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Elliot Meyerson, Xin Qiu, and Hormoz Shahrzad . .
Organizations have lots of data
Jan 2nd, 2026 + Can build predictive models of patients, customers, students...

Such models do not specify how to make decisions
« ltis a different learning problem
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Challenges in Learning to Make Decisions Surrogate Optimization Approach
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Context Prescribe Actions
(Francon et al. 2020)

Optimal decisions not known; domain partially observable; interactions nonlinear

+ Direct methods like LP, gradient descent are ineffective Use a predictive model as a surrogate for the world

Train model with historical data: Context+Actions —» Outcomes
« Phenomenological model (based on data)

Need to S.earCh for decisipn Str?tegies . * Not a simulation from first principles
: B.Ut testing strategy Cand'|dates.|n the real world is costly Search for a good decision strategy (i.e. policy): Context — Actions
» Simulators often not available, inaccurate, or costly + Use the model to evaluate strategies
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Evolutionary Surrogate Optimization
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Search space is nonlinear, deceptive, large, high-dimensional, multiobjective

« Difficult for Kriging, Bayesian optimization
- Difficult for RL as well, e.g. DQN, A3C, PPO

Surrogate-assisted evolution might work
« But need to evolve a strategy, not a single point
« Evolve neural networks to represent the strategy

Cognizant
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ESP: Evolutionary Surrogate-Assisted Prescription

Outcomes
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Context Prescribe Actions
(Francon et al. 2020)

Based on components in existing applications:

Cyberag: Evolving growth recipes for vertical farming

« Millions evaluated with surrogate, hundreds planted

» Discovered a 24-hr light preference, size/taste tradeoff

Ascend: Evolving auto-segmented web designs

» Aneural network evolved to create different pages for different users

« Discovers and utilizes surprising interactions (e.g. day/provider/urgency)

(Miikkulainen et al. 2018)

(Crisman 2016)
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ESP: Evolutionary Surrogate-Assisted Prescription

Outcomes
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Prescribe
(Francon et al. 2020)

(Miikkulainen et al. 2018)

(Crisman 2016)

Combine a neural-network surrogate with neural-network strategy

« Train the surrogate, evolve the strategy
* Predictor and Prescriptor neural networks

(Variations: RF, SVM, Linear Predictors; Rule-set Prescriptors)

Cognizant

ESP Method: Prescriptor

Outcomes
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Context Prescribe

(Francon et al. 2020)

Find a decision policy that optimizes outcomes

« Expressed as a Prescriptor model Pr (e.g. a NN, ruleset)
* Map contexts to actions: Pr(C) = A

« Optimal A not known: Pr needs to be evolved

* How can we evaluate Pr candidates?

Cognizant



ESP Method: Predictor

Outcomes
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Context Prescribe Actions
(Francon et al. 2020)

Predictor model Pd trained with historical data
+ Pd(C,A)=0
» Can be used to evaluate each Prescriptor candidate
» Can be multiobjective
» Can be a neural net, random forest, SVM etc.
(in special cases: a simulator, or the real world)

Cognizant

ESP Process on Sequences

Surrogate Model
- Train Evolve
S
Actions

Outcomes

Collect Apply

Outcomes (Black Box) Actions
(Francon et al. 2020)
Many iterations of the outer loop
« Apply Prescriptors to the world; Collect C, A, O
» Train the Predictor; Evolve Prescriptors
¢ Repeat
Surprising synergy emerges:
« Incremental co-learning regularizes both models!
» Results in automated curricular learning

Cognizant

Static ESP Process

- Surrogate Model
Train Evolve

e - I
Actions

Outcomes

Collect Apply

Real-World Real World Prescribed
Outcomes (Black Box) Actions

(Francon et al. 2020)

Can be learned in one step, or in an incremental outer loop

* Train Predictor with historical data

« Evolve Prescriptors with the Predictor
« Apply the best Prescriptor to the world
« Collect new data

* Repeat

lllustrating ESP in Function Approximation

Ground Truth ESP after 25 episodes

== True Optimal Action

Predictor Optimal Action .
5 mes ESP Prescriptor -
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(a) - 10 Stgte 10 (Francon et al. 2020) . .
Ground truth known; easy to visualize
* Samples
« Predictor

* Prescriptor
* Optimal actions for Predictor
» Optimal actions for ground truth

Cognizant
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ESP Learning Process

Embedded Demo:
ESP after 10 episodes

Qualitative Comparison of ESP, DE, and RL

DE after 100 episodes

DE after 1000 episodes

PPO after 100 episodes

PPO after 1000 episodes

=+ True Optimal Action
e DE Prescriptor

=+ True Optimal Action
e PPO Prescriptor
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(Francon et al. 2020)
Predictor approaches ground truth
Prescriptor approaches ground-truth-optimal actions
Prescriptor is closer to ground-truth-optimal than Predictor-optimal
» Prescriptors regularize!
* By ensembling approximate Predictors
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* (Demo)
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Quantitative Comparison of ESP, DE, and RL
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(Francon et al. 2020)

ESP after 75 episodes ESP after 100 episodes ESP after 125 episodes

ESP after 25 episodes

ESP after 50 episodes

(Francon et al. 2020)

Direct Evolution (DE) using real-world evaluations instead of the surrogate
PPO is SotA in continuous RL

DE, PPO need many samples in the real world

» Even with 10x samples, still have not learned well

“ Cognizant

Standard RL Benchmark: CartPole-v0

200 —

R
Y e b A W oN e

Mean Reward of Returned Policy on 100 Episodes
|
L

©

o

«

Il

— ESP
—— DE
— PPO

N

N

J/\/\

w

Mean Regret of Last 100 Episodes

500 1000 1500 2000 2500 3000
Training Episodes
(Francon et al. 2020)

500 1000 1500 2000 2500 30(
Training Episodes

00

ESP is faster, more accurate, has lower variance

i.e. is more reliable

ESP has lower regret

i.e. has lower cost, is safer
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(Francon et al. 2020)

600 800
Training Episodes

OpenAl Gym benchmark with known DQN and PPO implementations

Similar results as in function

approximation

- ESP learns faster, has better solutions, lower variance, lower regret
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Regularization Through Surrogate Modeling

— Ground-Truth
~=- Surrogate

Fitness

Domain Feature
(Francon et al. 2020)

1. Ensembling of approximate Predictors -> regularized Prescriptors

2. In more complex domains, Predictors regularized as well
* Incomplete learning of complex landscapes
* Results in automatic incremental evolution, i.e. a curriculum

v Cognizant

Making Decisions Trustworthy: Estimating Uncertainty

Outcomes
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Context Prescribe Actions
(Francon et al. 2020)

» ESP predicts value, cost, side effects...
* How can we frust it?
» It needs to estimate uncertainty of its predictions

19 ©2018 Cognizant CogniZﬂn't

Demo of Surrogate Regularization

Embedded Demo: Embedded Demo: .
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(Francon et a1 2020)
Flappy bird: fly a 2 min track without crashing
ESP finds optimal solutions very fast
« Surrogate rewards approximate behaviors
DE gets stuck with suboptimal solutions
« Overfits to nonlinear effects in the game
* (Demo)
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RIO: Residual Estimation with Input, Output Kernel

Data | Data Scientist | Uncertainty Estimation | Deployment
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(Qiu et al. 2020)

» Train a Gaussian Process model to predict residuals (i.e. signed errors)
» Based on model input, output, and labels

» Provides estimates of uncertainty in model output

* Provides corrections to model output

» Applies to ESP Predictor (and any model trained with labeled data)
20 ©2018 Cognizant cognizant




Why does it work?
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(Qiu et al. 2020)

— RiO-cor

Why is RIO better than NN alone or GP alone?

* NN is expressive (i.e. high variance)

* Learns structure that GP would treat as noise
* Remaining structure is easier to learn

* GP can capture part of it

* GP is more regular than NN
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RED Analysis of Error Types

- Mean and variance of confidence score is different for

correctly classified, misclassified, OOD inputs, adversarial inputs
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(Qiu & Miikkulainen 2022)
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RED: Residual-based Error Detection

softmax

m p—svar(
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(Qiu & Miikkulainen 2022)

Extension of RIO to classification tasks

Softmax output of the NN estimates class probabilities

Use the model to identify likely classification errors:
e Does the model have a different argmax?

Form a GP model of softmax residual errors: &, ~ N (. + 7., var(f)) ™

7)
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Example 1: ESP for Optimizing
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NPIs for COVID-19

0 :
Context Prescribe Actions Mar2020  Apr2020  May2020  Jun2020  Jui2020  Aug2020  Sep2020  Oct2020  Nov2020  Dec2020

(Francon et al. 2020) (Miikkulainen et al. 2021)

From prediction to prescription: A new role for Al
« Current models predict outcomes of given NPIs
* Given a desired health/cost balance, ESP prescribes NPIs

Not just what will happen, but what we should do about it

24
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First build a predictor_ with available data
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(Miikkulainen et al. 2021)

Oxford dataset of cases and NPIs
*  (Hale, Webster, Petherick, Phillips, Kira (2020). Oxford COVID-19 Government Response Tracker)
» Daily case numbers, NPIs (eight kinds with 2-4 levels of stringency)
Standard compartmental models
+ Based on epidemiological assumptions on S, I, R
* Require setting unknown interaction parameters
Data-driven modeling is phenomenological
* Requires no assumptions; includes all the interactions
* Regquires sufficient data
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How well does it work?

Cases Roll Out: ITA Cases Roll Out: DEU
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Dataset original MAE ~ MAE with RIO  95% CI Coverage  90% CI Coverage  68% CI Coverage
Training datasct 0.0379 0.0342 0.932 0.909 0.761

Testing dataset 0.0471 0.0467 0.884 0.847 0.687

Surprisingly accurate rollouts even with limited data
« 20 countries with highest number of cases
« Several metrics over 14 days
* More accurate than MLP, RF, SVR, Linear baselines (e.g. MAE 0.42 vs. 2.47, 0.95, 0.71, 0.64)

Reasonable confidence intervals

« Randomly selected 14 days across 20 countries as test data
« Allows correcting the predictions slightly

2 Cognizant

Predictor Design

context_input: InputLayer context_Istm: LSTM context_dense: Dense.
2000 £ | action_input: InputLayer H action_lstm: LSTM H action_dense: Dense:

(Mikkulainen et al. 2021)

« Train a Deep Learning (LSTM) model to predict new cases
» Predict transmission rate; 7-day moving avg; scaled by susceptible population size
» Separate paths for context (cases) and action (NPI stringency)
« Possible to ensure stringency has a monotonic effect
» Predict based on 21-day past data; rollout 180 days into the future
« Estimate confidence with RIO
* Monte Carlo rollouts from RIO-determined distribution
* Plotted as quartiles (i.e. box-plot base over time)

2 Cognizant

Then evolve a Prescriptor with the Predictor as a surrogate

C1_School_closing: Dense
C2_Workplace_closing: Dense

C3_Cancel_public_events: Dense

No gradients!
« Need to search for a good model

Evolve neural network prescriptors
*  Population-based search

«  Use Predictor to evaluate each one
C4_Restrictions_on_gatherings: Dense

context_input: InputLayer |—>| context_dense: Dense Multiobjective
*  Minimize future cases
*  Minimize stringency of NPIs

(a proxy for economic cost)

(CG_Slay_al_hume_requimmenls: Dense

‘ C7_Restrictions_on_internal_movement: Dense ‘

-| C8_International_travel_controls: Dense

etc.
etal. 2021)
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Solutions represent different tradeoffs

Embedded Demo:

Candidates number of cases and NPI cost - Gen 1
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Evolution minimizes both objectives

Results in a Pareto front:

* Some minimize cases

* Some minimize cost

» Others balance the two to different degrees

Given a desired balance, best possible solutions
*  Empowering human decision makers

+ (Demo)

o0 000 )

o
Mean number of daiy cases

(Miikkulainen et al. 2021)

S0d00
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for COVID-19

https://evolution.ml/demos/npidashboard
Updated daily May 2020 — Dec 2022

Can be used to obtain data-based recommendations
«  Select country

«  Select date (current, or past)

+  Select health/economy tradeoff (cases vs. NPIs)

*  Obtain NPI recommendations and case predictions

Trustworthiness:

+  Obtain confidence bounds

«  Design custom NPIs with a scratchpad

«  Evolve explainable rulesets (instead of neural networks)

31
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Discoveries on Prediction and Prescription

(Miikkulainen et al. 2021)

Highlights (often 2 weeks in advance):

» May 2020: Focus on schools and workplaces (i.e. indoors); alternation
« Sept 2020: Focus on gatherings, travel restrictions; open schools

« Delta surge: India (March 2021); others with low rates (July 2021)

* August 2021: Recommendations for schools (Iceland)

« Dec 2021: Missed omicron surge; it happened everywhere at once

* March 2022: Impact of masking

& Cognizant

Al’s counterfactual and actual new cases in India
starting 2021-03-01

Obtaining Recommendations

Select i
«  Country Country / Region®

« Date (current/past) L

«  Tradeoff India x ]

Forecast Options

Observe cases
« Actual
«  With current NPIs

Current NPIs maintained”
AllNPIs maxed out

! All NPIs lifted Actual NP
«  With Al NPIs 0] o
3 Custom NPIs™ Edit -
And confidence bounds - AVs prescribed NPIs for "
+  GP model Counterfactuals @ India

«  Multiple rollouts

“Today” marker
"Forecast" start marker

Confidence bounds(D

Observe NPIs
«  Actual Prescriptor Trade-off:?
*  Prescribed o
Minimize | | Minimize
NPIs

32
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Explore alternative NPIs

Al’s counterfactual and actual new cases in India
starting 2021-03-01

Start from

«  Al's prescriptions Custom NPIs
+  Current )

*  Maxed-out prests

*«  NoNPIs

For instance

*  Less school, work,
home, transport

+  More masks, tests,
internatl. travel

Observe results

« Adifferent way
to achieve the
same result?

+  Not quite ®

NewCases

A2 w20 0ax  mn
Date

Actual NPls

Custom NPIs

Custom NPIs for
India
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RHEA: Realizing Human Expertise Through Al
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solutions

3. Distill them into
neural networks

¢ 4. Evolve the
/ neural networks

/

4. Evolve

3. Distill
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(Meyerson et al. 2024)
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November 2020-March 2021

« Evaluation and analysis: https://evolution.ml/xprize

Significant impact

« 1.2B views; Informed policy in Valencia, Iceland
* UN/ITU, GPAI/OECD follow-ups

169 expert-designed solutions

« Can neuroevolution improve upon them further?

XPRIZE Pandemic Response Challenge

+ Phase 1: Prediction Accuracy; 100 teams narrowed down to 50 finalists
« Phase 2: Prescription Effectiveness; 2 winners (Valencia, Slovenia) and 8 runner-ups

Many Machine Learning approaches as well as conventional ones

« Can we combine them and find even better solutions?

(https:/www.xprize.

Cognizant

RHEA Dlscovers Synergies in the Expert Solutions

siled Prescriptors Final Generation

(Meyerson et al. 2024)
XPRIZE entries have many useful, diverse ideas
* Neuroevolution can be used to recombine and refine them
Neuroevolution can also discover new ideas

RHEA improves upon XPRIZE entries
RHEA improves upon evolution from scratch

36
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How good are RHEA's solutions?

a Real World Stringencies ' PTCR
0124 —— Gaussian KDE % 1.0 .
7 = Raw Geo Data % 0 » Given human preferences
§ . for certain stringencies,
& oal the best tradeoffs come
B from RHEA
5 0.2
E 004 e + |
t ! ——
0 10 20 30
Cost eé\b"(\\ @Qe\*ﬂ5 o\é\\ab Qx\“y
1 MCR
§ 400001 *  RHEA reduces number of
§ 30000 cases maximally for the
§zuoouf 8 same stringency level
§ 10000- (compared to Distilled)
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Where do the solutions come from?
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Pareto solution ancestral complexity
(Meyerson et al. 2024)

Visualizing the ancestry (leaves) of Pareto-front solutions (root)
« Avariety of experts used, with different cost

* Avariety of structures, from few experts to many

« Child cost usually between those of parents

Evolution is working as expected

% Cognizant

Visualizing the Solutions

@ A UMAP projection of 90-day policies

Expert Pareto is on a 1-D manifold (yellow)

» Organized by stringency

RHEA (green) forms arcs around it

« Elaborates, interpolates, expands on them
Evolved from scratch (blue) are scattered

Real (red) clustered in the middle

» Some are agile, periodic (i); France, Portugal

Example interpolation: (ii), (iii)
Trade swing+separability for
agility+periodicity: (iv) and focus (v)

@

&

etal. 2024)
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Realizing the Potential of Diversity
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(Meyerson et al. 2024)

How much “DNA” does each solution contribute to the Pareto front?
* Good solutions generally contribute more
* Some poor solutions make outsize contributions
Diversity is fundamental in problem solving
» Can realize latent potential hidden in poor entries
40 » Technology to bring the community effort together Cognizant




Example 2: Land-Use Optimization

Global Carbon Budget Imbalance (Friediingstein et al. 2023):
By = Eros + ELuc — (Gatm + Socean + Sianp)

Emissions due to land-use change (ELUC) is a major factor
+ How much allocated for forest, crops, pasture, range, urban...
« Different amount of carbon release/capture

Optimize to balance carbon emissions vs. economy
The first project of Project Resilience

* AUN/ITU backed “Al for Good” initiative
+  Follow-up from XPRIZE Pandemic response

(Globe Observer, 2023)

# e Cognizant

Data Source 2: Carbon Emissions from Different Uses

-40 -30 -20 -10 O 100 20 30 40
Ewc (HILDA+) (tC ha™?)

Bookkeeping of Land Use Emissions (BLUE) (Hansis et al. 2015)
« High-fidelity simulation
« Estimates long-term emissions resulting from land-use change (ELUC)

Too slow to run directly as a surrogate
* Prepared a dataset for 1850-2022 by sampling the simulator

A oo

Data Source 1: Historical Land Use

Primary: Vegetation that is untouched by humans
« primf: Primary forest
- primn: Primary nonforest vegetation
Secondary: Vegetation that has been touched by humans
« secdf: Secondary forest
« secdn: Secondary nonforest vegetation

Urban
« urban: Urban areas
Crop
« c3ann: Annual C3 crops (e.g. wheat)
« c4ann: Annual C4 crops (e.g. maize)
« c3per: Perennial C3 crops (e.g. banana)
Pagion [Trisa i « cdper: Perennial C4 crops (¢.g. sugarcane)
W stezs x - « c3nfx: Nitrogen fixing C3 crops (e.g. soybean)
o aas x~ Pasture
Year 2021 : « pastr: Managed pasture land

AN
(https:/ianduse.evolution.mi)

Land-use harmonization project (LUH2) (Hurtt et al. 2020)

« Cells with 0.25x0.25 degree resolution

« Annually 850-2022

« range: Natural grassland / savannah / desert / etc.

#2 ©2023 Cognizant (Meyerson et al. 2024)

Setting Up ESP for Land-Use Optimization

For a given cell and year, what are the smallest changes we can make to reduce emissions as much as possible?

Context Outcomes

® Cell, area, year

® Emissions
® [and use

® Change amount

ELUC vs Predicted ELUC in UK

C3 crops diff 0.000283 N e sredices

Pasture diff -0.003074

Range diff -0.000801

€3 crops

Secondary forest diff 0.003570

Caithness, 2012

Urban diff 0.000000

W0 2012 0w 2016 200 200 2022
Secondary forest ‘ime

(Young 2023) g~ [T 13



Training Predictive Models

Model Time (s) | EU SA us Global

(Global dataset)

Evolving Prescriptive Models

Global dataset

LinReg (EU) 0047 0033 0172 0169 0206 urban 4 - -
LinReg (SA) 0.457 | 0.137 0.153 0.061 0.110 N 0.0 0 r e
LinReg (US) 03310139 0146 0035 0073 primn 100 ® Even Heuristic
LinReg (Global) 4644 | 0139 0150 0035 0074 s Perfect Heuristic
RF (EU) 17.697 [ 0.064 02117 01617 02187 primf s0 s ® Evolved Prescriptors
RF (SA) 209.688 | 0.133*7 00717 00747 0.126 _50
RE (US) 111701 | 0163 0.185'  0.032*  0.094" g secdn
RF (Global) 417.647 | 0.041°7 0.076'7 0.028" 00457 2 secdf - 0 15 -10
NeuralNet (EU) | 10711 | 00257 0277 0286 0334 8 9
NeuralNet (SA) 103.696 | 0.248 0.100*  0.562 0.399 o o
NeuralNet (US) | 73.141 | 0.136" 0225 00247 0.150 range ‘ - -50 -100 -15
NeuralNet (Global) | 1649.193 | 0.046°  0.110°  0.025" 0.050° 78~ Genl
i e 5 pastr - -12.51 -~ Gen3
4:99% confdence that RF outperforms NeuralNet, or vice-versa ~100 —e- Gen10 _20
(Young et al. 2025) e : -1507 -8 Cen2s
Evaluated linear regression, random forest, neural network models crop pestr renge secdf _17.5 | —@~ Final pareto Front _25
To keep computations feasible: (Young et al. 2025) 000 005 010 015 020 025 030 0.0 01 0.2 03 0.4
change (Young et al. 2025) change

« Separate models for Global, Europe, South America, US
» NN, LinReg trained with 1851-2011, RF 1982-2011; tested with 2012-2021

LinReg not sufficient

« Apparently a nonlinear problem

RF does not extrapolate well

Neural networks are the most accurate

« Learn positive and negative changes

* Modulated nonlinearly based on location, area, year

A population of neural networks recommending land-use change for a particular cell and year
« Evolved against the neural-network predictor
+ Trained with a random subset of 1851-2011, tested with 2012-2021

Results in a Pareto front for ELUC/Change tradeoffs

« Better than changing to forest equally, or linearly optimally
« Although worse in almost every location???

« Discovered a better principle: Pick your battles!

45 oo

Interactive Demo

q Actions

oo | s s ohe Lot e

Available at https://landuse.evolution.ml

« Explore different locations and time periods
« Observe actions and modify them

+ See their outcomes

Before

After

#6 oo cogm

Future Opportunity:

Outcomes

o

@ Even Heuristic
Perfect Heuristic
@ Evolved Prescriptors

Predict

o 4

Context Prescribe Actions -
(Francon et al. 2020) : i )

Apply ESP to decision making in society

* Humans set the goals; ESP determines how to best achieve them
Can optimize productivity, cost, environmental impact, equality
« Free of human biases and agendas

* We can make society what we want it to be

A concrete first step: Project Resilience

« An Al-for-Good ecosystem with open source and data

« Backed by UN/ITU, GPAI/OECD, Al Commons, Cognizant
« Volunteers needed!

ge
(Young et al. 2025)
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Conclusion

o 0

Context Prescribe Actions

Outcomes

®  Even Heuristic
Perfect Heuristic

Predict

s ®  Evolved Prescriptors

Y o1 02 03 04
change

(Young et al. 2025)

(Francon et al. 2020) lut

ESP utilizes a surrogate, evolution to do well in decision-making tasks

«  Sample-efficient, reliable, low-cost and safe

« Intrinsic regularization in both in the Predictor and the Prescriptor

A demonstration of the power of data and machine learning

«  In building Predictors, i.e. forecasting outcomes

* Inbuilding Prescriptors, i.e. making recommendations

Trustworthy: Estimating uncertainty, exploring alternatives; explaining decisions with rules
Creative decision making in healthcare, business, education, society...
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