptible population size - Separate paths for context (cases) and action (NPI stringency) - · Possible to ensure stringency has a monotonic effect - Predict based on 21-day past data; rollout 180 days into the future - Estimate confidence with RIO 26 - · Monte Carlo rollouts from RIO-determined distribution - Plotted as quartiles (i.e. box-plot base over time) Cognizant ### Then evolve a Prescriptor with the Predictor as a surrogate # Solutions represent different tradeoffs Evolution minimizes both objectives Results in a Pareto front: - Some minimize cases - · Some minimize cost - Others balance the two to different degrees Given a desired balance, best possible solutions - · Empowering human decision makers - (Demo) ²⁹ Cognizant # Interactive Demo https://evolution.ml/demos/npidashboard Updated daily May 2020 - Dec 2022 Can be used to obtain data-based recommendations - Select country - Select date (current, or past) - Select health/economy tradeoff (cases vs. NPIs) - · Obtain NPI recommendations and case predictions #### Trustworthiness: - · Obtain confidence bounds - · Design custom NPIs with a scratchpad - Evolve explainable rulesets (instead of neural networks) # Discoveries on Prediction and Prescription Highlights (often 2 weeks in advance): - May 2020: Focus on schools and workplaces (i.e. indoors); alternation - Sept 2020: Focus on gatherings, travel restrictions; open schools - · Delta surge: India (March 2021); others with low rates (July 2021) - August 2021: Recommendations for schools (Iceland) - Dec 2021: Missed omicron surge; it happened everywhere at once - · March 2022: Impact of masking © Cognizant 32 ### XPRIZE Pandemic Response Challenge #### November 2020-March 2021 - Phase 1: Prediction Accuracy; 100 teams narrowed down to 50 finalists - Phase 2: Prescription Effectiveness; 2 winners (Valencia, Slovenia) and 8 runner-ups Many Machine Learning approaches as well as conventional ones Evaluation and analysis: https://evolution.ml/xprize #### Significant impact - 1.2B views; Informed policy in Valencia, Iceland - UN/ITU, GPAI/OECD follow-ups #### 169 expert-designed solutions - Can we combine them and find even better solutions? - · Can neuroevolution improve upon them further? Cognizant # RHEA: Realizing Human Expertise Through Al # RHEA Discovers Synergies in the Expert Solutions XPRIZE entries have many useful, diverse ideas · Neuroevolution can be used to recombine and refine them Neuroevolution can also discover new ideas RHEA improves upon XPRIZE entries RHEA improves upon evolution from scratch Cognizant ### How good are RHEA's solutions? # Visualizing the Solutions #### A UMAP projection of 90-day policies Expert Pareto is on a 1-D manifold (yellow) - · Organized by stringency - RHEA (green) forms arcs around it - Elaborates, interpolates, expands on them Evolved from scratch (blue) are scattered Real (red) clustered in the middle - Some are agile, periodic (i); France, Portugal Example interpolation: (ii), (iii) Trade swing+separability for agility+periodicity: (iv) and focus (v) Cognizant #### Where do the solutions come from? Visualizing the ancestry (leaves) of Pareto-front solutions (root) - · A variety of experts used, with different cost - A variety of structures, from few experts to many - · Child cost usually between those of parents Evolution is working as expected # Realizing the Potential of Diversity How much "DNA" does each solution contribute to the Pareto front? - · Good solutions generally contribute more - Some poor solutions make outsize contributions Diversity is fundamental in problem solving - · Can realize latent potential hidden in poor entries - · Technology to bring the community effort together Cognizant ### **Example 2: Land-Use Optimization** (Globe Observer, 2023) Global Carbon Budget Imbalance (Friedlingstein et al. 2023): $B_{\text{IM}} = E_{\text{FOS}} + E_{\text{LUC}} - (G_{\text{ATM}} + S_{\text{OCEAN}} + S_{\text{LAND}})$ Emissions due to land-use change (ELUC) is a major factor - How much allocated for forest, crops, pasture, range, urban... - · Different amount of carbon release/capture Optimize to balance carbon emissions vs. economy The first project of Project Resilience - A UN/ITU backed "Al for Good" initiative - · Follow-up from XPRIZE Pandemic response 51.625 × ~ Land-use harmonization project (LUH2) (Hurtt et al. 2020) Data Source 1: Historical Land Use - · Cells with 0.25x0.25 degree resolution - · Annually 850-2022 Primary: Vegetation that is untouched by humans - · primf: Primary forest - · primn: Primary nonforest vegetation Secondary: Vegetation that has been touched by humans - · secdf: Secondary forest - · secdn: Secondary nonforest vegetation • urban: Urban areas - · c3ann: Annual C3 crops (e.g. wheat) - c4ann: Annual C4 crops (e.g. maize) - c3per: Perennial C3 crops (e.g. banana) - c4per: Perennial C4 crops (e.g. sugarcane) · c3nfx: Nitrogen fixing C3 crops (e.g. soybean) · pastr: Managed pasture land range: Natural grassland / savannah / desert / etc. Al and Data Commons Al and Data Commons # Cognizari ### Data Source 2: Carbon Emissions from Different Uses Bookkeeping of Land Use Emissions (BLUE) (Hansis et al. 2015) - · High-fidelity simulation - Estimates long-term emissions resulting from land-use change (ELUC) Too slow to run directly as a surrogate · Prepared a dataset for 1850-2022 by sampling the simulator # Setting Up ESP for Land-Use Optimization For a given cell and year, what are the smallest changes we can make to reduce emissions as much as possible? #### **Training Predictive Models** | Model | Time (s) | EU | SA | US | Global | |--------------------|----------|--------------------|--------------------------|--------------------|--------------------| | LinReg (EU) | 0.047 | 0.033 | 0.172 | 0.169 | 0.206 | | LinReg (SA) | 0.457 | 0.137 | 0.153 | 0.061 | 0.110 | | LinReg (US) | 0.331 | 0.139 | 0.146 | 0.035 | 0.073 | | LinReg (Global) | 4.644 | 0.139 | 0.150 | 0.035 | 0.074 | | RF (EU) | 17.697 | 0.064 | 0.211^{\dagger} | 0.161 [†] | 0.218 [†] | | RF (SA) | 209.688 | 0.133*† | $0.071^{\circ \uparrow}$ | 0.074^{\uparrow} | 0.126^{\dagger} | | RF (US) | 111.701 | 0.163 | 0.185^{\dagger} | 0.032° | 0.094^{\dagger} | | RF (Global) | 417.647 | 0.041*† | $0.076*^{\uparrow}$ | 0.028* | 0.045* | | NeuralNet (EU) | 10.711 | 0.025*† | 0.277 | 0.286 | 0.334 | | NeuralNet (SA) | 103.696 | 0.248 | 0.100* | 0.562 | 0.399 | | NeuralNet (US) | 73.141 | 0.136 [†] | 0.225 | $0.024^{*\dagger}$ | 0.150 | | NeuralNet (Global) | 1649.193 | 0.046* | 0.110* | $0.025*^{\dagger}$ | 0.050* | Evaluated linear regression, random forest, neural network models To keep computations feasible: - · Separate models for Global, Europe, South America, US - NN, LinReg trained with 1851-2011, RF 1982-2011; tested with 2012-2021 LinReg not sufficient Apparently a nonlinear problem RF does not extrapolate well Neural networks are the most accurate - Learn positive and negative changes - Modulated nonlinearly based on location, area, year #### Interactive Demo Available at https://landuse.evolution.ml - · Explore different locations and time periods - Observe actions and modify them - See their outcomes ### **Evolving Prescriptive Models** A population of neural networks recommending land-use change for a particular cell and year - · Evolved against the neural-network predictor - Trained with a random subset of 1851-2011, tested with 2012-2021 Results in a Pareto front for ELUC/Change tradeoffs - · Better than changing to forest equally, or linearly optimally - Although worse in almost every location??? - · Discovered a better principle: Pick your battles! # Future Opportunity: An Al-Enabled Society Apply ESP to decision making in society - Humans set the goals; ESP determines how to best achieve them - Can optimize productivity, cost, environmental impact, equality - · Free of human biases and agendas - We can make society what we want it to be A concrete first step: Project Resilience - · An Al-for-Good ecosystem with open source and data - · Backed by UN/ITU, GPAI/OECD, AI Commons, Cognizant - · Volunteers needed! # Conclusion ESP utilizes a surrogate, evolution to do well in decision-making tasks • Sample-efficient, reliable, low-cost and safe - Intrinsic regularization in both in the Predictor and the Prescriptor In building Predictors, i.e. forecasting outcomes In building Prescriptors, i.e. making recommendations Trustworthy: Estimating uncertainty, exploring alternatives; explaining decisions with rules Creative decision making in healthcare, business, education, society... Cognizant 49