
From Low-level Control to High-level Strategy

↭ Low-level control: Adjusting single behaviors (e.g., moving a leg faster).

↭ High-level strategy: Coordinating multiple behaviors.

↭ Example: Keepaway soccer: GetOpen, Intercept, Hold, EvaluatePass, Pass

↭ Challenge: Switching between behaviors e!ectively.

(Whiteson & Kohl 2005)

Direct Evolution

↭ Mapping sensors directly to actions

↭ Di”cult to separate behaviors

↭ Ine!ective combinations result

Embedded Demo:

(Whiteson & Kohl 2005)

Coevolution Approach

↭ Evolve a separate network for each behavior

↭ A decision tree to decide which network to activate

(Whiteson & Kohl 2005)

Flexible Multimodal Behavior

↭ Discovering flexible multimodal behavior is a key step toward general
intelligence.

↭ Keepaway task:
↭ Networks learn individual tasks
↭ Learn to anticipate other tasks as well:

Lining up for a pass
↭ Cooperative coevolution of multimodal behavior

Embedded Demo:

(Whiteson & Kohl 2005)



Challenge 1: Abrupt Switching Between Behaviors

↭ Some strategies require abrupt behavior changes.

↭ Example: Small changes in soccer can shift the optimal action from
holding to shooting or passing.

↭ Di”cult to capture in a decision tree.

↭ Can we eolve a network to do it?

(Kohl & Miikkulainen 2008)

Using Radial Basis Activation Functions

↭ Radial Basis Functions (e.g. elongated Gaussians) activate neurons in local
regions.
↭ Many sigmoidal nodes are needed for the same e!ect.
↭ Easier to discover fractured regions.

(Kohl 2009)

RBF vs. sigmoid activation functions.

Using Cascaded Network Structures

↭ Cascaded networks: new hidden neurons added on top of earlier ones.

↭ Earlier connections are frozen.

↭ Each new neuron refines the boundaries of existing behaviors.

(Kohl & Miikkulainen 2011)

RBF + Cascade Make Abrupt Changes Possible

↭ Scales to 4v2 Keepaway.

(Kohl & Miikkulainen 2011) (Kohl 2009)

Number of teammates available for a pass Demo link: https://vimeo.com/2155250



RBF + Cascade Make Abrupt Changes Possible

↭ Scales to 5v5 half-field soccer.

(Kohl & Miikkulainen 2011)

Subsets of actions (of 6) available) Demo link: https://vimeo.com/5698040

Challenge 2: Blending and Interleaving Behaviors

↭ Intelligent agents often combine several behaviors.
↭ Example: Switching between o!ense and defense in soccer.

↭ They can be blended or rapidly interleaved.

(Kohl & Miikkulainen 2011)

Example: Ms. Pac-Man

↭ In Ms. Pac-Man, agents perform several tasks:
Eat pills, avoid ghosts, eat powerpills, eat ghosts.

↭ Sometimes interleaved but clearly separate.

↭ Sometimes blended into multiple tasks at once.

↭ How can we evolve such complex combinations of behaviors?

(Schrum 2014)

Evolving a Simple Control Network

↭ Simple networks can be evolved for Ms. Pac-Man, but they struggle with
behavior separation.

↭ Results: Poor performance due to blended behaviors.

↭ Neuroevolution can learn multiple behaviors, but it needs a more
sophisticated approach to switch e!ectively.

(Schrum 2014)
Demo link: https://youtu.be/hkcvd8Aitd8



Multitask Networks for Isolated and Interleaved Tasks

↭ Multitask networks with separate outputs can be evolved for threatening
and edible ghosts.

↭ Decide on which outputs to use based on a rule.
↭ These networks work well in isolated or interleaved tasks.
↭ However, they still struggle in blended situations where multiple behaviors

are required simultaneously.

Embedded Demo:

(Schrum 2014)

Expert-designed Subtasks and Combiner Networks

↭ Evolve separate networks for each behavior, and a combiner network to
switch between them.

↭ Evolve one network for threatening and another for edible ghosts.

↭ The combiner could be gating or transforming the task-specific outputs.

↭ Possible to blend, but three coevolving populations di”cult to converge.

(Schrum 2014)

Preference Neurons: Letting Evolution Discover Task Divisions

↭ Preference neurons allow evolution to decide when to switch behaviors.
↭ Each output module is coupled with a preference neuron, indicating when

it should be used.
↭ Evolution can add modules similarly to nodes and connections in NEAT.
↭ This method enables evolution to discover more flexible and e!ective task

divisions.

(Schrum and Miikkulainen 2016)

Surprising Strategy Discovery: Luring

↭ Evolution discovered an unexpected strategy: luring ghosts toward a power
pill, then eating them up.

↭ One module dedicated to this strategy.

↭ Human designers may not have discovered this behavior.

Embedded Demo:

(Schrum and Miikkulainen 2016)



Discovering E!ective Task Divisions

↭ The same luring module was used to escape threatening ghosts in tight
spaces!

↭ A very di!erent task division:
↭ Luring and escaping used only 5% of the time, but it counts.
↭ Eating pills, avoiding ghosts, chasing ghosts with the other module 95% of

the time; variations with a common base.
↭ With the freedom to explore di!erent strategies, evolution finds surprising

and powerful solutions.

(Schrum and Miikkulainen 2016)

Conclusion on Discovering Flexible Strategies

↭ High-level strategies require flexible switching and blending of multiple
behaviors.

↭ RBF nodes, Cascaded networks, modular networks with preference neurons
allow evolution to discover such strategies.

↭ Optimal behaviors can be surprising, e.g. blending and luring.

(Kohl & Miikkulainen 2011) (Schrum & Miikkulainen 2016)

Scaling up to Cognitive Behaviors

↭ Cognitive behaviors include communication, memory, and learning.

↭ These behaviors are complex and di”cult to evolve.

↭ The challenge: They require circuitry that doesn’t help until it works.

↭ Need to overcome deception during evolution.

(Lehman and Miikkulainen 2014)

Example: T-maze Task

↭ The T-maze task illustrates how communication, memory, and learning
can evolve.

↭ The agent must navigate to the reward at the correct end of the T-maze.

↭ Evolution struggles when the reward location changes frequently, requiring
cognitive strategies.

(Lehman and Miikkulainen 2014)



Deception in Evolving Communication

↭ To evolve communication, agents must develop mechanisms to send,
receive, and interpret signals.

↭ Deception occurs because partial solutions are not helpful unless all
components work together.

(Lehman and Miikkulainen 2014)

Deception in Evolving Memory

↭ Receives a signal at start: if AX, go left; if BX, BY, AY, go right.

↭ To evolve memory, agents must store activations, retrieve them at the
right time, and interpret them.

↭ Similar to communication, but internal to the network.

↭ Deception occurs because partial solutions are not helpful unless all
components work together.

(Lehman and Miikkulainen 2014)

Deception in Evolving Learning

↭ To evolve learning, agents must develop a learning rule that reinforces
good outcomes.

↭ Deception occurs because adaptation is mostly harmful—until it works.

(Lehman and Miikkulainen 2014)

Discovering Cognitive Behaviors with Novelty Search

↭ Fitness-based evolution reactive, i.e. always left or always right.

↭ Novelty search can overcome deception through stepping stones.
↭ The lineage of solutions shows multiple stepping stones:

↭ E.g. going to the opposite corridor with some communication inputs.

(Lehman and Miikkulainen 2014)



Novelty Search and Cognition

↭ How did cognition really evolve in biology?
↭ No explicit reward for novelty, but there are multiple goals and niches.
↭ Stepping stones can be rewarded for entirely other reasons.
↭ E.g. evolution of language based on social structure?

↭ Still a challenge, but its time may have come!

(Londolozi Images 2019)

Scaling up further: Coevolution

↭ Coevolution: Agents evolve in competition or cooperation with each other.

↭ It drives agents to develop more sophisticated and adaptable behaviors.

↭ Discussed at length in next few weeks.

(Souders 2005) (Rawal et al. 2010)

Conclusion on Evolving Behavior

↭ Evolving control, i.e. single behaviors:
↭ Neuroevolution excels at discovering robust control solutions for dynamic,

noisy, and nonlinear tasks.
↭ Creative behaviors are discovered that compensate for physical

imperfections or limitations.
↭ Adapting to new conditions outside training is a major challenge.

↭ Evolving strategy, i.e. multiple behaviors
↭ Complex strategies, such as switching between behaviors, can be evolved

with the right architectures.
↭ They can result in surprisingly e!ective combinations.
↭ Evolving cognitive behaviors such as communication, memory, and learning

is a major challenge.


